Environmental Stressors and Neuroinflammation: Linking Climate Change to Alzheimer’s Disease
Abstract
1. Introduction
2. Neuroinflammation
2.1. Core Immune Cells (Microglia, Astrocytes, Crosstalk)
2.2. Key Signaling Pathways
2.3. Epigenetic Regulation
3. Neuroinflammation, Climate Change and Environment
4. Neuroinflammation in Alzheimer’s Disease
5. Alzheimer’s Disease and Environment
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CNS | Central Nervous System |
| BBB | Blood–Brain Barrier |
| ROS | Reactive Oxygen Species |
| NOS | Nitric Oxide Species |
| MAPK | Mitogen-Activated Protein Kinase |
| ERK | Extracellular Signal-Regulated Kinase |
| JNK | c-Jun N-terminal Kinase |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of Activated B cells |
| IκB | Inhibitor of κB |
| IKKα | IκB Kinase alpha |
| JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
| TNF | Tumor Necrosis Factor |
| TLR | Toll-like Receptor |
| IL-1R | Interleukin-1 Receptor |
| CD40 | Cluster of Differentiation 40 |
| NIK | NF-κB-Inducing Kinase |
| ASC | Apoptosis-Associated Speck-Like Protein Containing a CARD |
| NLRP3 | NOD-, LRR- and Pyrin Domain-Containing Protein 3 |
| NEK7 | NIMA-Related Kinase 7 |
| GSDMD | Gasdermin D |
| IL-1β/IL-18 | Interleukin 1 Beta/Interleukin 18 |
| lncRNA | Long Noncoding RNA |
| miRNA | MicroRNA |
| mRNA | Messenger RNA |
| ceRNA | Competing Endogenous RNA |
| CpG | Cytosine-phosphate-Guanine |
| AD | Alzheimer’s Disease |
| PD | Parkinson’s Disease |
| NFT | Neurofibrillary Tangle |
| Aβ | Amyloid Beta |
| Aβ42 | Amyloid Beta 42 |
| APP | Amyloid Precursor Protein |
| BACE1 | β-Site APP Cleaving Enzyme 1 |
| GSK3β | Glycogen Synthase Kinase 3 Beta |
| NCAM | Neural Cell Adhesion Molecule |
| APOE | Apolipoprotein E |
| PSEN1 | Presenilin-1 |
| PM2.5 | Fine Particulate Matter (≤2.5 μm) |
| NO2 | Nitrogen Dioxide |
| O3 | Ozone |
| Hg | Mercury |
| ADRD | Alzheimer’s Disease and Related Dementias |
| PI3K/AKT | Phosphatidylinositol 3-Kinase/Protein Kinase B |
| AMPK | AMP-Activated Protein Kinase |
| TRPV1 | Transient Receptor Potential Vanilloid 1 |
| SOCS3 | Suppressor of cytokine signaling 3 |
| NAC | N-acetyl cysteine |
| FDA | Food and Drug Administration |
| 4-HNE | 4-hydroxynonenal |
| 5xFAD | Five familial AD mutations |
| Nrf2 | Nuclear factor erythroid 2–related factor 2 |
| mCRP | Monomeric C-reactive protein |
| NADPH | Nicotinamide Adenine Dinucleotide Phosphate |
References
- Rio, P.; Caldarelli, M.; Gasbarrini, A.; Gambassi, G.; Cianci, R. The Impact of Climate Change on Immunity and Gut Microbiota in the Development of Disease. Diseases 2024, 12, 118. [Google Scholar] [CrossRef]
- Plass, D.; Beloconi, A.; Bessems, J.; Buekers, J.; Kienzler, S.; Martinez, G.S.; Purece, A.; Vounatsou, P. Estimating the Environmental Burden of Disease Resulting from Exposure to Chemicals in European Countries—Potentials and Challenges Revealed in Selected Case Studies. Environ. Res. 2025, 269, 120828. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.N.; Anenberg, S.C.; Brauer, M. Global Burden of Disease from Environmental Factors. Annu. Rev. Public Health 2025, 46, 233–251. [Google Scholar] [CrossRef]
- Abdul-Nabi, S.S.; Al Karaki, V.; Khalil, A.; El Zahran, T. Climate Change and Its Environmental and Health Effects from 2015 to 2022: A Scoping Review. Heliyon 2025, 11, e42315. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; Walawender, M.; Hsu, S.-C.; Moskeland, A.; Palmeiro-Silva, Y.; Scamman, D.; Ali, Z.; Ameli, N.; Angelova, D.; Ayeb-Karlsson, S.; et al. The 2024 Report of the Lancet Countdown on Health and Climate Change: Facing Record-Breaking Threats from Delayed Action. Lancet 2024, 404, 1847–1896. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Climate Change. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health?utm_source=chatgpt.com (accessed on 29 September 2025).
- Filippini, T. Adverse Human Health Effects of Climate Change: An Update. Ann. Ig. Med. Prev. E Comunità 2024, 36, 281–291. [Google Scholar] [CrossRef]
- Langley, M.R.; Rangaraju, S.; Dey, A.; Sarkar, S. Editorial: Environmental Effect on Neuroinflammation and Neurodegeneration. Front. Cell. Neurosci. 2022, 16, 935190. [Google Scholar] [CrossRef]
- García-Domínguez, M. Neuroinflammation: Mechanisms, Dual Roles, and Therapeutic Strategies in Neurological Disorders. Curr. Issues Mol. Biol. 2025, 47, 417. [Google Scholar] [CrossRef]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The Role of Neuroinflammation in Neurodegenerative Diseases: Current Understanding and Future Therapeutic Targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef]
- Moyse, E.; Krantic, S.; Djellouli, N.; Roger, S.; Angoulvant, D.; Debacq, C.; Leroy, V.; Fougere, B.; Aidoud, A. Neuroinflammation: A Possible Link Between Chronic Vascular Disorders and Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 827263. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef]
- Bernier, L.-P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial Metabolic Flexibility Supports Immune Surveillance of the Brain Parenchyma. Nat. Commun. 2020, 11, 1559. [Google Scholar] [CrossRef]
- Hanisch, U.-K.; Kettenmann, H. Microglia: Active Sensor and Versatile Effector Cells in the Normal and Pathologic Brain. Nat. Neurosci. 2007, 10, 1387–1394. [Google Scholar] [CrossRef]
- Hickman, S.; Izzy, S.; Sen, P.; Morsett, L.; El Khoury, J. Microglia in Neurodegeneration. Nat. Neurosci. 2018, 21, 1359–1369. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Nicola, D.; Perry, V.H. Microglial Dynamics and Role in the Healthy and Diseased Brain: A Paradigm of Functional Plasticity. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2015, 21, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Roth, T.L.; McGavern, D.B. Microglia Development and Function. Annu. Rev. Immunol. 2014, 32, 367–402. [Google Scholar] [CrossRef]
- Franco, R.; Fernández-Suárez, D. Alternatively Activated Microglia and Macrophages in the Central Nervous System. Prog. Neurobiol. 2015, 131, 65–86. [Google Scholar] [CrossRef]
- Ransohoff, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist? Nat. Neurosci. 2016, 19, 987–991. [Google Scholar] [CrossRef]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Meltzer, J.C.; Nguyen, H.; Commins, C.; Bennett, R.E.; Hudry, E.; Hyman, B.T. APOE4 Derived from Astrocytes Leads to Blood-Brain Barrier Impairment. Brain J. Neurol. 2022, 145, 3582–3593. [Google Scholar] [CrossRef]
- Damisah, E.C.; Hill, R.A.; Rai, A.; Chen, F.; Rothlin, C.V.; Ghosh, S.; Grutzendler, J. Astrocytes and Microglia Play Orchestrated Roles and Respect Phagocytic Territories during Neuronal Corpse Removal in Vivo. Sci. Adv. 2020, 6, eaba3239. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-Y.; Noh, S.; Lee, H.; Lee, S.Y.; Mun, J.Y.; Park, H.; Chung, W.-S. Astrocytes Phagocytose Adult Hippocampal Synapses for Circuit Homeostasis. Nature 2021, 590, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Lehrman, E.K.; Wilton, D.K.; Litvina, E.Y.; Welsh, C.A.; Chang, S.T.; Frouin, A.; Walker, A.J.; Heller, M.D.; Umemori, H.; Chen, C.; et al. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron 2018, 100, 120–134.e6. [Google Scholar] [CrossRef] [PubMed]
- Konishi, H.; Okamoto, T.; Hara, Y.; Komine, O.; Tamada, H.; Maeda, M.; Osako, F.; Kobayashi, M.; Nishiyama, A.; Kataoka, Y.; et al. Astrocytic Phagocytosis Is a Compensatory Mechanism for Microglial Dysfunction. EMBO J. 2020, 39, e104464. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Son, Y. Astrocytes Stimulate Microglial Proliferation and M2 Polarization In Vitro through Crosstalk between Astrocytes and Microglia. Int. J. Mol. Sci. 2021, 22, 8800. [Google Scholar] [CrossRef]
- Shih, R.-H.; Wang, C.-Y.; Yang, C.-M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015, 8, 77. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-κB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef]
- Zhang: Tetramethylpyrazine Inhibits Platelet Adhesion …—Google Scholar. Available online: https://link.springer.com/article/10.1007/s10753-019-01119-6 (accessed on 7 September 2025).
- Lanzillotta, A.; Pignataro, G.; Branca, C.; Cuomo, O.; Sarnico, I.; Benarese, M.; Annunziato, L.; Spano, P.; Pizzi, M. Targeted Acetylation of NF-kappaB/RelA and Histones by Epigenetic Drugs Reduces Post-Ischemic Brain Injury in Mice with an Extended Therapeutic Window. Neurobiol. Dis. 2013, 49, 177–189. [Google Scholar] [CrossRef]
- Noort, A.R.; Tak, P.P.; Tas, S.W. Non-Canonical NF-κB Signaling in Rheumatoid Arthritis: Dr Jekyll and Mr Hyde? Arthritis Res. Ther. 2015, 17, 15. [Google Scholar] [CrossRef]
- Li, H.; Niu, X.; Zhang, D.; Qu, M.-H.; Yang, K. The Role of the Canonical Nf-Κb Signaling Pathway in the Development of Acute Liver Failure. Biotechnol. Genet. Eng. Rev. 2023, 39, 775–795. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-C. The Non-Canonical NF-κB Pathway in Immunity and Inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef]
- Stierschneider, A.; Grünstäudl, P.; Colleselli, K.; Atzler, J.; Klein, C.T.; Hundsberger, H.; Wiesner, C. Light-Inducible Spatio-Temporal Control of TLR4 and NF-κB-Gluc Reporter in Human Pancreatic Cell Line. Int. J. Mol. Sci. 2021, 22, 9232. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Xie, L.-J.; Liu, G.-F. Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia–Reperfusion Injury in Rats. Mol. Neurobiol. 2018, 55, 4311–4319, Erratum in Mol. Neurobiol. 2021, 58, 451. https://doi.org/10.1007/s12035-020-02187-8. [Google Scholar] [CrossRef]
- Dai, M.; Chen, B.; Wang, X.; Gao, C.; Yu, H. Icariin Enhance Mild Hypothermia-Induced Neuroprotection via Inhibiting the Activation of NF-κB in Experimental Ischemic Stroke. Metab. Brain Dis. 2021, 36, 1779–1790. [Google Scholar] [CrossRef]
- Liu, Y.; Gibson, S.A.; Benveniste, E.N.; Qin, H. Opportunities for Translation from the Bench: Therapeutic Intervention of the JAK/STAT Pathway in Neuroinflammatory Diseases. Crit. Rev. Immunol. 2015, 35, 505–527. [Google Scholar] [CrossRef]
- Stark, G.R.; Darnell, J.E. The JAK-STAT Pathway at Twenty. Immunity 2012, 36, 503–514. [Google Scholar] [CrossRef]
- Miklossy, G.; Hilliard, T.S.; Turkson, J. Therapeutic Modulators of STAT Signalling for Human Diseases. Nat. Rev. Drug Discov. 2013, 12, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Kaiko, G.E.; Horvat, J.C.; Beagley, K.W.; Hansbro, P.M. Immunological Decision-Making: How Does the Immune System Decide to Mount a Helper T-Cell Response? Immunology 2008, 123, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Khan, A.; Alshahrani, S.; Rashid, H.; Qadri, M.; Rashid, S.; Alsaffar, R.M.; Kamal, M.A.; Rehman, M.U. Inflammation and Alzheimer’s Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm. 2021, 2021, 9982954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Jiang, L. Neuroinflammation in Alzheimer’s Disease. Neuropsychiatr. Dis. Treat. 2015, 11, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.R.; Kanneganti, T.-D. NLRP3 Inflammasome in Cancer and Metabolic Diseases. Nat. Immunol. 2021, 22, 550–559. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Swanson, K.V.; Deng, M.; Ting, J.P.-Y. The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nat. Rev. Immunol. 2019, 19, 477–489. [Google Scholar] [CrossRef]
- Xu, Z.; Kombe Kombe, A.J.; Deng, S.; Zhang, H.; Wu, S.; Ruan, J.; Zhou, Y.; Jin, T. NLRP Inflammasomes in Health and Disease. Mol. Biomed. 2024, 5, 14. [Google Scholar] [CrossRef]
- Vande Walle, L.; Lamkanfi, M. Drugging the NLRP3 Inflammasome: From Signalling Mechanisms to Therapeutic Targets. Nat. Rev. Drug Discov. 2024, 23, 43–66, Correction in Nat. Rev. Drug Discov. 2025, 24, 72. https://doi.org/10.1038/s41573-024-01104-1. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Albornoz, E.A.; Christie, D.C.; Langley, M.R.; Kumar, V.; Mantovani, S.; Robertson, A.A.B.; Butler, M.S.; Rowe, D.B.; O’Neill, L.A.; et al. Inflammasome Inhibition Prevents α-Synuclein Pathology and Dopaminergic Neurodegeneration in Mice. Sci. Transl. Med. 2018, 10, eaah4066. [Google Scholar] [CrossRef]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef]
- Ng, S.-Y.; Lin, L.; Soh, B.S.; Stanton, L.W. Long Noncoding RNAs in Development and Disease of the Central Nervous System. Trends Genet. TIG 2013, 29, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.R.; Mattick, J.S. Structure and Function of Long Noncoding RNAs in Epigenetic Regulation. Nat. Struct. Mol. Biol. 2013, 20, 300–307. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, H.; Liu, Z.; Wu, Q.; Zhu, R.; Liu, J. miR-21 Promotes Cardiac Fibroblast-to-Myofibroblast Transformation and Myocardial Fibrosis by Targeting Jagged1. J. Cell. Mol. Med. 2018, 22, 3816–3824. [Google Scholar] [CrossRef]
- Xue, M.; Zhuo, Y.; Shan, B. MicroRNAs, Long Noncoding RNAs, and Their Functions in Human Disease. In Bioinformatics in MicroRNA Research; Huang, J., Borchert, G.M., Dou, D., Huan, J., Lan, W., Tan, M., Wu, B., Eds.; Springer: New York, NY, USA, 2017; pp. 1–25. ISBN 978-1-4939-7046-9. [Google Scholar]
- Saraiva, C.; Esteves, M.; Bernardino, L. MicroRNA: Basic Concepts and Implications for Regeneration and Repair of Neurodegenerative Diseases. Biochem. Pharmacol. 2017, 141, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-B.; Fu, Q.; Guo, M.; Du, Y.; Chen, Y.; Cheng, Y. MicroRNAs: Pioneering Regulators in Alzheimer’s Disease Pathogenesis, Diagnosis, and Therapy. Transl. Psychiatry 2024, 14, 367. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.M.; Weigel, M.M.; Yonts, S.; Rohlman, D.; Armijos, R. Residential Exposure to Urban Traffic Is Associated with the Poorer Neurobehavioral Health of Ecuadorian Schoolchildren. Neurotoxicology 2019, 73, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Cole, T.B.; Dao, K.; Chang, Y.-C.; Coburn, J.; Garrick, J.M. Effects of Air Pollution on the Nervous System and Its Possible Role in Neurodevelopmental and Neurodegenerative Disorders. Pharmacol. Ther. 2020, 210, 107523. [Google Scholar] [CrossRef]
- Devi, S.; Chaturvedi, M.; Fatima, S.; Priya, S. Environmental Factors Modulating Protein Conformations and Their Role in Protein Aggregation Diseases. Toxicology 2022, 465, 153049. [Google Scholar] [CrossRef]
- Trigiani, L.J.; Lacalle-Aurioles, M.; Bourourou, M.; Li, L.; Greenhalgh, A.D.; Zarruk, J.G.; David, S.; Fehlings, M.G.; Hamel, E. Benefits of Physical Exercise on Cognition and Glial White Matter Pathology in a Mouse Model of Vascular Cognitive Impairment and Dementia. Glia 2020, 68, 1925–1940. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Bello-Medina, P.C.; Rodríguez-Martínez, E.; Prado-Alcalá, R.A.; Rivas-Arancibia, S. Ozone Pollution, Oxidative Stress, Synaptic Plasticity, and Neurodegeneration. Neurol. Engl. Ed. 2022, 37, 277–286. [Google Scholar] [CrossRef]
- Ahmed, C.; Greve, H.J.; Garza-Lombo, C.; Malley, J.A.; Johnson, J.A., Jr.; Oblak, A.L.; Block, M.L. Peripheral HMGB1 Is Linked to O3 Pathology of Disease-Associated Astrocytes and Amyloid. Alzheimer’s Dement. 2024, 20, 3551–3566. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Arancibia, S.; Guevara-Guzmán, R.; López-Vidal, Y.; Rodríguez-Martínez, E.; Zanardo-Gomes, M.; Angoa-Pérez, M.; Raisman-Vozari, R. Oxidative Stress Caused by Ozone Exposure Induces Loss of Brain Repair in the Hippocampus of Adult Rats. Toxicol. Sci. Off. J. Soc. Toxicol. 2010, 113, 187–197. [Google Scholar] [CrossRef]
- Szyszkowicz, M.; Zemek, R.; Colman, I.; Gardner, W.; Kousha, T.; Smith-Doiron, M. Air Pollution and Emergency Department Visits for Mental Disorders among Youth. Int. J. Environ. Res. Public Health 2020, 17, 4190. [Google Scholar] [CrossRef]
- Lin, F.C.; Chen, C.Y.; Lin, C.W.; Wu, M.T.; Chen, H.Y.; Huang, P. Air Pollution Is Associated with Cognitive Deterioration of Alzheimer’s Disease. Gerontology 2022, 68, 53–61. [Google Scholar] [CrossRef]
- Chen, M.-C.; Wang, C.-F.; Lai, B.-C.; Hsieh, S.-W.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H. Air Pollution Is Associated with Poor Cognitive Function in Taiwanese Adults. Int. J. Environ. Res. Public Health 2021, 18, 316. [Google Scholar] [CrossRef] [PubMed]
- Amaducci, A.; Downs, J.W. Nitrogen Dioxide Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Yan, W.; Yun, Y.; Ku, T.; Li, G.; Sang, N. NO2 Inhalation Promotes Alzheimer’s Disease-like Progression: Cyclooxygenase-2-Derived Prostaglandin E2 Modulation and Monoacylglycerol Lipase Inhibition-Targeted Medication. Sci. Rep. 2016, 6, 22429. [Google Scholar] [CrossRef]
- Zhao, N.; Pinault, L.; Toyib, O.; Vanos, J.; Tjepkema, M.; Cakmak, S. Long-Term Ozone Exposure and Mortality from Neurological Diseases in Canada. Environ. Int. 2021, 157, 106817. [Google Scholar] [CrossRef]
- Lossi, L.; Castagna, C.; Merighi, A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 3881. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.Y.; Kim, G.-D. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants 2024, 13, 1256. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Fonken, L.K.; Watkins, L.R.; Nelson, R.J.; Popovich, P.G. microRNAs: Roles in Regulating Neuroinflammation. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2018, 24, 221–245. [Google Scholar] [CrossRef]
- Johnson, J.T.; Awosiminiala, F.W.; Anumudu, C.K. Exploring Protein Misfolding and Aggregate Pathology in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Interventions. Appl. Sci. 2025, 15, 10285. [Google Scholar] [CrossRef]
- Asmaa, L.; Al Mehdi, K.; Khadija, A.; Jawad, L.; Rachida, R. Effects of Exposure to Micro/Nanoplastics of Polystyrene on Neuronal Oxidative Stress, Neuroinflammation, and Anxiety-like Behavior in Mice: A Systematic Review. Emerg. Contam. 2025, 11, 100442. [Google Scholar] [CrossRef]
- Casella, C.; Cornelli, U.; Ballaz, S.; Zanoni, G.; Merlo, G.; Ramos-Guerrero, L. Plastic Smell: A Review of the Hidden Threat of Airborne Micro and Nanoplastics to Human Health and the Environment. Toxics 2025, 13, 387. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Hsu, L.-F.; Wu, I.-L.; Wang, Y.-L.; Chen, W.-C.; Liu, Y.-J.; Yang, L.-T.; Tan, C.-L.; Luo, Y.-H.; Wang, C.-C.; et al. Exposure to Polystyrene Microplastics Impairs Hippocampus-Dependent Learning and Memory in Mice. J. Hazard. Mater. 2022, 430, 128431, Erratum in J. Hazard. Mater. 2023, 453, 131398. https://doi.org/10.1016/j.jhazmat.2023.131398. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Seo, E.U.; Hwang, K.S.; Kim, H.; Choi, J.; Kim, H.N. Evaluation of Size-Dependent Uptake, Transport and Cytotoxicity of Polystyrene Microplastic in a Blood-Brain Barrier (BBB) Model. Nano Converg. 2024, 11, 40. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.; Niu, S.; Guo, M.; Xue, Y. Mechanisms of Micro- and Nanoplastics on Blood-Brain Barrier Crossing and Neurotoxicity: Current Evidence and Future Perspectives. Neurotoxicology 2025, 109, 92–107. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Zhang, W.; Dao, J.-J.; Li, Q.; Huang, J.; Li, Z.-F.; Ma, Y.-K.; Qiao, C.-M.; Cui, C.; et al. Targeted Activation of ErbB4 Receptor Ameliorates Neuronal Deficits and Neuroinflammation in a Food-Borne Polystyrene Microplastic Exposed Mouse Model. J. Neuroinflamm. 2025, 22, 86. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; Babalola, A.; Ajagbe, A.O.; Obasanjo, O.M.; Moradeyo, A.; Ukoaka, B.M.; Oyetola, E.O.; Babalola, D.O.; Abraham, I.C.; Olatunji, G.; et al. Molecular Basis of Complex Relationships between Climate Change, Sleep Disorders, and Alzheimer’s Disease. Egypt. J. Neurol. Psychiatry Neurosurg. 2025, 61, 27. [Google Scholar] [CrossRef]
- Yoneda, K.; Hosomi, S.; Ito, H.; Togami, Y.; Oda, S.; Matsumoto, H.; Shimazaki, J.; Ogura, H.; Oda, J. How Can Heatstroke Damage the Brain? A Mini Review. Front. Neurosci. 2024, 18, 1437216. [Google Scholar] [CrossRef]
- Roy, S.; Saha, P.; Bose, D.; Trivedi, A.; More, M.; Lin, C.; Wu, J.; Oakes, M.; Chatterjee, S. Periodic Heat Waves-Induced Neuronal Etiology in the Elderly Is Mediated by Gut-Liver-Brain Axis: A Transcriptome Profiling Approach. Sci. Rep. 2024, 14, 10555. [Google Scholar] [CrossRef]
- Huang, J.; Chai, X.; Wu, Y.; Hou, Y.; Li, C.; Xue, Y.; Pan, J.; Zhao, Y.; Su, A.; Zhu, X.; et al. β-Hydroxybutyric Acid Attenuates Heat Stress-Induced Neuroinflammation via Inhibiting TLR4/P38 MAPK and NF-κB Pathways in the Hippocampus. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2022, 36, e22264. [Google Scholar] [CrossRef] [PubMed]
- An, S.-M.; Kim, H.-H. The Association Between Indoor Air Pollutants and Brain Structure Indicators Using eTIV-Adjusted and Unadjusted Models: A Study in Seoul and Incheon. Brain Sci. 2025, 15, 868. [Google Scholar] [CrossRef]
- Song, M.; Bai, Y.; Song, F. High-Fat Diet and Neuroinflammation: The Role of Mitochondria. Pharmacol. Res. 2025, 212, 107615. [Google Scholar] [CrossRef]
- Ma, W.; Yuan, L.; Yu, H.; Xi, Y.; Xiao, R. Mitochondrial Dysfunction and Oxidative Damage in the Brain of Diet-Induced Obese Rats but Not in Diet-Resistant Rats. Life Sci. 2014, 110, 53–60. [Google Scholar] [CrossRef]
- González Olmo, B.M.; Butler, M.J.; Barrientos, R.M. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients 2021, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Caldarelli, M.; Rio, P.; Marrone, A.; Ocarino, F.; Chiantore, M.; Candelli, M.; Gasbarrini, A.; Gambassi, G.; Cianci, R. Gut–Brain Axis: Focus on Sex Differences in Neuroinflammation. Int. J. Mol. Sci. 2024, 25, 5377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, D.; Wang, F.; Liu, S.; Zhao, S.; Ling, E.-A.; Hao, A. Saturated Fatty Acids Activate Microglia via Toll-like Receptor 4/NF-κB Signalling. Br. J. Nutr. 2012, 107, 229–241. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Rivers-Auty, J.; Mather, A.E.; Peters, R.; Lawrence, C.B.; Brough, D. Anti-Inflammatories in Alzheimer’s Disease-Potential Therapy or Spurious Correlate? Brain Commun. 2020, 2, fcaa109. [Google Scholar] [CrossRef]
- Lai, K.S.P.; Liu, C.S.; Rau, A.; Lanctôt, K.L.; Köhler, C.A.; Pakosh, M.; Carvalho, A.F.; Herrmann, N. Peripheral Inflammatory Markers in Alzheimer’s Disease: A Systematic Review and Meta-Analysis of 175 Studies. J. Neurol. Neurosurg. Psychiatry 2017, 88, 876–882. [Google Scholar] [CrossRef]
- Ridge, P.G.; Hoyt, K.B.; Boehme, K.; Mukherjee, S.; Crane, P.K.; Haines, J.L.; Mayeux, R.; Farrer, L.A.; Pericak-Vance, M.A.; Schellenberg, G.D.; et al. Assessment of the Genetic Variance of Late-Onset Alzheimer’s Disease. Neurobiol. Aging 2016, 41, 200.e13–200.e20. [Google Scholar] [CrossRef] [PubMed]
- Holstege, H.; Hulsman, M.; Charbonnier, C.; Grenier-Boley, B.; Quenez, O.; Grozeva, D.; van Rooij, J.G.J.; Sims, R.; Ahmad, S.; Amin, N.; et al. Exome Sequencing Identifies Rare Damaging Variants in ATP8B4 and ABCA1 as Risk Factors for Alzheimer’s Disease. Nat. Genet. 2022, 54, 1786–1794. [Google Scholar] [CrossRef]
- Hodges, A.K.; Piers, T.M.; Collier, D.; Cousins, O.; Pocock, J.M. Pathways Linking Alzheimer’s Disease Risk Genes Expressed Highly in Microglia. Neuroimmunol. Neuroinflam. 2021, 8, 245–268. [Google Scholar] [CrossRef]
- Ulrich, J.D.; Holtzman, D.M. TREM2 Function in Alzheimer’s Disease and Neurodegeneration. ACS Chem. Neurosci. 2016, 7, 420–427. [Google Scholar] [CrossRef]
- Malik, M.; Simpson, J.F.; Parikh, I.; Wilfred, B.R.; Fardo, D.W.; Nelson, P.T.; Estus, S. CD33 Alzheimer’s Risk-Altering Polymorphism, CD33 Expression, and Exon 2 Splicing. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 13320–13325. [Google Scholar] [CrossRef]
- Crehan, H.; Holton, P.; Wray, S.; Pocock, J.; Guerreiro, R.; Hardy, J. Complement Receptor 1 (CR1) and Alzheimer’s Disease. Immunobiology 2012, 217, 244–250. [Google Scholar] [CrossRef]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-Analysis of 74,046 Individuals Identifies 11 New Susceptibility Loci for Alzheimer’s Disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yamada, K.; Liddelow, S.A.; Smith, S.T.; Zhao, L.; Luo, W.; Tsai, R.M.; Spina, S.; Grinberg, L.T.; Rojas, J.C.; et al. ApoE4 Markedly Exacerbates Tau-Mediated Neurodegeneration in a Mouse Model of Tauopathy. Nature 2017, 549, 523–527. [Google Scholar] [CrossRef]
- Rodgers, M.A.; Bowman, J.W.; Fujita, H.; Orazio, N.; Shi, M.; Liang, Q.; Amatya, R.; Kelly, T.J.; Iwai, K.; Ting, J.; et al. The Linear Ubiquitin Assembly Complex (LUBAC) Is Essential for NLRP3 Inflammasome Activation. J. Exp. Med. 2014, 211, 1333–1347. [Google Scholar] [CrossRef] [PubMed]
- Black, R.A.; Rauch, C.T.; Kozlosky, C.J.; Peschon, J.J.; Slack, J.L.; Wolfson, M.F.; Castner, B.J.; Stocking, K.L.; Reddy, P.; Srinivasan, S.; et al. A Metalloproteinase Disintegrin That Releases Tumour-Necrosis Factor-Alpha from Cells. Nature 1997, 385, 729–733. [Google Scholar] [CrossRef]
- Tang, W.; Lu, Y.; Tian, Q.-Y.; Zhang, Y.; Guo, F.-J.; Liu, G.-Y.; Syed, N.M.; Lai, Y.; Lin, E.A.; Kong, L.; et al. The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic against Inflammatory Arthritis in Mice. Science 2011, 332, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 Inflammasome Activation Drives Tau Pathology. Nature 2019, 575, 669–673. [Google Scholar] [CrossRef]
- Le Guen, Y.; Luo, G.; Ambati, A.; Damotte, V.; Jansen, I.; Yu, E.; Nicolas, A.; de Rojas, I.; Peixoto Leal, T.; Miyashita, A.; et al. Multiancestry Analysis of the HLA Locus in Alzheimer’s and Parkinson’s Diseases Uncovers a Shared Adaptive Immune Response Mediated by HLA-DRB1*04 Subtypes. Proc. Natl. Acad. Sci. USA 2023, 120, e2302720120. [Google Scholar] [CrossRef]
- Althafar, Z.M. Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 2022, 27, 4124. [Google Scholar] [CrossRef]
- Azevedo, E.P.; Ledo, J.H.; Barbosa, G.; Sobrinho, M.; Diniz, L.; Fonseca, A.C.C.; Gomes, F.; Romão, L.; Lima, F.R.S.; Palhano, F.L.; et al. Activated Microglia Mediate Synapse Loss and Short-Term Memory Deficits in a Mouse Model of Transthyretin-Related Oculoleptomeningeal Amyloidosis. Cell Death Dis. 2013, 4, e789. [Google Scholar] [CrossRef][Green Version]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Md, S.; Alhakamy, N.A.; Alfaleh, M.A.; Afzal, O.; Altamimi, A.S.A.; Iqubal, A.; Shaik, R.A. Mechanisms Involved in Microglial-Interceded Alzheimer’s Disease and Nanocarrier-Based Treatment Approaches. J. Pers. Med. 2021, 11, 1116. [Google Scholar] [CrossRef]
- Sun, J.; Song, Y.; Chen, Z.; Qiu, J.; Zhu, S.; Wu, L.; Xing, L. Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cell. Mol. Neurobiol. 2022, 42, 2629–2642. [Google Scholar] [CrossRef]
- Park, H.; Cho, B.; Kim, H.; Saito, T.; Saido, T.C.; Won, K.-J.; Kim, J. Single-Cell RNA-Sequencing Identifies Disease-Associated Oligodendrocytes in Male APP NL-G-F and 5XFAD Mice. Nat. Commun. 2023, 14, 802. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.P.Q.; Jallow, A.W.; Lin, Y.-F.; Lin, Y.-F. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer’s Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int. J. Mol. Sci. 2024, 25, 6640. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, B.; Zhang, J.; Zhou, X.; Jiang, Y.; Tong, W.; Chen, J.; Luo, N. Single-Cell Sequencing Reveals That AK5 Inhibits Apoptosis in AD Oligodendrocytes by Regulating the AMPK Signaling Pathway. Mol. Biol. Rep. 2025, 52, 213. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Zhang, X.; Wang, W.; Chen, Y.; Cai, Z.; Wang, Q.; Wang, J.; Shi, Y. Promotion of Astrocyte-Neuron Glutamate-Glutamine Shuttle by SCFA Contributes to the Alleviation of Alzheimer’s Disease. Redox Biol. 2023, 62, 102690. [Google Scholar] [CrossRef]
- Zhou, A.L.; Sharda, N.; Sarma, V.V.; Ahlschwede, K.M.; Curran, G.L.; Tang, X.; Poduslo, J.F.; Kalari, K.R.; Lowe, V.J.; Kandimalla, K.K. Age-Dependent Changes in the Plasma and Brain Pharmacokinetics of Amyloid-β Peptides and Insulin. J. Alzheimer’s Dis. JAD 2022, 85, 1031–1044. [Google Scholar] [CrossRef]
- Schwartz, M.; Deczkowska, A. Neurological Disease as a Failure of Brain-Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol. 2016, 37, 668–679. [Google Scholar] [CrossRef]
- Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; De Los Santos, M.B.; et al. Clonally Expanded CD8 T Cells Patrol the Cerebrospinal Fluid in Alzheimer’s Disease. Nature 2020, 577, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.-L.; Xue, L.-L.; Du, R.-L.; Niu, R.-Z.; Chen, L.; Chen, J.; Hu, Q.; Tan, Y.-X.; Shang, H.-F.; Liu, J.; et al. Single-Cell RNA Sequencing Reveals B Cell-Related Molecular Biomarkers for Alzheimer’s Disease. Exp. Mol. Med. 2021, 53, 1888–1901. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Ling, C.; Zhang, X.; Lu, J.; Luan, W.; Zhang, J.; Shi, L. A Novel Phenotype of B Cells Associated with Enhanced Phagocytic Capability and Chemotactic Function after Ischemic Stroke. Neural Regen. Res. 2023, 18, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Jorfi, M.; Park, J.; Hall, C.K.; Lin, C.-C.J.; Chen, M.; von Maydell, D.; Kruskop, J.M.; Kang, B.; Choi, Y.; Prokopenko, D.; et al. Infiltrating CD8+ T Cells Exacerbate Alzheimer’s Disease Pathology in a 3D Human Neuroimmune Axis Model. Nat. Neurosci. 2023, 26, 1489–1504. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, A.; Piehl, N.; Simonton, B.; Parikh, M.; Zhang, Z.; Teregulova, V.; van Olst, L.; Gate, D. Epigenetic Dysregulation in Alzheimer’s Disease Peripheral Immunity. Neuron 2024, 112, 1235–1248.e5. [Google Scholar] [CrossRef]
- Chen, X.; Hu, F.; Chi, Q.; Rao, C. The Study of Alzheimer’s Disease Risk Diagnosis Based on Natural Killer Cell Marker Genes in the Multi-Omics Data. J. Alzheimer’s Dis. JAD 2025, 108, S274–S292. [Google Scholar] [CrossRef]
- Qi, C.; Liu, F.; Zhang, W.; Han, Y.; Zhang, N.; Liu, Q.; Li, H. Alzheimer’s Disease Alters the Transcriptomic Profile of Natural Killer Cells at Single-Cell Resolution. Front. Immunol. 2022, 13, 1004885. [Google Scholar] [CrossRef]
- Sirkis, D.W.; Warly Solsberg, C.; Johnson, T.P.; Bonham, L.W.; Oddi, A.P.; Geier, E.G.; Miller, B.L.; Rabinovici, G.D.; Yokoyama, J.S. Expansion of Highly Interferon-Responsive T Cells in Early-Onset Alzheimer’s Disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2024, 20, 5062–5070. [Google Scholar] [CrossRef]
- Lu, Y.; Li, K.; Hu, Y.; Wang, X. Expression of Immune Related Genes and Possible Regulatory Mechanisms in Alzheimer’s Disease. Front. Immunol. 2021, 12, 768966. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Reed, W.; Maronpot, R.R.; Henríquez-Roldán, C.; Delgado-Chavez, R.; Calderón-Garcidueñas, A.; Dragustinovis, I.; Franco-Lira, M.; Aragón-Flores, M.; Solt, A.C.; et al. Brain Inflammation and Alzheimer’s-like Pathology in Individuals Exposed to Severe Air Pollution. Toxicol. Pathol. 2004, 32, 650–658. [Google Scholar] [CrossRef]
- Park, H.; Armstrong, M.; Gorin, F.; Lein, P. Air Pollution as an Environmental Risk Factor for Alzheimer’s Disease and Related Dementias. Med. Res. Arch. 2024, 12, 5825. [Google Scholar] [CrossRef]
- Zhang, W.-X.; Yang, Y.-L.; Yu, J.-X.; Jia, L.-H.; Huang, H.-C. APOE4-Driven Lipid Metabolic Dysregulation in Alzheimer’s Disease: Multi-Pathway Mechanisms and Therapeutic Perspectives. Biochem. Biophys. Res. Commun. 2025, 778, 152335. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R.; Barnes, M.B.; Sohrabi, H.R.; Weinborn, M.; Lim, Y.Y.; Harrington, K.; Taddei, K.; Gu, Y.; Rembach, A.; et al. Dietary Patterns and Cognitive Decline in an Australian Study of Ageing. Mol. Psychiatry 2015, 20, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, J.; Ma, D.; Yuan, G.; Lu, Y.; Yang, Y. Capsaicin Reduces Alzheimer-Associated Tau Changes in the Hippocampus of Type 2 Diabetes Rats. PLoS ONE 2017, 12, e0172477. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Ochoa, E.; Hernández-Ortega, K.; Ferrera, P.; Morimoto, S.; Arias, C. Short-Term High-Fat-and-Fructose Feeding Produces Insulin Signaling Alterations Accompanied by Neurite and Synaptic Reduction and Astroglial Activation in the Rat Hippocampus. J. Cereb. Blood Flow Metab. 2014, 34, 1001–1008. [Google Scholar] [CrossRef]
- Jena, P.K.; Sheng, L.; Di Lucente, J.; Jin, L.; Maezawa, I.; Wan, Y.Y. Dysregulated Bile Acid Synthesis and Dysbiosis Are Implicated in Western Diet–Induced Systemic Inflammation, Microglial Activation, and Reduced Neuroplasticity. FASEB J. 2018, 32, 2866–2877. [Google Scholar] [CrossRef]
- Ellouze, I.; Sheffler, J.; Nagpal, R.; Arjmandi, B. Dietary Patterns and Alzheimer’s Disease: An Updated Review Linking Nutrition to Neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef]
- Braden-Kuhle, P.N.; Lacy, V.A.; Brice, K.N.; Bertrand, M.E.; Uras, H.B.; Shoffner, C.; Fischer, B.E.; Rana, A.; Willis, J.L.; Boehm, G.W.; et al. A Mediterranean-Style Diet Protects against Cognitive and Behavioral Deficits, Adiposity, and Alzheimer’s Disease-Related Markers, Compared to a Macronutrient-Matched Typical American Diet in C57BL/6J Mice. J. Alzheimer’s Dis. 2025, 104, 678–697. [Google Scholar] [CrossRef]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western Diet Effects on Alzheimer’s Disease Biomarkers, Cerebral Perfusion, and Cognition in Mid-life: A Randomized Trial. Alzheimer’s Dement. 2022, 18, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Zuelsdorff, M.; Limaye, V.S. A Framework for Assessing the Effects of Climate Change on Dementia Risk and Burden. Gerontologist 2024, 64, gnad082. [Google Scholar] [CrossRef]
- Curtis, S.; Fair, A.; Wistow, J.; Val, D.V.; Oven, K. Impact of Extreme Weather Events and Climate Change for Health and Social Care Systems. Environ. Health 2017, 16, 128. [Google Scholar] [CrossRef]
- Delaney, S.W.; Stegmuller, A.; Mork, D.; Mock, L.; Bell, M.L.; Gill, T.M.; Braun, D.; Zanobetti, A. Extreme Heat and Hospitalization Among Older Persons with Alzheimer Disease and Related Dementias. JAMA Intern. Med. 2025, 185, 412. [Google Scholar] [CrossRef]
- Zhang, Y.; Ebelt, S.T.; Shi, L.; Scovronick, N.C.; D’Souza, R.R.; Steenland, K.; Chang, H.H. Short-Term Associations between Warm-Season Ambient Temperature and Emergency Department Visits for Alzheimer’s Disease and Related Dementia in Five US States. Environ. Res. 2023, 220, 115176. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, L.; Jia, A.; Wang, S.; Guo, Q.; Wang, Y.; Wang, C.; Wu, S.; Zheng, H.; Su, X.; et al. Effect of Heatwaves on Mortality of Alzheimer’s Disease and Other Dementias among Elderly Aged 60 Years and above in China, 2013–2020: A Population-Based Study. Lancet Reg. Health—West. Pac. 2024, 52, 101217. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H.; Burns, J.M.; Khan, S.M. The Alzheimer’s Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2014, 1842, 1219–1231. [Google Scholar] [CrossRef]
- Dhapola, R.; Beura, S.K.; Sharma, P.; Singh, S.K.; HariKrishnaReddy, D. Oxidative Stress in Alzheimer’s Disease: Current Knowledge of Signaling Pathways and Therapeutics. Mol. Biol. Rep. 2024, 51, 48. [Google Scholar] [CrossRef]
- Koulouri, A.; Zannas, A.S. Epigenetics as a Link between Environmental Factors and Dementia Risk. J. Alzheimer’s Dis. Rep. 2024, 8, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Abdolmaleky, H.M.; Nohesara, S.; Zhou, J.-R.; Thiagalingam, S. Epigenetics in Evolution and Adaptation to Environmental Challenges: Pathways for Disease Prevention and Treatment. Epigenomics 2025, 17, 317–333. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Si, Y.; Wu, N.; Cao, H.; Mei, B.; Meng, B. miR-125b Promotes Tau Phosphorylation by Targeting the Neural Cell Adhesion Molecule in Neuropathological Progression. Neurobiol. Aging 2019, 73, 41–49. [Google Scholar] [CrossRef]
- Haghani, A.; Johnson, R.G.; Dalton, H.; Feinberg, J.I.; Lewis, K.C.; Ladd-Acosta, C.; Woodward, N.C.; Safi, N.; Jaffe, A.E.; Allayee, H.; et al. Early Developmental Exposure to Air Pollution Increases the Risk of Alzheimers Disease and Amyloid Production: Studies in Mouse and Caenorhabditis Elegans: Molecular and Cell Biology/APP/Abeta/Amyloid. Alzheimer’s Dement. 2020, 16, e043846. [Google Scholar] [CrossRef]
- Lee, Y.; Yoon, S.; Yoon, S.H.; Kang, S.W.; Jeon, S.; Kim, M.; Shin, D.A.; Nam, C.M.; Ye, B.S. Air Pollution Is Associated with Faster Cognitive Decline in Alzheimer’s Disease. Ann. Clin. Transl. Neurol. 2023, 10, 964–973. [Google Scholar] [CrossRef]
- Kim, B.; Blam, K.; Elser, H.; Xie, S.X.; Van Deerlin, V.M.; Penning, T.M.; Weintraub, D.; Irwin, D.J.; Massimo, L.M.; McMillan, C.T.; et al. Ambient Air Pollution and the Severity of Alzheimer Disease Neuropathology. JAMA Neurol. 2025, 82, 1153–1161. [Google Scholar] [CrossRef]
- Huang, X.; Steinmetz, J.; Marsh, E.K.; Aravkin, A.Y.; Ashbaugh, C.; Murray, C.J.L.; Yang, F.; Ji, J.S.; Zheng, P.; Sorensen, R.J.D.; et al. A Systematic Review with a Burden of Proof Meta-Analysis of Health Effects of Long-Term Ambient Fine Particulate Matter (PM2.5) Exposure on Dementia. Nat. Aging 2025, 5, 897–908. [Google Scholar] [CrossRef]
- Dhapola, R.; Sharma, P.; Kumari, S.; Bhatti, J.S.; HariKrishnaReddy, D. Environmental Toxins and Alzheimer’s Disease: A Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol. Neurobiol. 2024, 61, 3657–3677. [Google Scholar] [CrossRef] [PubMed]
- Babić Leko, M.; Langer Horvat, L.; Španić Popovački, E.; Zubčić, K.; Hof, P.R.; Šimić, G. Metals in Alzheimer’s Disease. Biomedicines 2023, 11, 1161. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Raymick, J.; Sarkar, S. Role of Metals in Alzheimer’s Disease. Metab. Brain Dis. 2021, 36, 1627–1639. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.; Liu, X.; Zhang, C.; Wang, P.; Zhao, X. Circulatory Levels of Toxic Metals (Aluminum, Cadmium, Mercury, Lead) in Patients with Alzheimer’s Disease: A Quantitative Meta-Analysis and Systematic Review. J. Alzheimer’s Dis. 2018, 62, 361–372. [Google Scholar] [CrossRef]
- Balestri, W.; Sharma, R.; da Silva, V.A.; Bobotis, B.C.; Curle, A.J.; Kothakota, V.; Kalantarnia, F.; Hangad, M.V.; Hoorfar, M.; Jones, J.L.; et al. Modeling the Neuroimmune System in Alzheimer’s and Parkinson’s Diseases. J. Neuroinflamm. 2024, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Roveta, F.; Bonino, L.; Piella, E.M.; Rainero, I.; Rubino, E. Neuroinflammatory Biomarkers in Alzheimer’s Disease: From Pathophysiology to Clinical Implications. Int. J. Mol. Sci. 2024, 25, 11941. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Y. Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. J. Neuroinflamm. 2023, 20, 165. [Google Scholar] [CrossRef]
- Lin, S.; Zhan, Y.; Wang, R.; Pei, J. Decoding Neuroinflammation in Alzheimer’s Disease: A Multi-Omics and AI-Driven Perspective for Precision Medicine. Front. Immunol. 2025, 16, 1616899. [Google Scholar] [CrossRef] [PubMed]
- Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al. Single-Cell Transcriptomic Analysis of Alzheimer’s Disease. Nature 2019, 570, 332–337, Correction in Nature 2019, 571, E1. https://doi.org/10.1038/s41586-019-1329-6. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Paul, K.C.; O’Sharkey, K.; Paik, S.-A.; Yu, Y.; Bronstein, J.M.; Ritz, B. Challenges in Studying Air Pollution to Neurodegenerative Diseases. Environ. Res. 2025, 278, 121597. [Google Scholar] [CrossRef]
- Jilanee, S.D.A.; Saeed, M.; Ahsan, M.U.; Farooq, M.U.; Ahmed, S.; Shahid, H.; Sharif, S. Neurological Consequences of Climate Change: A Review of Emerging Challenges and Potential Impacts on Brain Health. Ann. Med. Surg. 2025, 87, 4209–4221. [Google Scholar] [CrossRef]
- Hashioka, S.; Wu, Z.; Klegeris, A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer’s Disease. Curr. Neuropharmacol. 2021, 19, 908–924. [Google Scholar] [CrossRef]
- Ontawong, A.; Nehra, G.; Maloney, B.J.; Vaddhanaphuti, C.S.; Bauer, B.; Hartz, A.M.S. N-Acetylcysteine Attenuates Aβ-Mediated Oxidative Stress, Blood–Brain Barrier Leakage, and Renal Dysfunction in 5xFAD Mice. Int. J. Mol. Sci. 2025, 26, 4352. [Google Scholar] [CrossRef] [PubMed]
- Salvi, A.; Liu, H.; Salim, S. Involvement of Oxidative Stress and Mitochondrial Mechanisms in Air Pollution-Related Neurobiological Impairments. Neurobiol. Stress 2020, 12, 100205. [Google Scholar] [CrossRef]
- Li, Z.; Gong, C. NLRP3 Inflammasome in Alzheimer’s Disease: Molecular Mechanisms and Emerging Therapies. Front. Immunol. 2025, 16, 1583886. [Google Scholar] [CrossRef]
- Tregub, P.P.; Ibrahimli, I.; Averchuk, A.S.; Salmina, A.B.; Litvitskiy, P.F.; Manasova, Z.S.; Popova, I.A. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int. J. Mol. Sci. 2023, 24, 12899. [Google Scholar] [CrossRef]
- Yasuno, F.; Kimura, Y.; Ogata, A.; Ikenuma, H.; Abe, J.; Minami, H.; Nihashi, T.; Yokoi, K.; Hattori, S.; Shimoda, N.; et al. Neuroimaging Biomarkers of Glial Activation for Predicting the Annual Cognitive Function Decline in Patients with Alzheimer’s Disease. Brain. Behav. Immun. 2023, 114, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.-Z.; Zou, C.-J.; Mei, X.; Li, X.-F.; Luo, H.; Shen, Y.; Hu, J.; Li, X.-X.; Wu, L.; Liu, Y. Targeting Neuroinflammation in Alzheimer’s Disease: From Mechanisms to Clinical Applications. Neural Regen. Res. 2023, 18, 708. [Google Scholar] [CrossRef]
- Campolim, C.M.; Schimenes, B.C.; Veras, M.M.; Kim, Y.-B.; Prada, P.O. Air Pollution Accelerates the Development of Obesity and Alzheimer’s Disease: The Role of Leptin and Inflammation—A Mini-Review. Front. Immunol. 2024, 15, 1401800. [Google Scholar] [CrossRef] [PubMed]
- Lonnemann, N.; Hosseini, S.; Marchetti, C.; Skouras, D.B.; Stefanoni, D.; D’Alessandro, A.; Dinarello, C.A.; Korte, M. The NLRP3 Inflammasome Inhibitor OLT1177 Rescues Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 32145–32154. [Google Scholar] [CrossRef]
- Muela-Zarzuela, I.; Suarez-Rivero, J.M.; Boy-Ruiz, D.; López-Pérez, J.; Sotelo-Montoro, M.; Del Mar Navarrete-Alonso, M.; Collado, I.G.; Botubol-Ares, J.M.; Sanz, A.; Cordero, M.D. The NLRP3 Inhibitor Dapansutrile Improves the Therapeutic Action of Lonafarnib on Progeroid Mice. Aging Cell 2024, 23, e14272. [Google Scholar] [CrossRef]
- Wilhelmsen, K.; Deshpande, A.; Tronnes, S.; Mahanta, M.; Banicki, M.; Cochran, M.; Cowdin, S.; Fortney, K.; Hartman, G.; Hughes, R.E.; et al. Discovery of Potent and Selective Inhibitors of Human NLRP3 with a Novel Mechanism of Action. J. Exp. Med. 2025, 222, e20242403. [Google Scholar] [CrossRef]
- Jalouli, M.; Rahman, M.A.; Biswas, P.; Rahman, H.; Harrath, A.H.; Lee, I.-S.; Kang, S.; Choi, J.; Park, M.N.; Kim, B. Targeting Natural Antioxidant Polyphenols to Protect Neuroinflammation and Neurodegenerative Diseases: A Comprehensive Review. Front. Pharmacol. 2025, 16, 1492517. [Google Scholar] [CrossRef]
- Bartra, C.; Yuan, Y.; Vuraić, K.; Valdés-Quiroz, H.; Garcia-Baucells, P.; Slevin, M.; Pastorello, Y.; Suñol, C.; Sanfeliu, C. Resveratrol Activates Antioxidant Protective Mechanisms in Cellular Models of Alzheimer’s Disease Inflammation. Antioxidants 2024, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, J.; Niu, Y.; Yu, J.-Q.; Yan, L.; Miao, Z.-H.; Zhao, X.-X.; Li, Y.-J.; Yao, W.-X.; Zheng, P.; et al. Resveratrol Inhibits Oligomeric Aβ-Induced Microglial Activation via NADPH Oxidase. Mol. Med. Rep. 2015, 12, 6133–6139. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Peña-Corona, S.I.; Hernández-Parra, H.; Chandran, D.; Saleena, L.A.K.; Sawikr, Y.; Peluso, I.; Dhumal, S.; Kumar, M.; Leyva-Gómez, G.; et al. Neuroprotective and Anti-inflammatory Effects of Curcumin in Alzheimer’s Disease: Targeting Neuroinflammation Strategies. Phytother. Res. 2024, 38, 3169–3189. [Google Scholar] [CrossRef] [PubMed]
- Levak, N.; Lehtisalo, J.; Thunborg, C.; Westman, E.; Andersen, P.; Andrieu, S.; Broersen, L.M.; Coley, N.; Hartmann, T.; Irving, G.F.; et al. Nutrition Guidance within a Multimodal Intervention Improves Diet Quality in Prodromal Alzheimer’s Disease: Multimodal Preventive Trial for Alzheimer’s Disease (MIND-ADmini). Alzheimer’s Res. Ther. 2024, 16, 147. [Google Scholar] [CrossRef]
- Tingö, L.; Bergh, C.; Rode, J.; Rubio, M.F.R.; Persson, J.; Johnson, L.B.; Smit, L.H.; Hutchinson, A.N. The Effect of Whole-Diet Interventions on Memory and Cognitive Function in Healthy Older Adults—A Systematic Review. Adv. Nutr. 2024, 15, 100291. [Google Scholar] [CrossRef]
- Singh, K.; Sethi, P.; Datta, S.; Chaudhary, J.S.; Kumar, S.; Jain, D.; Gupta, J.K.; Kumar, S.; Guru, A.; Panda, S.P. Advances in Gene Therapy Approaches Targeting Neuro-Inflammation in Neurodegenerative Diseases. Ageing Res. Rev. 2024, 98, 102321. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, A.; Harper, S.L.; Minor, K.; Hayes, K.; Williams, K.G.; Howard, C. Ecological Grief and Anxiety: The Start of a Healthy Response to Climate Change? Lancet Planet. Health 2020, 4, e261–e263. [Google Scholar] [CrossRef]
- Shao, D.; Du, Y.; Liu, S.; Brunekreef, B.; Meliefste, K.; Zhao, Q.; Chen, J.; Song, X.; Wang, M.; Wang, J.; et al. Cardiorespiratory Responses of Air Filtration: A Randomized Crossover Intervention Trial in Seniors Living in Beijing. Sci. Total Environ. 2017, 603–604, 541–549. [Google Scholar] [CrossRef]
- Xia, X.; Chan, K.H.; Kwok, T.; Wu, S.; Man, C.L.; Ho, K.-F. Effects of Long-Term Indoor Air Purification Intervention on Cardiovascular Health in Elderly: A Parallel, Double-Blinded Randomized Controlled Trial in Hong Kong. Environ. Res. 2024, 247, 118284. [Google Scholar] [CrossRef]
- Wood, H.E.; Hajmohammadi, H.; Dove, R.E.; Scales, J.; Mitchell, J.; Sheikh, A.; Gauderman, W.J.; Randhawa, G.; Mudway, I.S.; Griffiths, C.J. Impact of London’s Ultra Low Emission Zone on Lung Development in Children: The CHILL Cohort Study. Eur. J. Public Health 2025, 35, ckaf161.486. [Google Scholar] [CrossRef]
- Röhr, S.; Rodriguez, F.S.; Siemensmeyer, R.; Müller, F.; Romero-Ortuno, R.; Riedel-Heller, S.G. How Can Urban Environments Support Dementia Risk Reduction? A Qualitative Study. Int. J. Geriatr. Psychiatry 2022, 37, gps.5626. [Google Scholar] [CrossRef] [PubMed]
- Jahedi, F.; Goudarzi, G.; Ahmadi, M.; Safdari, F. A Bibliometric and Systematic Review of the Global Impact of Air Pollution on Alzheimer’s Disease: Insights from Cohort Studies. J. Alzheimer’s Dis. Rep. 2025, 9, 25424823251368883. [Google Scholar] [CrossRef] [PubMed]

| Pathway | Key Molecules | Main Functions | Implication in AD | Key References |
|---|---|---|---|---|
| NF-κB | p65 (RelA), IκB, TNF-α, IL-1β | Regulates pro-inflammatory cytokines, apoptosis, and immune responses | Chronic activation promotes neuroinflammation and neuronal death | [28] |
| JAK/STAT | JAK1/2, STAT1/3, SOCS | Mediates cytokine signaling and immune cell differentiation | Dysregulation promotes microglial activation and neurotoxicity | [41] |
| MAPK | ERK, JNK, p38 | Controls cellular stress responses, cytokine production, and apoptosis | Involved in tau phosphorylation and synaptic dysfunction | [42,43] |
| NLRP3 inflammasome | NLRP3, ASC, Caspase-1, IL-1β, IL-18 | Triggers pyroptosis and release of pro-inflammatory cytokines | Chronic activation drives neurodegeneration and cognitive decline | [44,49] |
| Stimulus/Lesion | Key Mediators/Pathways | Final Effect on CNS | Key References |
|---|---|---|---|
| Aβ aggregation | NF-κB activation in astrocytes; microglial activation; ROS | Neuronal injury, chronic microglial activation, tau hyperphosphorylation | [106,107] |
| Tau aggregation | Microglial activation; pro-inflammatory cytokines (IL-1β, TNF-α); NLRP3 inflammasome | Synaptic dysfunction, propagation of neurofibrillary tangles, neuronal death | [108,109] |
| Chronic glial activation | Sustained cytokine release (IL-6, IL-1β, TNF-α); complement activation | Synaptopathy, impaired neurogenesis, cognitive decline | [110] |
| Environmental Stressor | Preclinical Evidence | Clinical Evidence | Epidemiological Evidence | Main References |
|---|---|---|---|---|
| PM2.5 mano | Strong—multiple in vitro and animal studies showing neuroinflammation and Aβ/tau alterations. | Limited | Strong—several longitudinal cohorts and meta-analyses showing an increased AD risk. | [152] |
| SO2, NO2 and O3 | Moderate—mechanisms of neuroinflammation are described in animal models. | Limited | Limited–Moderate—less consistent evidence, often in studies evaluating also the concomitant PM exposure. | [65,67,70,129] |
| Heavy metals | Moderate–Strong—neurotoxicants associated with oxidative stress, inflammation, and neurodegeneration. | Limited | Moderate—meta-analyses show higher circulating levels in AD vs. controls. | [154,155,156] |
| MPs and NPs | Emerging—recent in vitro and animal data show their brain accumulation and neurological damage. | Essentially absent | Weak—few preliminary human or ecological studies. | [76,77,78] |
| Heat waves/extreme temperatures | Moderate—animal studies have detected neuroinflammation in conditions of thermal stress. | Limited | Moderate—association between heatwaves, hospitalizations and mortality in patients with dementia. | [83,141,143] |
| Diet | Strong—multiple preclinical studies show the association between diet, neuroinflammation, and cognitive impairment. | Moderate—some limited-sized interventional studies with biomarkers or cognitive outcomes. | Moderate—several observational cohorts focusing on MD and WD. | [131,135,137,138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldarelli, M.; Rio, P.; Gasbarrini, A.; Gambassi, G.; Cianci, R. Environmental Stressors and Neuroinflammation: Linking Climate Change to Alzheimer’s Disease. Curr. Issues Mol. Biol. 2025, 47, 959. https://doi.org/10.3390/cimb47110959
Caldarelli M, Rio P, Gasbarrini A, Gambassi G, Cianci R. Environmental Stressors and Neuroinflammation: Linking Climate Change to Alzheimer’s Disease. Current Issues in Molecular Biology. 2025; 47(11):959. https://doi.org/10.3390/cimb47110959
Chicago/Turabian StyleCaldarelli, Mario, Pierluigi Rio, Antonio Gasbarrini, Giovanni Gambassi, and Rossella Cianci. 2025. "Environmental Stressors and Neuroinflammation: Linking Climate Change to Alzheimer’s Disease" Current Issues in Molecular Biology 47, no. 11: 959. https://doi.org/10.3390/cimb47110959
APA StyleCaldarelli, M., Rio, P., Gasbarrini, A., Gambassi, G., & Cianci, R. (2025). Environmental Stressors and Neuroinflammation: Linking Climate Change to Alzheimer’s Disease. Current Issues in Molecular Biology, 47(11), 959. https://doi.org/10.3390/cimb47110959

