‘‘Non-Invasive Extracellular Vesicle Biomarkers in Endometriosis, Molecular Signatures Linking Pelvic Inflammation, Oocyte Quality, and IVF Outcomes’’
Abstract
1. Introduction
1.1. Molecular Pathology of Endometriosis Through the EV Lens
1.2. Reproductive Axes Impacted by EVs: From Follicle to Implantation
1.3. Why EVs Are Ideal Non-Invasive Biomarkers in Endometriosis-Associated Infertility
2. Search Strategy and Literature Selection
3. Extracellular Vesicles as Molecular Messengers
4. Sources of Extracellular Vesicles in Endometriosis
4.1. Plasma and Serum Derived EVs: Systemic Mirrors of Local Pathology
4.2. Menstrual-Blood-Derived EVs: A Direct and Non-Invasive Window into Endometrial Biology
4.3. Peritoneal-Fluid-Derived EVs: Immune–Lesion Crosstalk and Inflammatory Amplification
4.4. Uterine-Fluid and Uterine-Luminal EVs: The Molecular Interface of Implantation
4.5. Integrative Perspective on EV Sources: From Pathophysiology to Translational Biomarkers
4.5.1. Molecular Continuum: Connecting Systemic and Local Vesicular Pathways
4.5.2. Functional Crosstalk: Effects on the Endometrial, Follicular, and Ovarian Compartments
4.5.3. Integrating Diagnostics to Formulate a Multi-Matrix Vesicular Signature
4.5.4. Clinical and Therapeutic Implications of Translational Importance
5. Molecular Content and Pathogenic Roles of Extracellular Vesicles in Endometriosis
5.1. Oxidative Stress and Redox Imbalance Indicating
5.2. Cytokine Amplification, Immune System Reprogramming, and Inflammation
5.3. Pain Sensitisation, Neurogenesis, and Angiogenesis
5.4. Hormonal Interactions, Epigenetic Variation, and Resistance to Progesterone
6. EV-Derived Biomarkers in the Context of IVF: From Implantation Dynamics to Oocyte Competence
6.1. The Competence of Oocytes and the Follicular Microenvironment
6.2. Embryo Morphokinetics and Extracellular Vesicles: Modifying Developmental Timing via Molecular Interference
6.3. Endometrial Receptivity and Implantation: Extracellular Vesicles as Molecular Indicators of Efficacy
6.4. Menstrual-Blood Extracellular Vesicles and Serum as Indicators of Systemic Fertility
6.5. Integrating EV Biomarkers into the Decision-Making Process for Art
7. Diagnostic and Prognostic Potential of EV-Based Biomarkers in Endometriosis-Associated Infertility
7.1. Diagnostic Utility: Differentiating Endometriosis from Infertility Related to Endometriosis
7.2. Prognostic Utility: Predicting Reproductive Outcomes and ART Efficacy
7.3. Reproducibility and Analytical Resilience
7.4. Clinical Translation and Prognostic Scoring Systems
7.5. Models for Clinical Translation and Prognostic Assessment
8. Discussion
8.1. Integrative Overview and Mechanistic Convergence
8.2. Translational Implications for IVF and Biomarker Development
8.3. Molecular Interactions Between Hormonal Signalling and Extracellular Vesicle Pathways in Assisted Reproductive Technology
8.4. Therapeutic Horizons: Targeting or Harnessing Extracellular Vesicles in Endometriosis and IVF
9. Challenges, Constraints, and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ART | Assisted Reproductive Technology |
| EV | Extracellular Vesicle |
| miRNA | MicroRNA |
| FF: | Follicular Fluid |
| PF | Peritoneal Fluid |
| EMT | Epithelial–Mesenchymal Transition |
| MVB | Multivesicular Body |
| ESCRT | Endosomal Sorting Complex Required for Transport |
| GC | Granulosa Cell |
| hESC | Human Endometrial Stromal Cell |
| IVF | In Vitro Fertilisation |
| ICSI | Intracytoplasmic Sperm Injection |
| ER | Endometrial Receptivity |
| ERα | Estrogen Receptor Alpha |
| PR | Progesterone Receptor |
| IL | Interleukin |
| TNF-α | Tumour Necrosis Factor-Alpha |
| TGF-β | Transforming Growth Factor-Beta |
| VEGF | Vascular Endothelial Growth Factor |
| HIF-1α | Hypoxia-Inducible Factor-1 Alpha |
References
- Datkhayeva, Z.; Iskakova, A.; Mireeva, A.; Seitaliyeva, A.; Skakova, R.; Kulniyazova, G.; Shayakhmetova, A.; Koshkimbayeva, G.; Sarmuldayeva, C.; Nurseitova, L.; et al. The Multifactorial Pathogenesis of Endometriosis: A Narrative Review Integrating Hormonal, Immune, and Microbiome Aspects. Medicina 2025, 61, 811. [Google Scholar] [CrossRef]
- Moustakli, E.; Stavros, S.; Katopodis, P.; Skentou, C.; Potiris, A.; Panagopoulos, P.; Domali, E.; Arkoulis, I.; Karampitsakos, T.; Sarafi, E.; et al. Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells 2025, 14, 36. [Google Scholar] [CrossRef]
- Guzeloglu-Kayisli, O.; Kayisli, U.A.; Taylor, H.S. The role of growth factors and cytokines during implantation: Endocrine and paracrine interactions. Semin. Reprod. Med. 2009, 27, 62–79. [Google Scholar] [CrossRef]
- Nisenblat, V.; Bossuyt, P.M.; Farquhar, C.; Johnson, N.; Hull, M.L. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Gynaecology and Fertility Group, editor. Cochrane Database Syst. Rev. 2016, 26, CD009591. [Google Scholar]
- Bongiovanni, L.; Andriessen, A.; Wauben, M.H.M.; Nolte-’t Hoen, E.N.M.; De Bruin, A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet. Pathol. 2021, 58, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Pevzner, I.B.; Andrianova, N.V.; Lomakina, A.K.; Cherkesova, K.S.; Semenchenko, E.D.; Plotnikov, E.Y. Organ-Specific Extracellular Vesicles in the Treatment of Ischemic Acute Organ Injury: Mechanisms, Successes, and Prospects. Int. J. Mol. Sci. 2025, 26, 9709. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Beal, J.R.; Bhurke, A.; Kannan, A.; Yu, J.; Taylor, R.N.; Bagchi, I.C.; Bagchi, M.K. Extracellular vesicles secreted by human uterine stromal cells regulate decidualization, angiogenesis, and trophoblast differentiation. Proc. Natl. Acad. Sci. USA 2022, 119, e2200252119. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, A.; Godakumara, K. The evolving roles of extracellular vesicles in embryo-maternal communication. Commun. Biol. 2024, 7, 754. [Google Scholar] [CrossRef]
- He, A.; Wu, H.; Zou, Y.; Wan, C.; Zhao, J.; Zhang, Q.; Liu, N.; Liu, D.; Li, Y.; Fu, J.; et al. Can biomarkers identified from the uterine fluid transcriptome be used to establish a noninvasive endometrial receptivity prediction tool? A proof-of-concept study. Reprod. Biol. Endocrinol. 2023, 21, 20. [Google Scholar] [CrossRef]
- Nadhan, R.; Nath, K.; Basu, S.; Isidoro, C.; Song, Y.S.; Dhanasekaran, D.N. Decoding lysophosphatidic acid signaling in physiology and disease: Mapping the multimodal and multinodal signaling networks. Signal Transduct. Target. Ther. 2025, 10, 337. [Google Scholar] [CrossRef]
- Dahiphale, S.M.; Dewani, D.; Dahiphale, J.M.; Agrawal, M.; Dave, A.; Pajai, S.; Jyotsna, G. A Comprehensive Review of the Endometrial Receptivity Array in Embryo Transfer: Advancements, Applications, and Clinical Outcomes. Cureus 2024, 16, e67866. [Google Scholar] [CrossRef]
- Klemmt, P.A.B.; Starzinski-Powitz, A. Molecular and Cellular Pathogenesis of Endometriosis. Curr. Women’s Health Rev. 2018, 14, 106–116. [Google Scholar] [CrossRef]
- Bae, T.; Hallis, S.P.; Kwak, M.K. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp. Mol. Med. 2024, 56, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Iannotta, D.; Amruta, A.; Kijas, A.W.; Rowan, A.E.; Wolfram, J. Entry and exit of extracellular vesicles to and from the blood circulation. Nat. Nanotechnol. 2024, 19, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Acevedo-Cintrón, J.A.; Sayanagi, J.; Snyder-Warwick, A.K.; Mackinnon, S.E.; Wood, M.D. The CCL2/CCR2 axis is critical to recruiting macrophages into acellular nerve allograft bridging a nerve gap to promote angiogenesis and regeneration. Exp. Neurol. 2020, 331, 113363. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, A.; Usui, T. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation. D’Acquisto, F., editor. Mediat. Inflamm. 2015, 2015, 568543. [Google Scholar] [CrossRef]
- Wang, X.; Khalil, R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv. Pharmacol. 2018, 81, 241–330. [Google Scholar]
- Nickerson, K.R.; Sammoura, F.M.; Zhou, Y.; Jaworski, A. Slit-Robo signaling supports motor neuron avoidance of the spinal cord midline through DCC antagonism and other mechanisms. Front. Cell Dev. Biol. 2025, 13, 1563403. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Patel, H.H.; Roth, D.M. Extracellular Vesicles: A New Paradigm for Cellular Communication in Perioperative Medicine, Critical Care, and Pain Management. Anesth. Analg. 2021, 133, 1162–1179. [Google Scholar] [CrossRef]
- Naveed, M.; Zhou, Q.G.; Han, F. Cerebrovascular inflammation: A critical trigger for neurovascular injury? Neurochem. Int. 2019, 126, 165–177. [Google Scholar] [CrossRef]
- Tiskratok, W.; Chuinsiri, N.; Limraksasin, P.; Kyawsoewin, M.; Jitprasertwong, P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers 2025, 17, 822. [Google Scholar] [CrossRef]
- Liu, H.; Pan, Y.; Han, X.; Liu, J.; Li, R. MicroRNA-216a promotes the metastasis and epithelial–mesenchymal transition of ovarian cancer by suppressing the PTEN/AKT pathway. OncoTargets Ther. 2017, 10, 2701–2709. [Google Scholar]
- Azevedo Martins, J.M.; Rabelo-Santos, S.H.; Do Amaral Westin, M.C.; Zeferino, L.C. Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: A competing risk analysis. BMC Cancer 2020, 20, 660. [Google Scholar] [CrossRef] [PubMed]
- Salvador, J.; Iruela-Arispe, M.L. Nuclear Mechanosensation and Mechanotransduction in Vascular Cells. Front. Cell Dev. Biol. 2022, 10, 905927. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, E.; Tancini, B.; Emiliani, C.; Delo, F.; Pellegrino, R.M.; Tognoloni, A.; Urbanelli, L.; Buratta, S. Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.; Mrakic-Sposta, S.; Micheloni, S.; Prattichizzo, F.; Ceriello, A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability. Cardiovasc. Diabetol. 2018, 17, 105. [Google Scholar]
- Zhang, S.; Chang, Q.; Li, P.; Tong, X.; Feng, Y.; Hao, X.; Zhang, X.; Yuan, Z.; Tan, J. Concentrated small extracellular vesicles from menstrual blood-derived stromal cells improve intrauterine adhesion, a pre-clinical study in a rat model. Nanoscale 2021, 13, 7334–7347. [Google Scholar] [CrossRef]
- Farahani, R.A.; Zhu, X.-Y.; Tang, H.; Jordan, K.L.; Lerman, A.; Lerman, L.O.; Eirin, A. Metabolic Syndrome Alters the Cargo of Mitochondria-Related microRNAs in Swine Mesenchymal Stem Cell-Derived Extracellular Vesicles, Impairing Their Capacity to Repair the Stenotic Kidney. Choudhery MS, editor. Stem Cells Int. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Ghincea, A.; Woo, S.; Yu, S.; Pivarnik, T.; Fiorini, V.; Herzog, E.L.; Ryu, C. Mitochondrial DNA-Sensing Pathogen Recognition Receptors in Systemic Sclerosis-Associated Interstitial Lung Disease: A Review. Curr. Treat. Options Rheumatol. 2023, 9, 204–220. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, G. Progesterone Resistance in Endometriosis: Current Evidence and Putative Mechanisms. Int. J. Mol. Sci. 2023, 24, 6992. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Jiang, W.; Zhang, W.; Xu, Y.; Gu, R.; Qu, R.; Zou, Y.; Li, Z.; Sun, Y.; et al. Extracellular vesicles-derived MicroRNA-145-5p is upregulated in the uterine fluid of women with endometriosis and impedes mouse and human blastocyst development. J. Ovarian Res. 2024, 17, 253. [Google Scholar] [CrossRef] [PubMed]
- Apostolov, A.; Mladenović, D.; Tilk, K.; Lõhmus, A.; Baev, V.; Yahubyan, G.; Sola-Leyva, A.; Bergamelli, M.; Görgens, A.; Zhao, C.; et al. Multi-omics analysis of uterine fluid extracellular vesicles reveals a resemblance with endometrial tissue across the menstrual cycle: Biological and translational insights. Hum. Reprod. Open 2025, 2025, hoaf010. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhao, X.; Li, J.; Liu, C.; Li, W.; Zhao, J.; Li, Z.; Wang, N.; Wang, F.; Dong, J.; et al. Neutrophil extracellular traps mediated by platelet microvesicles promote thrombosis and brain injury in acute ischemic stroke. Cell Commun. Signal. 2024, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Dole, V.S.; Bergmeier, W.; Mitchell, H.A.; Eichenberger, S.C.; Wagner, D.D. Activated platelets induce Weibel-Palade–body secretion and leukocyte rolling in vivo: Role of P-selectin. Blood 2005, 106, 2334–2339. [Google Scholar] [CrossRef]
- Gurung, S.; Piskopos, J.; Steele, J.; Schittenhelm, R.; Shah, A.; Cousins, F.L.; Tapmeier, T.T.; Gargett, C.E. Potential Role of Menstrual Fluid-Derived Small Extracellular Vesicle Proteins in Endometriosis Pathogenesis. J. Extracell. Vesicles 2025, 14, e70048. [Google Scholar] [CrossRef]
- Sui, C.; Liao, Z.; Bai, J.; Hu, D.; Yue, J.; Yang, S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur. J. Med. Res. 2023, 28, 471. [Google Scholar] [CrossRef]
- Duval, C.; Wyse, B.A.; Tsang, B.K.; Librach, C.L. Extracellular vesicles and their content in the context of polycystic ovarian syndrome and endometriosis: A review. J. Ovarian Res. 2024, 17, 160. [Google Scholar] [CrossRef]
- Clower, L.; Fleshman, T.; Geldenhuys, W.J.; Santanam, N. Targeting Oxidative Stress Involved in Endometriosis and Its Pain. Biomolecules 2022, 12, 1055. [Google Scholar] [CrossRef]
- Ateeq, M.; Broadwin, M.; Sellke, F.W.; Abid, M.R. Extracellular Vesicles’ Role in Angiogenesis and Altering Angiogenic Signaling. Med. Sci. 2024, 12, 4. [Google Scholar] [CrossRef]
- Lipinska, P.; Smits, K.; Van Soom, A.; Pavani, K.C.; Warzych, E. Follicular-fluid extracellular vesicles support energy metabolism of bovine oocytes, improving blastocyst development and quality. Biol. Reprod. 2025, 113, 109–126. [Google Scholar] [CrossRef]
- Ozawa, M.; Sakatani, M.; Shanker, S.; Yao, J.; Farmerie, W.G.; Yamashita, R.; Wakabayashi, S.; Nakai, K.; Hansen, P.J. Transcriptome of the Inner Cell Mass and Trophectoderm in Bovine Blastocyst as Determined by Next Generation Sequencing. Biol. Reprod. 2012, 87 (Suppl. S1), 191. [Google Scholar] [CrossRef]
- Mrugacz, G.; Bołkun, I.; Magoń, T.; Korowaj, I.; Golka, B.; Pluta, T.; Fedak, O.; Cieśla, P.; Zowczak, J.; Skórka, E. Time-Lapse Imaging in IVF: Bridging the Gap Between Promises and Clinical Realities. Int. J. Mol. Sci. 2025, 26, 9609. [Google Scholar] [CrossRef] [PubMed]
- Azizi, E.; Mofarahe, Z.S.; Naji, M. MicroRNAs, small regulatory elements with significant effects on human implantation: A review. J. Assist. Reprod. Genet. 2023, 40, 697–717. [Google Scholar] [CrossRef] [PubMed]
- Katsila, T.; Sofianos, Z.D.; Balafas, E.; Kostomitsopoulos, N.; Matsoukas, J.; Tselios, T.; Tamvakopoulos, C. Evaluation of gonadotropin-releasing hormone analogues in mice—Pharmacokinetic studies and biomarker based efficacy by mass spetrometry. Eur. J. Cancer Suppl. 2008, 6, 141–142. [Google Scholar] [CrossRef]
- Cossarizza, A.; Chang, H.; Radbruch, A.; Akdis, M.; Andrä, I.; Annunziato, F.; Bacher, P.; Barnaba, V.; Battistini, L.; Bauer, W.M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017, 47, 1584–1797. [Google Scholar] [CrossRef]
- Luo, K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb. Perspect. Biol. 2017, 9, a022137. [Google Scholar] [CrossRef]
- Piibor, J.; Waldmann, A.; Dissanayake, K.; Andronowska, A.; Ivask, M.; Prasadani, M.; Kavak, A.; Kodithuwakku, S.; Fazeli, A. Uterine Fluid Extracellular Vesicles Proteome Is Altered During the Estrous Cycle. Mol. Cell. Proteom. 2023, 22, 100642. [Google Scholar] [CrossRef]
- Ahlberg, E.; Al-Kaabawi, A.; Eldh, M.; Gabrielsson, S.; Jenmalm, M.C.; Tingö, L. Characterization of Extracellular Vesicles From Fresh vs. Frozen Human Milk Including the Vesicular microRNA Cargo. J. Extracell. Biol. 2025, 4, e70092. [Google Scholar] [CrossRef]
- Nieuwland, R.; Siljander, P.R. A beginner’s guide to study extracellular vesicles in human blood plasma and serum. J. Extracell. Vesicles 2024, 13, e12400. [Google Scholar] [CrossRef]
- Zaheer, A.; Komel, A.; Abu Bakr, M.B.; Singh, A.K.; Saji, A.S.; Kharal, M.M.; Ahsan, A.; Khan, M.H.; Akbar, A. Potential for and challenges of menstrual blood as a non-invasive diagnostic specimen: Current status and future directions. Ann. Med. Surg. 2024, 86, 4591–4600. [Google Scholar] [CrossRef]
- Muraoka, A.; Yokoi, A.; Yoshida, K.; Kitagawa, M.; Bayasula Murakami, M.; Miyake, N.; Sonehara, R.; Nakamura, T.; Osuka, S.; Kajiyama, H. Serum-derived small extracellular vesicles as biomarkers for predicting pregnancy and delivery on assisted reproductive technology in patients with endometriosis. Front. Endocrinol. 2025, 15, 1442684. [Google Scholar] [CrossRef] [PubMed]
- Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papahliou, A.-M.; Zografos, C.G.; Kondili, P.; et al. MicroRNA Signatures in Endometrial Receptivity Unlocking Their Role in Embryo Implantation and IVF Success: A Systematic Review. Biomedicines 2025, 13, 1189. [Google Scholar] [CrossRef] [PubMed]
- Mappa, I.; Page, Z.P.; Di Mascio, D.; Patelli, C.; D’Antonio, F.; Giancotti, A.; Gebbia, F.; Mariani, G.; Cozzolino, M.; Muzii, L.; et al. The Effect of Endometriosis on In Vitro Fertilization Outcomes: A Systematic Review and Meta-Analysis. Healthcare 2024, 12, 2435. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Qi, Y.; Wang, Y.; Yan, H.; Li, X.; Zhang, Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front. Cell Dev. Biol. 2023, 10, 1079387. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Jankovičová, J.; Sečová, P.; Michalková, K.; Antalíková, J. Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int. J. Mol. Sci. 2020, 21, 7568. [Google Scholar] [CrossRef]
- Annaval, T.; Wild, R.; Crétinon, Y.; Sadir, R.; Vivès, R.R.; Lortat-Jacob, H. Heparan Sulfate Proteoglycans Biosynthesis and Post Synthesis Mechanisms Combine Few Enzymes and Few Core Proteins to Generate Extensive Structural and Functional Diversity. Molecules 2020, 25, 4215. [Google Scholar] [CrossRef]
- Oală, I.E.; Mitranovici, M.I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics 2024, 14, 312. [Google Scholar]
- Rädler, J.; Gupta, D.; Zickler, A.; Andaloussi, S.E. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol. Ther. 2023, 31, 1231–1250. [Google Scholar] [CrossRef]
- Lee, Y.J.; Shin, K.J.; Chae, Y.C. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp. Mol. Med. 2024, 56, 877–889. [Google Scholar] [CrossRef]
- Vissers, G.; Giacomozzi, M.; Verdurmen, W.; Peek, R.; Nap, A. The role of fibrosis in endometriosis: A systematic review. Hum. Reprod. Update 2024, 30, 706–750. [Google Scholar] [CrossRef]
- Reese, M.; Dhayat, S.A. Small extracellular vesicle non-coding RNAs in pancreatic cancer: Molecular mechanisms and clinical implications. J. Hematol. Oncol. 2021, 14, 141. [Google Scholar] [CrossRef] [PubMed]
- Skoura, A.; Hla, T. Lysophospholipid receptors in vertebrate development, physiology, and pathology. J. Lipid Res. 2009, 50, S293–S298. [Google Scholar] [CrossRef] [PubMed]
- Costa Verdera, H.; Gitz-Francois, J.J.; Schiffelers, R.M.; Vader, P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J. Control. Release 2017, 266, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Hua, Y.; Chen, Z.; Chao, F.; Li, M. Extracellular vesicles containing PD-L1 contribute to CD8+ T-cell immune suppression and predict poor outcomes in small cell lung cancer. Clin. Exp. Immunol. 2022, 207, 307–317. [Google Scholar] [CrossRef]
- Serratì, S.; Porcelli, L.; Fragassi, F.; Garofoli, M.; Di Fonte, R.; Fucci, L.; Iacobazzi, R.M.; Palazzo, A.; Margheri, F.; Cristiani, G.; et al. The Interaction between Reactive Peritoneal Mesothelial Cells and Tumor Cells via Extracellular Vesicles Facilitates Colorectal Cancer Dissemination. Cancers 2021, 13, 2505. [Google Scholar] [CrossRef]
- Mazzarella, R.; Cañón-Beltrán, K.; Cajas, Y.N.; Hamdi, M.; González, E.M.; Da Silveira, J.C.; Leal, C.L.V.; Rizos, D. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development. J. Anim. Sci. Biotechnol. 2024, 15, 51, Erratum in J. Anim. Sci. Biotechnol. 2024, 15, 69. [Google Scholar]
- Nakazaki, M.; Morita, T.; Lankford, K.L.; Askenase, P.W.; Kocsis, J.D. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell. Vesicles 2021, 10, e12137. [Google Scholar] [CrossRef]
- Dyer, M.R.; Alexander, W.; Hassoune, A.; Chen, Q.; Brzoska, T.; Alvikas, J.; Liu, Y.; Haldeman, S.; Plautz, W.; Loughran, P.; et al. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J. Thromb. Haemost. 2019, 17, 1733–1745. [Google Scholar] [CrossRef]
- Babuta, M.; Szabo, G. Extracellular vesicles in inflammation: Focus on the microRNA cargo of EVs in modulation of liver diseases. J. Leukoc. Biol. 2021, 111, 75–92. [Google Scholar] [CrossRef]
- Giacomini, E.; Scotti, G.M.; Vanni, V.S.; Lazarevic, D.; Makieva, S.; Privitera, L.; Signorelli, S.; Cantone, L.; Bollati, V.; Murdica, V.; et al. Global transcriptomic changes occur in uterine fluid-derived extracellular vesicles during the endometrial window for embryo implantation. Hum. Reprod. 2021, 36, 2249–2274. [Google Scholar] [CrossRef]
- Sadati, S.A.; Chekini, Z.; Shekari, F.; Hafezi, M.; Ghaheri, A.; Shahhoseini, M.; Moini, A.; Aflatonian, R.; Totonchi, M.; Afsharian, P. Expression analysis of plasma extracellular vesicle associated candidate MiRNAs in endometriosis using integrative bioinformatics and experiential data. Sci. Rep. 2025, 15, 24970. [Google Scholar] [CrossRef] [PubMed]
- Brady, P.; Yousif, A.; Sasamoto, N.; Vitonis, A.F.; Fendler, W.; Stawiski, K.; Hornstein, M.D.; Terry, K.L.; Elias, K.M.; Missmer, S.A.; et al. Plasma microRNA expression in adolescents and young adults with endometriosis: The importance of hormone use. Front. Reprod. Health 2024, 6, 1360417. [Google Scholar]
- Nazri, H.M.; Greaves, E.; Quenby, S.; Dragovic, R.; Tapmeier, T.T.; Becker, C.M. The role of small extracellular vesicle-miRNAs in endometriosis. Hum. Reprod. 2023, 38, 2296–2311. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, H.; Ye, F.; Li, Z.; Fan, Z.; Fu, X.; Lu, Y.; Bi, J.; Li, H. Systematic review on the Extracellular Vesicles in Reproductive Medicine and Gamete Union. J. Pharm. Anal. 2025, 15, 101261. [Google Scholar] [CrossRef]
- Souza, C.A.D.; Santos, G.D.; Saldanha, S.F.; Souza, L.A.; Silveira, J.C.D. Extracellular vesicles in female reproduction: From basic research to application. Anim. Reprod. 2025, 22, e20250049. [Google Scholar] [CrossRef]
- Scheck, S.; Paterson, E.S.J.; Henry, C.E. A promising future for endometriosis diagnosis and therapy: Extracellular vesicles—A systematic review. Reprod. Biol. Endocrinol. 2022, 20, 174. [Google Scholar] [CrossRef]
- Chu, X.; Hou, M.; Li, Y.; Zhang, Q.; Wang, S.; Ma, J. Extracellular vesicles in endometriosis: Role and potential. Front. Endocrinol. 2024, 15, 1365327. [Google Scholar] [CrossRef]
- Choezom, D.; Gross, J.C. Neutral sphingomyelinase 2 controls exosome secretion by counteracting V-ATPase-mediated endosome acidification. J. Cell Sci. 2022, 135, jcs259324. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, Y.; Tan, X.; Huang, X.; Gao, Q.; Ma, Y.; Yang, S.; Yin, M.; Yu, M.; Fang, C.; et al. Integrated transcriptomic and proteomic profiling reveals the key molecular signatures of brain endothelial reperfusion injury. CNS Neurosci. Ther. 2024, 30, e14483. [Google Scholar] [CrossRef]
- Grbčić, P.; Sedić, M. Sphingosine 1-Phosphate Signaling and Metabolism in Chemoprevention and Chemoresistance in Colon Cancer. Molecules 2020, 25, 2436. [Google Scholar] [CrossRef]
- Santos, C.M.D.A.M.; Souza, A.T.B.D.; Neta, A.P.R.; Freire, L.V.P.; Sarmento, A.C.A.; Medeiros, K.S.D.; Luchessi, A.D.; Cobucci, R.N.; Gonçalves, A.K.; Crispim, J.C.d.O. Exosomal MicroRNAs as Epigenetic Biomarkers for Endometriosis: A Systematic Review and Bioinformatics Analysis. Int. J. Mol. Sci. 2025, 26, 4564. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Abraham, E. MicroRNAs in immune response and macrophage polarization. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Nanru, P. Immunomodulatory effects of immune cell-derived extracellular vesicles in melanoma. Front. Immunol. 2024, 15, 1442573. [Google Scholar] [CrossRef] [PubMed]
- Zhou, E.; Li, Y.; Wu, F.; Guo, M.; Xu, J.; Wang, S.; Tan, Q.; Ma, P.; Song, S.; Jin, Y. Circulating extracellular vesicles are effective biomarkers for predicting response to cancer therapy. EBioMedicine 2021, 67, 103365. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, M.; Wang, S.; Bao, H.; Qu, Q.; Zhang, N.; Hao, C. Luteal phase ovarian stimulation for poor ovarian responders. JBRA Assist. Reprod. 2018, 22, 193–198. [Google Scholar] [CrossRef]
- Merino-Pérez, A.; Segura-Benítez, M.; Pellicer, A.; Cervelló, I.; Ferrero, H. Unveiling the role of extracellular vesicles in reproductive success and uterine diseases—A systematic review. Reprod. Biomed. Online 2025, 51, 104862. [Google Scholar] [CrossRef]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef]
- Cindrova-Davies, T.; Zhao, X.; Elder, K.; Jones, C.J.P.; Moffett, A.; Burton, G.J.; Turco, M.Y. Menstrual flow as a non-invasive source of endometrial organoids. Commun. Biol. 2021, 4, 651. [Google Scholar] [CrossRef]
- Lucotti, S.; Kenific, C.M.; Zhang, H.; Lyden, D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J. 2022, 41, e109288. [Google Scholar] [CrossRef]
- Leiva, N.L.; Nolly, M.B.; Ávila Maniero, M.; Losinno, A.D.; Damiani, M.T. Rab Proteins: Insights into Intracellular Trafficking in Endometrium. Reprod. Sci. 2021, 28, 12–22. [Google Scholar] [CrossRef]
- Lakhter, A.J.; Pratt, R.E.; Moore, R.E.; Doucette, K.K.; Maier, B.F.; DiMeglio, L.A.; Sims, E.K. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia 2018, 61, 1124–1134. [Google Scholar] [CrossRef]
- Yenilmez, B.; Kelly, M.; Zhang, G.-F.; Wetoska, N.; Ilkayeva, O.R.; Min, K.; Rowland, L.; DiMarzio, C.; He, W.; Raymond, N.; et al. Paradoxical activation of transcription factor SREBP1c and de novo lipogenesis by hepatocyte-selective ATP-citrate lyase depletion in obese mice. J. Biol. Chem. 2022, 298, 102401. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. Activation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts. PeerJ 2017, 5, e4063. [Google Scholar] [CrossRef] [PubMed]
- López-Cabrera, M. Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv. Med. 2014, 2014, 473134. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Rodriguez, E.R.; Reimert, D.V.; Shu, T.; Fritzsch, B.; Richards, L.J.; Kolodkin, A.L.; Ginty, D.D. Neuropilin-1 Conveys Semaphorin and VEGF Signaling during Neural and Cardiovascular Development. Dev. Cell 2003, 5, 45–57. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, B.; Zhang, Y.; Li, M.; Jiang, Y.; Zhou, J.; Zhang, Y.; Kang, N.; Wu, M.; Yan, Y.; et al. Ectopic endometrial stromal cell-derived extracellular vesicles encapsulating microRNA-25-3p induce endometrial collagen I deposition impairing decidualization in endometriosis. Mol. Hum. Reprod. 2024, 30, gaae042. [Google Scholar] [CrossRef]
- Volovsky, M.; Seifer, D.B. Current Status of Ovarian and Endometrial Biomarkers in Predicting ART Outcomes. J. Clin. Med. 2024, 13, 3739. [Google Scholar] [CrossRef]
- Herington, J.L.; Bruner-Tran, K.L.; Lucas, J.A.; Osteen, K.G. Immune interactions in endometriosis. Expert Rev. Clin. Immunol. 2011, 7, 611–626. [Google Scholar] [CrossRef]
- Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxidative Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef]
- Voros, C.; Papadimas, G.; Mavrogianni, D.; Koulakmanidis, A.-M.; Athanasiou, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papapanagiotou, I.; Vaitsis, D.; et al. Molecular Signatures of Obesity-Associated Infertility in Polycystic Ovary Syndrome: The Emerging Role of Exosomal microRNAs and Non-Coding RNAs. Genes 2025, 16, 1101. [Google Scholar]
- Wang, Q.; Liu, Y.; Wu, Y.; Wen, J.; Man, C. Immune function of miR-214 and its application prospects as molecular marker. PeerJ 2021, 9, e10924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, J.; Kou, X.; Huang, W.; Zhu, Y.; Jiang, Y.; Yang, K.; Li, C.; Hao, M.; Qu, Y.; et al. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J. Extracell. Vesicles 2022, 11, e12240. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, W.; Hu, D.; Liang, Y.; Liu, Z.; Zhong, T.; Wang, X. Tumor-derived extracellular vesicles regulate macrophage polarization: Role and therapeutic perspectives. Front. Immunol. 2024, 15, 1346587. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, W.; Chen, F. Dysfunction of natural killer cells promotes immune escape and disease progression in endometriosis. Front. Immunol. 2025, 16, 1657605. [Google Scholar] [CrossRef]
- Buzas, E.I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 2023, 23, 236–250. [Google Scholar]
- Conley, A.; Minciacchi, V.R.; Lee, D.H.; Knudsen, B.S.; Karlan, B.Y.; Citrigno, L.; Viglietto, G.; Tewari, M.; Freeman, M.R.; Demichelis, F.; et al. High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biol. 2017, 14, 305–316. [Google Scholar]
- Soroczynska, K.; Zareba, L.; Dlugolecka, M.; Czystowska-Kuzmicz, M. Immunosuppressive Extracellular Vesicles as a Linking Factor in the Development of Tumor and Endometriotic Lesions in the Gynecologic Tract. Cells 2022, 11, 1483. [Google Scholar] [CrossRef]
- Stetler-Stevenson, W.G. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J. Clin. Investig. 1999, 103, 1237–1241. [Google Scholar] [CrossRef]
- Iwabuchi, T.; Yoshimoto, C.; Shigetomi, H.; Kobayashi, H. Oxidative Stress and Antioxidant Defense in Endometriosis and Its Malignant Transformation. Oxidative Med. Cell. Longev. 2015, 2015, 848595. [Google Scholar] [CrossRef]
- Knoops, B.; Argyropoulou, V.; Becker, S.; Ferté, L.; Kuznetsova, O. Multiple Roles of Peroxiredoxins in Inflammation. Mol. Cells 2016, 39, 60–64. [Google Scholar] [CrossRef]
- Monard, M.; Marsh, C.; Schumacher, K.; Nothnick, W. Secretory phase of menstruation and implantation. Front. Women’s Health 2018, 3, 1–5. [Google Scholar]
- Mazzarella, R.; Cajas, Y.N.; Gonzalez Martínez, M.E.; Rizos, D. Extracellular vesicles: Emerging paradigms in bovine embryo-maternal communication. Anim. Reprod. 2024, 21, e20240065. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Li, Y.; Meng, Y.-Z.; Xu, P.; Yang, Y.-G.; Dong, S.; He, J.; Hu, Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front. Immunol. 2022, 13, 918550. [Google Scholar] [CrossRef] [PubMed]
- Kuokkanen, S.; Chen, B.; Ojalvo, L.; Benard, L.; Santoro, N.; Pollard, J.W. Genomic Profiling of MicroRNAs and Messenger RNAs Reveals Hormonal Regulation in MicroRNA Expression in Human Endometrium1. Biol. Reprod. 2010, 82, 791–801. [Google Scholar]
- Ibañez-Perez, J.; Díaz-Nuñez, M.; Clos-García, M.; Lainz, L.; Iglesias, M.; Díez-Zapirain, M.; Rabanal, A.; Bárcena, L.; González, M.; Lozano, J.J.; et al. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium. Hum. Reprod. 2022, 37, 2375–2391. [Google Scholar]
- Andreu, Z.; Yáñez-Mó, M. Tetraspanins in Extracellular Vesicle Formation and Function. Front. Immunol. 2014, 5, 442. [Google Scholar] [CrossRef]
- Brosens, J.J.; Hodgetts, A.; Feroze-Zaidi, F.; Sherwin, J.R.A.; Fusi, L.; Salker, M.S.; Higham, J.; Rose, G.L.; Kajihara, T.; Young, S.L.; et al. Proteomic analysis of endometrium from fertile and infertile patients suggests a role for apolipoprotein A-I in embryo implantation failure and endometriosis. Mol. Hum. Reprod. 2010, 16, 273–285. [Google Scholar]
- Fatmous, M.; Rai, A.; Poh, Q.H.; Salamonsen, L.A.; Greening, D.W. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front. Cell Dev. Biol. 2022, 10, 1078096. [Google Scholar] [CrossRef]
- Ichikawa, R.; Kimura, K.; Nakamura, S.; Ohkura, S.; Matsuyama, S. Effects of intrauterine extracellular vesicle microRNAs on embryonic gene expression in low-fertility cows. FASEB J. 2024, 38, e70116. [Google Scholar]
- Kovács, Á.F.; Fekete, N.; Turiák, L.; Ács, A.; Kőhidai, L.; Buzás, E.I.; Pállinger, É. Unravelling the Role of Trophoblastic-Derived Extracellular Vesicles in Regulatory T Cell Differentiation. Int. J. Mol. Sci. 2019, 20, 3457. [Google Scholar] [CrossRef]
- Vaiciuleviciute, R.; Pachaleva, J.; Bernotiene, E.; Kugaudaite, G.; Lebedis, I.; Krugly, E.; Uzieliene, I. Menstrual blood-derived mesenchymal stromal cell extracellular vesicles—A potential tool for tissue regeneration and disease detection. Front. Bioeng. Biotechnol. 2025, 13, 1643408. [Google Scholar] [CrossRef] [PubMed]
- Makiguchi, T.; Yamada, M.; Yoshioka, Y.; Sugiura, H.; Koarai, A.; Chiba, S.; Fujino, N.; Tojo, Y.; Ota, C.; Kubo, H.; et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir. Res. 2016, 17, 110. [Google Scholar] [CrossRef] [PubMed]
- Rathod, S.; Shanoo, A.; Acharya, N. Endometriosis: A Comprehensive Exploration of Inflammatory Mechanisms and Fertility Implications. Cureus 2024, 16, e66128. [Google Scholar] [CrossRef]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q.; Marzooqi, S.A.; Jerobin, J.; Altemani, F.H.; Algehainy, N.; Alanazi, M.A.; Abou-Samra, A.-B.; Kumar, R.; et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef]
- Voros, C.; Athanasiou, D.; Mavrogianni, D.; Varthaliti, A.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papadimas, G.; Gkirgkinoudis, A.; Papapanagiotou, I.; et al. Exosomal Communication Between Cumulus–Oocyte Complexes and Granulosa Cells: A New Molecular Axis for Oocyte Competence in Human-Assisted Reproduction. Int. J. Mol. Sci. 2025, 26, 5363. [Google Scholar] [CrossRef]
- Sung, S.E.; Seo, M.S.; Park, W.T.; Lim, Y.J.; Park, S.; Lee, G.W. Extracellular vesicles: Their challenges and benefits as potential biomarkers for musculoskeletal disorders. J. Int. Med. Res. 2025, 53, 03000605251317476. [Google Scholar] [CrossRef]
- Sidhom, K.; Obi, P.O.; Saleem, A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int. J. Mol. Sci. 2020, 21, 6466. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S. Inhibition of extracellular vesicle pathway using neutral sphingomyelinase inhibitors as a neuroprotective treatment for brain injury. Neural Regen. Res. 2021, 16, 2349. [Google Scholar] [CrossRef]
- Wong, Y.S.; Mançanares, A.C.; Navarrete, F.; Poblete, P.; Mendez-Pérez, L.; Cabezas, J.; Riadi, G.; Rodríguez-Alvarez, L.; Castro, F.O. Extracellular vesicles secreted by equine adipose mesenchymal stem cells preconditioned with transforming growth factor β-1 are enriched in anti-fibrotic miRNAs and inhibit the expression of fibrotic genes in an in vitro system of endometrial stromal cells fibrosis. Vet. Q. 2024, 44, 1–11. [Google Scholar]
- Wang, Z.; Li, F.; Liu, W. Extracellular vesicles in endometrial-related diseases: Role, potential and challenges. PeerJ 2025, 13, e19041. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.M.; Kroemer, G.; Zitvogel, L. Extracellular vesicles: Masters of intercellular communication and potential clinical interventions. J. Clin. Investig. 2016, 126, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Xiao, J.; Chen, Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021, 11, 1686. [Google Scholar] [CrossRef] [PubMed]
- Ansariniya, H.; Yavari, A.; Javaheri, A.; Zare, F. Oxidative stress-related effects on various aspects of endometriosis. Am. J. Reprod. Immunol. 2022, 88, e13593. [Google Scholar] [CrossRef]
- Aparicio-Trejo, O.E.; Aranda-Rivera, A.K.; Osorio-Alonso, H.; Martínez-Klimova, E.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J.; Tapia, E. Extracellular Vesicles in Redox Signaling and Metabolic Regulation in Chronic Kidney Disease. Antioxidants 2022, 11, 356. [Google Scholar] [CrossRef]
- Naddeo, M.; Broseghini, E.; Venturi, F.; Vaccari, S.; Corti, B.; Lambertini, M.; Ricci, C.; Fontana, B.; Durante, G.; Pariali, M.; et al. Association of miR-146a-5p and miR-21-5p with Prognostic Features in Melanomas. Cancers 2024, 16, 1688. [Google Scholar] [CrossRef]
- Ling, R.; Chen, G.; Tang, X.; Liu, N.; Zhou, Y.; Chen, D. Acetyl-CoA synthetase 2(ACSS2): A review with a focus on metabolism and tumor development. Discov. Oncol. 2022, 13, 58. [Google Scholar] [CrossRef]
- Wang, J.; Wang, D.; Zhang, Y.; Sun, P.; Yi, L.; Han, A.; Zhao, W.; Zhang, Y.; Ma, H. Extracellular vesicles in reproductive biology and disorders: A comprehensive review. Front. Endocrinol. 2025, 16, 1550068. [Google Scholar] [CrossRef]
- Khalaj, K.; Miller, J.E.; Lingegowda, H.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Koti, M.; Tayade, C. Extracellular vesicles from endometriosis patients are characterized by a unique miRNA-lncRNA signature. JCI Insight 2019, 4, e128846. [Google Scholar] [CrossRef]
- Essandoh, K.; Li, Y.; Huo, J.; Fan, G.C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 2016, 46, 122–131. [Google Scholar] [CrossRef]
- Kuang, L.; Wu, L.; Li, Y. Extracellular vesicles in tumor immunity: Mechanisms and novel insights. Mol. Cancer 2025, 24, 45. [Google Scholar] [CrossRef]
- Li, Y.; Tan, J.; Miao, Y.; Zhang, Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Discov. 2021, 7, 285. [Google Scholar] [CrossRef] [PubMed]
- Simard, J.C.; Cesaro, A.; Chapeton-Montes, J.; Tardif, M.; Antoine, F.; Girard, D.; Tessier, P.A. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB(1.). PLoS ONE 2013, 8, e72138. [Google Scholar]
- Gangadaran, P.; Rajendran, R.L.; Oh, J.M.; Hong, C.M.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; Ahn, B.-C. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp. Cell Res. 2020, 394, 112146. [Google Scholar] [CrossRef] [PubMed]
- Ilg, M.M.; Bustin, S.A.; Ralph, D.J.; Cellek, S. TGF-β1 induces formation of TSG-6-enriched extracellular vesicles in fibroblasts which can prevent myofibroblast transformation by modulating Erk1/2 phosphorylation. Sci. Rep. 2024, 14, 12389. [Google Scholar] [CrossRef]
- Cai, W.J.; Li, M.B.; Wu, X.; Wu, S.; Zhu, W.; Chen, D.; Luo, M.; Eitenmüller, I.; Kampmann, A.; Schaper, J.; et al. Activation of the integrins α5β1 and αvβ3 and focal adhesion kinase (FAK) during arteriogenesis. Mol. Cell. Biochem. 2009, 322, 161–169. [Google Scholar] [CrossRef]
- Nawaz, M.; Shah, N.; Zanetti, B.R.; Maugeri, M.; Silvestre, R.N.; Fatima, F.; Neder, L.; Valadi, H. Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018, 7, 167. [Google Scholar] [CrossRef]
- Marquardt, R.M.; Kim, T.H.; Shin, J.H.; Jeong, J.W. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int. J. Mol. Sci. 2019, 20, 3822. [Google Scholar] [CrossRef]
- Hon, J.X.; Wahab, N.A.; Karim, A.K.A.; Mokhtar, N.M.; Mokhtar, M.H. Exploring the Role of MicroRNAs in Progesterone and Estrogen Receptor Expression in Endometriosis. Biomedicines 2024, 12, 2218. [Google Scholar] [CrossRef]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef]
- Ducreux, B.; Patrat, C.; Firmin, J.; Ferreux, L.; Chapron, C.; Marcellin, L.; Parpex, G.; Bourdon, M.; Vaiman, D.; Santulli, P.; et al. Systematic review on the DNA methylation role in endometriosis: Current evidence and perspectives. Clin. Epigenet. 2025, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Findikli, N.; Janssens, S.; Fasano, G.; Demeestere, I.; Fastrez, M.; Houba, C.; Delbaere, A. The Effects of Endometriosis on Oocyte and Embryo Quality. J. Clin. Med. 2025, 14, 2339. [Google Scholar] [CrossRef] [PubMed]
- Faizal, A.M.; Elias, M.H.; Jin, N.M.; Abu, M.A.; Syafruddin, S.E.; Zainuddin, A.A.; Suzuki, N.; Karim, A.K.A. Unravelling the role of HAS2, GREM1, and PTGS2 gene expression in cumulus cells: Implications for human oocyte development competency—A systematic review and integrated bioinformatic analysis. Front. Endocrinol. 2024, 15, 1274376. [Google Scholar] [CrossRef] [PubMed]
- Akers, J.; Aguiari, P.; Soloyan, H.; Mkhitaryan, S.; Karaptyan, G.; De Filippo, R.; Thu, M.; Perin, L.; Sedrakyan, D. MP22-16 Development of Noninvasive Clinically Applicable In Vivo Tracking of Extracellular Vesicles Using MRI: PO0625 (MRI). J. Urol. 2021, 206 (Suppl. S3), e397–e398. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Zhang, C. Unraveling the complexity of follicular fluid: Insights into its composition, function, and clinical implications. J. Ovarian Res. 2024, 17, 237. [Google Scholar] [CrossRef]
- Gebremedhn, S.; Ali, A.; Gad, A.; Prochazka, R.; Tesfaye, D. Extracellular Vesicles as Mediators of Environmental and Metabolic Stress Coping Mechanisms During Mammalian Follicular Development. Front. Vet. Sci. 2020, 7, 602043. [Google Scholar]
- Xin, D.Q.; Zhao, Y.J.; Li, T.T.; Ke, H.F.; Gai, C.C.; Guo, X.F.; Chen, W.Q.; Liu, D.X.; Wang, Z. The delivery of miR-21a-5p by extracellular vesicles induces microglial polarization via the STAT3 pathway following hypoxia-ischemia in neonatal mice. Neural Regen. Res. 2022, 17, 2238. [Google Scholar]
- Wang, J.; Wu, W.; Wen, T.; Zheng, G.; Qiu, G.; Qian, H.; Zhang, R.; Xia, J.; Hu, Y.; Huang, R.; et al. Extracellular vesicle-bound S100A8/A9 is differentially expressed in septic shock and prompts acute lung injury. Respir. Res. 2025, 26, 107. [Google Scholar] [CrossRef]
- Vaiarelli, A.; Venturella, R.; Cimadomo, D.; Conforti, A.; Pedri, S.; Bitonti, G.; Iussig, B.; Gentile, C.; Alviggi, E.; Santopaolo, S.; et al. Endometriosis shows no impact on the euploid blastocyst rate per cohort of inseminated metaphase-II oocytes: A case-control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 205–210. [Google Scholar] [CrossRef]
- Adeyemi, W.J.; Olayaki, L.A.; Abdussalam, T.A.; Fabiyi, T.O.; Raji, T.L.; Adetunji, A.A.R. Co-administration of omega-3 fatty acids and metformin showed more desirable effects than the single therapy on indices of bone mineralisation but not gluco-regulatory and antioxidant markers in diabetic rats. Biomed. Pharmacother. 2020, 121, 109631. [Google Scholar]
- Desai, N.; Ploskonka, S.; Goodman, L.R.; Austin, C.; Goldberg, J.; Falcone, T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod. Biol. Endocrinol. 2014, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Cañón-Beltrán, K.; Cajas, Y.N.; Almpanis, V.; Egido, S.G.; Gutierrez-Adan, A.; González, E.M.; Rizos, D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol. Res. 2024, 57, 11. [Google Scholar] [CrossRef] [PubMed]
- Bayram, A.; Elkhatib, I.; Kalafat, E.; Abdala, A.; Ferracuti, V.; Melado, L.; Lawrenz, B.; Fatemi, H.; Nogueira, D. Steady morphokinetic progression is an independent predictor of live birth: A descriptive reference for euploid embryos. Hum. Reprod. Open 2024, 2024, hoae059. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.K.Y.; Shi, J.; Li, R.H.W.; Yeung, W.S.B.; Ng, E.H.Y. 100 Years of vitamin D: Effect of serum vitamin D level before ovarian stimulation on the cumulative live birth rate of women undergoing in vitro fertilization: A retrospective analysis. Endocr. Connect. 2022, 11, e210444. [Google Scholar] [CrossRef]
- Salmasi, S.; Heidar, M.S.; Khaksary Mahabady, M.; Rashidi, B.; Mirzaei, H. MicroRNAs, endometrial receptivity and molecular pathways. Reprod. Biol. Endocrinol. 2024, 22, 139. [Google Scholar] [CrossRef]
- Heger, A.; Sator, M.; Pietrowski, D. Endometrial Receptivity and its Predictive Value for IVF/ICSI-Outcome. Geburtsh Frauenheilkd. 2012, 72, 710–715. [Google Scholar] [CrossRef]
- Min, J.; Tu, J.; Xu, C.; Lukas, H.; Shin, S.; Yang, Y.; Solomon, S.A.; Mukasa, D.; Gao, W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem. Rev. 2023, 123, 5049–5138. [Google Scholar] [CrossRef]
- Dlamini, N.H.; Nguyen, T.; Gad, A.; Tesfaye, D.; Liao, S.F.; Willard, S.T.; Ryan, P.L.; Feugang, J.M. Characterization of Extracellular Vesicle-Coupled miRNA Profiles in Seminal Plasma of Boars with Divergent Semen Quality Status. Int. J. Mol. Sci. 2023, 24, 3194. [Google Scholar] [CrossRef]
- Teede, H.J.; Tay, C.T.; Laven, J.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Fertil. Steril. 2023, 120, 767–793. [Google Scholar] [CrossRef]
- Sun, D.S.; Chang, H.H. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med. J. 2024, 36, 251–259. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Lyon, C.J.; Hu, T. A Panorama of Extracellular Vesicle Applications: From Biomarker Detection to Therapeutics. ACS Nano 2024, 18, 9784–9797. [Google Scholar] [CrossRef] [PubMed]
- Caruana, E.J.; Roman, M.; Hernández-Sánchez, J.; Solli, P. Longitudinal studies. J. Thorac. Dis. 2015, 7, E537–E540. [Google Scholar] [PubMed]
- Ji, S.; Qi, H.; Yan, L.; Zhang, D.; Wang, Y.; MuDanLiFu, H.; He, C.; Xia, W.; Zhu, Q.; Liang, Y.; et al. miR-4443 Contained Extracellular Vesicles: A Factor for Endometriosis Progression by PI3K/AKT/ACSS2 Cascade in-vitro. Int. J. Nanomed. 2024, 19, 6085–6098. [Google Scholar] [CrossRef]
- Balachandran, A.; Nayak, S.R. An Observational Study of Factors affecting CA125 Levels in Premenopausal Women. Adv. Biomed. Res. 2023, 12, 235. [Google Scholar] [CrossRef]
- Nothnick, W.B.; Al-Hendy, A.; Lue, J.R. Circulating Micro-RNAs as Diagnostic Biomarkers for Endometriosis: Privation and Promise. J. Minim. Invasive Gynecol. 2015, 22, 719–726. [Google Scholar] [CrossRef]
- Guest, J.L.; Sullivan, P.S.; Valentine-Graves, M.; Valencia, R.; Adam, E.; Luisi, N.; Nakano, M.; Guarner, J.; del Rio, C.; Sailey, C.; et al. Suitability and Sufficiency of Telehealth Clinician-Observed, Participant-Collected Samples for SARS-CoV-2 Testing: The iCollect Cohort Pilot Study. JMIR Public Health Surveill. 2020, 6, e19731. [Google Scholar] [CrossRef]
- Brennan, K.; Vaiciuleviciute, R.; Uzieliene, I.; Pachaleva, J.; Kasilovskiene, Z.; Piesiniene, L.; Bernotiene, E.; Mc Gee, M.M. Menstrual blood serum extracellular vesicles reveal novel molecular biomarkers and potential endotypes of unexplained infertility. Sci. Rep. 2025, 15, 11974. [Google Scholar] [CrossRef]
- Simko, S.; Wright, K.N. The future of diagnostic laparoscopy—Cons. Reprod. Fertil. 2022, 3, R91–R95. [Google Scholar] [CrossRef]
- Papamentzelopoulou, M.-S.; Prifti, I.-N.; Mavrogianni, D.; Tseva, T.; Soyhan, N.; Athanasiou, A.; Athanasiou, A.; Athanasiou, A.; Vogiatzi, P.; Konomos, G.; et al. Assessment of artificial intelligence model and manual morphokinetic annotation system as embryo grading methods for successful live birth prediction: A retrospective monocentric study. Reprod. Biol. Endocrinol. 2024, 22, 27. [Google Scholar] [CrossRef]
- Khan, H.L.; Bhatti, S.; Abbas, S.; Kaloglu, C.; Isa, A.M.; Younas, H.; Ziders, R.; Khan, Y.L.; Hassan, Z.; Turhan, B.O.; et al. Extracellular microRNAs: Key players to explore the outcomes of in vitro fertilization. Reprod. Biol. Endocrinol. 2021, 19, 72. [Google Scholar] [CrossRef]
- Gebremedhn, S.; Gad, A.; Ishak, G.M.; Menjivar, N.G.; Gastal, M.O.; Feugang, J.M.; Prochazka, R.; Tesfaye, D.; Gastal, E.L. Dynamics of extracellular vesicle-coupled microRNAs in equine follicular fluid associated with follicle selection and ovulation. Mol. Hum. Reprod. 2023, 29, gaad009. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, X.; Liu, Y.; Ren, Y.; Zhao, M.; Song, H.; Shen, H.; Wu, Y.; Wei, Z.; Lu, H.; et al. Predictive models for live birth outcomes following fresh embryo transfer in assisted reproductive technologies using machine learning. J. Transl. Med. 2025, 23, 1004, Erratum in J. Transl. Med. 2025, 23, 1004. [Google Scholar] [CrossRef] [PubMed]
- Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Papahliou, A.M.; Bananis, K.; Koulakmanidis, A.-M.; Athanasiou, A.; Athanasiou, A.; Zografos, C.G.; et al. The Whisper of the Follicle: A Systematic Review of Micro Ribonucleic Acids as Predictors of Oocyte Quality and In Vitro Fertilization Outcomes. Cells 2025, 14, 787. [Google Scholar] [CrossRef] [PubMed]
- Muharam, R.; Firman, F. Lean Management Improves the Process Efficiency of Controlled Ovarian Stimulation Monitoring in IVF Treatment. Improta, G., editor. J. Healthc. Eng. 2022, 2022, 6229181. [Google Scholar] [CrossRef]
- González-Domínguez, R.; González-Domínguez, Á.; Sayago, A.; Fernández-Recamales, Á. Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites 2020, 10, 229. [Google Scholar] [CrossRef]
- Saint-Pol, J.; Culot, M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol. Vitr. 2025, 106, 106049. [Google Scholar] [CrossRef]
- Hassanzadeh-Barforoushi, A.; Sango, X.; Johnston, E.L.; Haylock, D.; Wang, Y. Microfluidic Devices for Manufacture of Therapeutic Extracellular Vesicles: Advances and Opportunities. J. Extracell. Vesicles 2025, 14, e70132. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Sansoni, V.; Perego, S.; Banfi, G.; Lombardi, G. Normalization strategies differently affect circulating miRNA profile associated with the training status. Sci. Rep. 2019, 9, 1584. [Google Scholar] [CrossRef]
- Cao, M.; Liu, Z.; Lin, Y.; Luo, Y.; Li, S.; Huang, Q.; Liu, H.; Liu, J. A Personalized Management Approach of OHSS: Development of a Multiphase Prediction Model and Smartphone-Based App. Front. Endocrinol. 2022, 13, 911225. [Google Scholar] [CrossRef]
- Nobrega, M.; Reis, M.B.D.; Souza, M.F.D.; Furini, H.H.; Costa Brandão Berti, F.; Souza, I.L.M.; Carvalho, T.M.; Zanata, S.M.; Fuganti, P.E.; Malheiros, D.; et al. Comparative analysis of extracellular vesicles miRNAs (EV-miRNAs) and cell-free microRNAs (cf-miRNAs) reveals that EV-miRNAs are more promising as diagnostic and prognostic biomarkers for prostate cancer. Gene 2025, 939, 149186. [Google Scholar] [CrossRef]
- Hart, A.R.; Khan, N.L.A.; Dissanayake, K.; Godakumara, K.; Andronowska, A.; Eapen, S.; Heath, P.R.; Fazeli, A. The Extracellular Vesicles Proteome of Endometrial Cells Simulating the Receptive Menstrual Phase Differs from That of Endometrial Cells Simulating the Non-Receptive Menstrual Phase. Biomolecules 2023, 13, 279. [Google Scholar] [CrossRef]
- Shaba, E.; Vantaggiato, L.; Governini, L.; Haxhiu, A.; Sebastiani, G.; Fignani, D.; Grieco, G.E.; Bergantini, L.; Bini, L.; Landi, C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Sadegh-Zadeh, S.A.; Khanjani, S.; Javanmardi, S.; Bayat, B.; Naderi, Z.; Hajiyavand, A.M. Catalyzing IVF outcome prediction: Exploring advanced machine learning paradigms for enhanced success rate prognostication. Front. Artif. Intell. 2024, 7, 1392611. [Google Scholar] [CrossRef] [PubMed]
- Van Calster, B.; Wynants, L.; Verbeek, J.F.M.; Verbakel, J.Y.; Christodoulou, E.; Vickers, A.J.; Roobol, M.J.; Steyerberg, E.W. Reporting and Interpreting Decision Curve Analysis: A Guide for Investigators. Eur. Urol. 2018, 74, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kim, K.; Shin, Y.; Lee, Y.; Kim, T.J. Advancements in Electronic Medical Records for Clinical Trials: Enhancing Data Management and Research Efficiency. Cancers 2025, 17, 1552. [Google Scholar] [CrossRef]
- Mina, A.; Younesi, M.; Doohandeh, T.; Darzi, S.; Ardehjani, N.A.; Sheibani, S.; Hosseinirad, H.; Valizadeh, R. Predicting pregnancy outcomes in IVF cycles: A systematic review and diagnostic meta- analysis of artificial intelligence in embryo assessment. Contracept. Reprod. Med. 2025, 10, 59. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, L.; Liao, R. Diagnostic and prognostic significance of miR-320a-3p in patients with chronic heart failure. BMC Cardiovasc. Disord. 2024, 24, 308. [Google Scholar] [CrossRef]
- Czubak, P.; Herda, K.; Niewiadomska, I.; Putowski, L.; Łańcut, M.; Masłyk, M. Understanding Endometriosis: A Broad Review of Its Causes, Management, and Impact. Int. J. Mol. Sci. 2025, 26, 8878. [Google Scholar] [CrossRef]
- Liu, Y.; Mei, Q.; Yang, J.; Shen, Q.; Zou, M.; Li, J.; Li, H.; Zhang, L.; Xiang, W. hsa-miR-320a-3p and hsa-miR-483-5p levels in human granulosa cells: Promising bio-markers of live birth after IVF/ICSI. Reprod. Biol. Endocrinol. 2022, 20, 160. [Google Scholar] [CrossRef]
- Mouawad, J.E.; Heywood, J.; Armstrong, M.B.; Ogunleye, A.; Feghali-Bostwick, C. Low Baseline Expression of Fibrotic Genes in an Ex Vivo Human Skin Model is a Potential Indicator of Excessive Skin Scarring. Plast. Reconstr. Surg.—Glob. Open 2022, 10, e4626. [Google Scholar] [CrossRef]
- Wagner, M.; Hicks, C.; El-Omar, E.; Combes, V.; El-Assaad, F. The Critical Role of Host and Bacterial Extracellular Vesicles in Endometriosis. Biomedicines 2024, 12, 2585. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.S.; Wu, T.M.; Ling, C.C.; Yu, F.; Zhang, J.; Cao, P.S.; Gu, L.P.; Wang, H.M.; Xu, H.; Li, L.; et al. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol. Ther.—Oncolytics 2021, 20, 484–498. [Google Scholar] [CrossRef] [PubMed]
- Kadkhoda, S.; Ghafouri-Fard, S. Function of miRNA-145–5p in the pathogenesis of human disorders. Pathol.—Res. Pract. 2022, 231, 153780. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.X.; Li, X.L. The Complicated Effects of Extracellular Vesicles and Their Cargos on Embryo Implantation. Front. Endocrinol. 2021, 12, 681266. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Z.; Xu, J.; Wang, J.; Yuan, W.; Shen, Y.; Du, J. Genetic association studies of endothelial nitric oxide synthase gene polymorphisms in women with unexplained recurrent pregnancy loss: A systematic and meta-analysis. Mol. Biol. Rep. 2014, 41, 3981–3989. [Google Scholar] [CrossRef]
- Smith, T.I.; Russell, A.E. Extracellular vesicles in reproduction and pregnancy. Extracell. Vesicles Circ. Nucleic Acids 2022, 3, 275–300. [Google Scholar] [CrossRef]
- Franco Pire, L.; Morales López, L.; Hernández Hernández, M.; Campos Romero, R.; Cristóbal García, I.; Cristóbal Quevedo, I. A Systematic Review and Meta-Analysis of Single-Dose GnRH Agonist on the Day of Frozen Embryo Transfer in Artificial Cycles: Preliminary Evidence from Randomized Trials. J. Clin. Med. 2025, 14, 5763. [Google Scholar] [CrossRef]
- Rodrigues, A.C.; Heng, Y.J.; Slack, F.J. Extracellular vesicle-encapsulated miR -30c-5p reduces aging-related liver fibrosis. Aging Cell 2024, 23, e14310. [Google Scholar] [CrossRef]
- Nilsson, N.; Carlsten, H. Estrogen Induces Suppression of Natural Killer Cell Cytotoxicity and Augmentation of Polyclonal B Cell Activation. Cell. Immunol. 1994, 158, 131–139. [Google Scholar] [CrossRef]
- Young, S.L. Oestrogen and progesterone action on endometrium: A translational approach to understanding endometrial receptivity. Reprod. Biomed. Online 2013, 27, 497–505. [Google Scholar] [CrossRef]
- Vastrad, B.; Vastrad, C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. Egypt. J. Med. Hum. Genet. 2024, 25, 116. [Google Scholar] [CrossRef]
- Capra, E.; Kosior, M.A.; Cocchia, N.; Lazzari, B.; Del Prete, C.; Longobardi, V.; Pizzi, F.; Stella, A.; Frigerio, R.; Cretich, M.; et al. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci. Rep. 2022, 12, 14886. [Google Scholar] [CrossRef] [PubMed]
- Poh, Q.H.; Rai, A.; Pangestu, M.; Salamonsen, L.A.; Greening, D.W. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024, 24, 2300056. [Google Scholar] [CrossRef] [PubMed]
- Rustamov, O.; Wilkinson, J.; La Marca, A.; Fitzgerald, C.; Roberts, S.A. How much variation in oocyte yield after controlled ovarian stimulation can be explained? A multilevel modelling study. Hum. Reprod. Open 2017, 2017, hox018. [Google Scholar] [CrossRef]
- Cao, L.; Zhao, S.; Han, K.; Fan, L.; Zhao, C.; Yin, S.; Hu, H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J. Nutr. Biochem. 2023, 120, 109427. [Google Scholar] [CrossRef]
- Choi, D.; Montermini, L.; Jeong, H.; Sharma, S.; Meehan, B.; Rak, J. Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry. ACS Nano 2019, 13, 10499–10511. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.L.; Xiang, Y.; Bai, X.Y.; Qiang, R.R.; Zhang, X.; Yang, Y.L.; Liu, X.L. Ferroptosis inhibitors: Past, present and future. Front. Pharmacol 2024, 15, 1407335. [Google Scholar] [CrossRef]
- Pournourali, M.; Mizban, N.; Ehsani, R.; Ebrahimian, S.; Nadri, T.; Azari-Dolatabad, N. Extracellular vesicles: Key mediators in in vitro embryo production. Front. Vet. Sci. 2025, 12, 1641966. [Google Scholar] [CrossRef]
- Chandrasekera, D.; Shah, R.; Van Hout, I.; De Jonge, W.; Bunton, R.; Parry, D.; Davis, P.; Katare, R. Combination of precipitation and size exclusion chromatography as an effective method for exosome like extracellular vesicle isolation from pericardial fluids. Nanotheranostics 2023, 7, 345–352. [Google Scholar] [CrossRef]
| First Author (Year) | EV Source (Matrix) | Key EV Cargo (miRNA/Protein) | Major Pathway/Target | Functional Outcome | ART Parameter Correlated | Notes/Validation |
|---|---|---|---|---|---|---|
| Muraoka et al., 2024, [51] | Serum EVs, | miR-22-3p, miR-320a | IGF1R, VEGFA, angiogenic regulation | Promotes implantation competence | ↑ Clinical pregnancy, ↑ live birth (AUC > 0.8) | ROC-based discrimination between pregnant vs. non-pregnant |
| Li et al., 2024, [31] | Uterine-fluid EVs, | miR-145-5p | NOTCH1 pathway repression | Impaired blastocyst formation | ↓ Blastocyst rate, ↓ implantation | Direct inhibition of embryo development confirmed in vitro |
| Duval et al., 2024, [37] | Follicular-fluid EVs, | miR-23a, miR-29c, miR-125b | PI3K/AKT and mitochondrial biogenesis | Reduced granulosa cell support and oxidative balance | ↓ MII oocytes, ↓ embryo quality | Reflects altered follicular microenvironment |
| Apostolov et al., 2025, [32] | Uterine-fluid EVs, | miR-30d, miR-200b, miR-375 | LIF and integrin-mediated adhesion | Optimises window of implantation | ↑ Implantation and CPR | Multi-omics validation with endometrial tissue |
| Sadati et al., 2024, [72] | Plasma EVs, | miR-451a, miR-148a, miR-23b | Mitochondrial regulation, energy metabolism | Enhanced oocyte competence | ↑ Fertilisation, ↑ embryo morphology scores | Supported by integrative bioinformatics |
| Brady et al., 2024, [73] | Plasma EVs (young cohort) | miR-542-3p, let-7b-3p, miR-548i | Cell cycle and hormonal modulation | Predictive for early endometriosis | AUC = 0.77 for diagnostic model | Hormone use-adjusted neural network model |
| Nazri et al., 2023, [74] | Peritoneal EVs | VEGF-A, MMP-2 | Angiogenesis, ECM remodelling | Lesion vascularization | Correlates with pain and poor implantation | Mechanistic confirmation in macrophage cultures |
| Gurung et al., 2025, [35] | Menstrual-blood EVs | α-SMA, COL1A1, FN1 | TGF-β/SMAD2/3, fibrosis | Fibrotic remodelling impairs receptivity | ↓ CPR, ↑ dysmenorrhea | Proteomic dataset > 5000 proteins |
| Wang et al., 2025, [75] | MenSC-EVs (experimental) | miR-146a, miR-223 | NF-κB inhibition, anti-inflammatory | Improved endometrial receptivity | Restored implantation in murine model | Translational regenerative study |
| First Author (Year) | Matrix/EV Source | EV Biomarkers Included | Endpoint/Outcome | Model Type | AUC (95% CI) | Sensitivity (%) | Specificity (%) | Validation Cohort/Method |
|---|---|---|---|---|---|---|---|---|
| Muraoka et al., 2025, [51] | Serum EVs | miR-22-3p + miR-320a | Clinical pregnancy & live birth prediction | ROC logistic model | 0.84 (0.77–0.92) | 83 | 79 | Internal validation, n = 48 ART pts |
| Brady et al., 2024, [73] | Plasma EVs | miR-542-3p, let-7b-3p, miR-548i, miR-769-5p, miR-30c-1-3p | Endometriosis diagnosis in adolescents/young adults | Neural-network classifier | 0.77 (0.67–0.87) | 83 | 58 | Training/test split (2:1) |
| Li et al., 2024, [31] | Uterine-fluid EVs | miR-145-5p | Blastocyst developmental competence | ROC analysis | 0.82 (–) | 80 | 72 | Mouse & human embryo validation |
| Apostolov et al., 2025, [32] | Uterine-fluid EVs | miR-30d, miR-200b, miR-375 | Implantative vs. non-implantative endometrium | Logistic regression | 0.91 (0.85–0.97) | 86 | 83 | Paired tissue + UF cohort |
| Sadati et al., 2025, [72] | Plasma EVs | miR-451a, miR-148a, miR-23b | Endometriosis diagnosis | Logistic ROC model | 0.81 (0.74–0.89) | 79 | 76 | Bioinformatics + qPCR validation |
| Nazri et al., 2023, [74] | Peritoneal EVs | VEGF-A + MMP-2 protein ratio | Disease severity classification | Linear-discriminant model | 0.80 (–) | 75 | 78 | Cross-validation (n = 70) |
| Gurung et al., 2025, [35] | Menstrual-blood EVs | Proteomic signature (22 proteins) | Early-stage vs. advanced endometriosis | Random-forest model | 0.83 (0.76–0.90) | 82 | 80 | Proteomic dataset > 5000 proteins |
| Ji et al., 2024, [174] | Menstrual-blood EVs | miR-4443 ± dysmenorrhea score | Symptom severity/recurrence risk | ROC composite model | 0.93 (0.88–0.98) | 87 | 91 | Independent clinical cohort |
| Study/Year | EV Source/Type | Targeted Pathway | Mechanistic Effect | Experimental Model | Observed Outcome | Translational Potential |
|---|---|---|---|---|---|---|
| Wang et al., 2025, [158] | Menstrual-blood stem cell–derived EVs (MenSC-EVs) | NF-κB/IL-6 axis | Downregulation of pro-inflammatory cytokines; immune modulation | Murine endometriosis model | ↓ Lesion size, ↓ macrophage infiltration, ↑ receptivity markers | Cell-free regenerative therapy for endometrial repair |
| Vaiciuleviciute et al., 2025, [122] | MenSC-EVs | miR-146a, miR-223 | Inhibition of TLR4 and TNF signalling; anti-oxidative stress | In vitro & ex vivo models | Reduced ROS, restored mitochondrial balance | Autologous menstrual stem cell EV infusion |
| Ji et al., 2024, [174] | Menstrual-blood EVs | PI3K/AKT/ACSS2 | miR-4443-driven acetate metabolism inhibition | Human stromal cells | ↓ Fibrosis, ↓ α-SMA, ↓ COL1A1 expression | Non-invasive antifibrotic marker target validation |
| Nazri et al., 2023, [74] | Peritoneal EVs | VEGF/HIF-1α | Anti-angiogenic modulation | Macrophage co-culture | ↓ VEGFA secretion, ↓ endothelial migration | EV-targeted anti-angiogenic drugs |
| Duval et al., 2024, [37] | Follicular-fluid EVs | Mitochondrial/AMPK regulation | Restoration of redox homeostasis | Human granulosa cells | ↑ ATP, ↑ mtDNA copy number | Biomarker-guided antioxidant co-therapy in IVF |
| Cao et al., 2023, [216] | Serum EVs | MAPK/ERK/Ferroptosis | Inhibition of lipid peroxidation | In vitro human endometrium | ↓ Lipid ROS, ↑ GPX4 | EV signature guided metabolic interventions |
| Muraoka et al., 2025, [51] | Serum EVs | miR-22-3p + miR-320a | Angiogenic and implantation pathway modulation | Human ART cohort | ↑ Pregnancy rate | Predictive tool for individualised IVF cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voros, C.; Chatzinikolaou, F.; Sapantzoglou, I.; Papadimas, G.; Polykalas, S.; Mavrogianni, D.; Koulakmanidis, A.-M.; Athanasiou, D.; Kanaka, V.; Kanaka, M.; et al. ‘‘Non-Invasive Extracellular Vesicle Biomarkers in Endometriosis, Molecular Signatures Linking Pelvic Inflammation, Oocyte Quality, and IVF Outcomes’’. Curr. Issues Mol. Biol. 2025, 47, 956. https://doi.org/10.3390/cimb47110956
Voros C, Chatzinikolaou F, Sapantzoglou I, Papadimas G, Polykalas S, Mavrogianni D, Koulakmanidis A-M, Athanasiou D, Kanaka V, Kanaka M, et al. ‘‘Non-Invasive Extracellular Vesicle Biomarkers in Endometriosis, Molecular Signatures Linking Pelvic Inflammation, Oocyte Quality, and IVF Outcomes’’. Current Issues in Molecular Biology. 2025; 47(11):956. https://doi.org/10.3390/cimb47110956
Chicago/Turabian StyleVoros, Charalampos, Fotios Chatzinikolaou, Ioakeim Sapantzoglou, Georgios Papadimas, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Maria Kanaka, and et al. 2025. "‘‘Non-Invasive Extracellular Vesicle Biomarkers in Endometriosis, Molecular Signatures Linking Pelvic Inflammation, Oocyte Quality, and IVF Outcomes’’" Current Issues in Molecular Biology 47, no. 11: 956. https://doi.org/10.3390/cimb47110956
APA StyleVoros, C., Chatzinikolaou, F., Sapantzoglou, I., Papadimas, G., Polykalas, S., Mavrogianni, D., Koulakmanidis, A.-M., Athanasiou, D., Kanaka, V., Kanaka, M., Bananis, K., Athanasiou, A., Athanasiou, A., Papapanagiotou, I., Vaitsis, D., Tsimpoukelis, C., Daskalaki, M. A., Theodora, M., Thomakos, N., ... Daskalakis, G. (2025). ‘‘Non-Invasive Extracellular Vesicle Biomarkers in Endometriosis, Molecular Signatures Linking Pelvic Inflammation, Oocyte Quality, and IVF Outcomes’’. Current Issues in Molecular Biology, 47(11), 956. https://doi.org/10.3390/cimb47110956

