
Academic Editor: Bo Li

Received: 31 July 2025

Revised: 30 September 2025

Accepted: 5 October 2025

Published: 11 October 2025

Citation: Zhong, Y.; Chen, X.; Li, P.;

Hou, P.; Wang, Z.; Nie, K. Active

Fault-Tolerant Cooperative Control for

Multi-QUAVs Using Relative

Measurement Information. Drones

2025, 9, 699. https://doi.org/

10.3390/drones9100699

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Active Fault-Tolerant Cooperative Control for Multi-QUAVs
Using Relative Measurement Information
Yujiang Zhong 1 , Xi Chen 1, Ping Li 1, Pinfan Hou 2, Zhen Wang 1,* and Kunlin Nie 3,4

1 School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China;
yujiangzhong@hotmail.com (Y.Z.); cenxisz@163.com (X.C.)

2 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
houpinfan@mail.nwpu.edu.cn

3 National Elite Institute of Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
niekl@mail.nwpu.edu.cn

4 Acyber, Beijing 100144, China
* Correspondence: w-zhen@nwpu.edu.cn

Highlights

What are the main findings?
• A decoupled fault estimation observer is developed based on the derived observable

subsystem, capable of estimating actuator faults and the leader’s unknown input signal.
• An active fault-tolerant cooperative control method is proposed, ensuring consensus-

based formation stability for multi-QUAV systems with relative output measurements.
What is the implication of the main finding?
• Actuator fault can be estimated using relative output measurements, which is a challenge

for multi-QUAVs due to the coupling of relative measurement information.
• The fault-tolerant method allows consensus-based formation control using only relative

outputs, eliminating leader dependency and the need for absolute measurements.

Abstract

This paper investigates actuator fault-tolerant cooperative control of multiple quadrotor
unmanned aerial vehicles (multi-QUAVs) under restricted communication conditions,
where only relative output measurements are available. By appropriately transforming
and scaling the control inputs and outputs of the multi-QUAVs, an observable subsystem
is constructed. A decoupled fault estimation observer is then designed for this subsystem
to estimate actuator faults and the leader’s input signal. Based on the fault estimation
information and relative measurement information among QUAVs, a node-based active
fault-tolerant cooperative control law is developed. This approach enables multi-QUAVs to
achieve consensus-based formation solely relying on relative output information, even in
the presence of actuator faults. Finally, the effectiveness of the proposed active fault-tolerant
cooperative control method is verified by simulation.

Keywords: multi-QUAVs; actuator faults; relative output measurements; decoupled fault
estimation observer; active fault-tolerant cooperative control

1. Introduction
With benefits like improved reliability, cost efficiency, and adaptable configurations,

multiple quadrotor unmanned aerial vehicles (multi-QUAVs) have gained significant
interest from various scientific communities in recent decades and are widely employed

Drones 2025, 9, 699 https://doi.org/10.3390/drones9100699

https://doi.org/10.3390/drones9100699
https://doi.org/10.3390/drones9100699
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-4093-8795
https://doi.org/10.3390/drones9100699
https://www.mdpi.com/article/10.3390/drones9100699?type=check_update&version=2


Drones 2025, 9, 699 2 of 21

in civilian projects and military operations [1–5]. Multi-QUAVs can be comprehended as
a series of interactive QUAVs in an interconnected network, collaboratively maintaining
a formation via common cooperative control laws [6–8]. Due to the strong nonlinearity and
underactuated characteristics of the quadrotor unmanned aerial vehicle (QUAV), it is a
great challenge to design a cooperative control scheme to accurately achieve the expected
formation shape for multi-QUAVs [9,10].

During the past few decades, consensus-based control for multi-QUAVs has under-
gone substantial advancements. Reference [11] proposes a consensus–inference-based
hierarchical reinforcement learning scheme to address multi-constrained unmanned aerial
vehicle (UAV) pursuit–evasion game challenges. To achieve optimal active fault-tolerant
bipartite consensus control in UAV swarms subject to nonidentical and unknown direction
faults and disturbances, reference [12] proposes a switching function-based fault-tolerant
control (FTC) framework. This framework integrates reinforcement learning-optimized
control, distributed observer design, and active fault detection mechanisms. Xiao in [13]
introduces a distributed fixed-time group consensus control method to tackle uncertain dis-
turbances and enhance reliability and efficiency during inspection tasks for multi-UAVs. A
distributed fixed-time group consensus control scheme for multi-UAVs under disturbances
is developed in [14]. This scheme uses radial basis function neural networks to estimate
uncertainties and a backstepping approach with command filters to ensure the fixed-time
convergence of consensus errors.

In a networked multi-QUAV system, a single fault on a QUAV probably induces drastic
cascading failures through inter-agent coupling effects and compromises global formation
stability and mission safety [15]. Therefore, to address the aforementioned challenges,
significant advances have been made in recent years in fault-tolerant control, particularly in
passive fault-tolerant control approaches. In [16], Guo proposes a dynamic event-triggered
predefined-time adaptive sliding mode control scheme to address fault-tolerant control to
address the actuator faults in the attitude tracking of a UAV. For the faults in formation
tracking–containment control of UAVs, Hu in [17] proposes a differential game-based
approach integrated with adaptive dynamic programming to solve the challenges of fault-
tolerant coordination. A passive fault-tolerant control strategy is proposed in [18] for the
transition flight phase of dual-system UAVs. A two-step robust fault-tolerant controller is
designed in [19] for the complex and nonlinear dynamics of UAVs to address disturbances
and actuator faults. Reference [20] designs an adaptive event-triggered finite-time fault-
tolerant containment control scheme for multi-UAVs subject to input constraints, actuator
failures, communication limitations, and external disturbances.

The control design methods mentioned above are all based on the passive fault-
tolerant control framework. However, in some critical scenarios, UAVs require immediate
reaction to faults and rapid compensation to prevent failure propagation throughout other
UAVs. To address this demanding requirement, active fault-tolerant control is proposed
as a solution. For the vortex effects under simultaneous actuator and sensor faults in a
heterogeneous multi-UAV system, reference [21] develops an observer-based fault-tolerant
control integrating decentralized fault estimation and FTC mechanisms. A dual-loop
active fault-tolerant controller for UAV formations is proposed in [22], where an outer loop
controller and an inner loop controller stabilize the system and ensure accurate tracking of
desired trajectories, respectively. Yang [23] introduces a backstepping-based fault-tolerant
cooperative control strategy for multi-fixed-wing UAVs under the actuator faults, with
sensor faults via wind disturbances; this approach incorporates adaptive fault detection
thresholds and a backstepping-based fault-tolerant control scheme to enhance robustness
under dynamic uncertainties. In [24], a novel distributed intermediate estimator-based fault-
tolerant tracking protocol is proposed to address the problem of multi-agent systems with
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multiple faults and mismatched disturbances. In [25], a fault-tolerant control algorithm
based on sliding mode and an adaptive control strategy is proposed for UAV surface
structural damage. Developments in motor failures on the UAV have been discussed
by Abdullah in [26], who proposes a nonlinear disturbance observer-based sliding mode
control for rotational motion control. Reference [27] proposes a sliding-mode-based fault
diagnosis and fault-tolerant control method for quadrotor trajectory tracking under actuator
faults and external disturbances. For actuator faults with unknown reference signals,
Amador-Macias [28] designs a high-gain observer-based fault-tolerant control approach.

However, active fault-tolerant cooperative control (AFTCC) strategies for multi-
QUAVs remain under-explored, especially with the communication-constrained conditions.
When the relative measurements obtained by onboard measurement devices are available,
an effective AFTCC scheme is particularly challenging. For this reason, this paper will
develop an AFTCC method for multi-QUAVs based on relative output information. The
key innovations of this paper can be summarized as follows:

1. This paper conducts research on consensus-based formation control for multi-
QUAVs with the relative measurements. An active fault-tolerant cooperative control frame-
work against actuator faults is proposed, which consists of a decoupled fault estimation
observer and an active fault-tolerant cooperative control law.

2. Within the fault estimation observer design for the decoupled relative QUAV system,
incorporating a proportional-integral mechanism ensures quick detection of time-varying
faults and reproduces the magnitudes of the fault. The convergence of this proposed
decoupled fault estimation observer is proven via linear matrix inequality (LMI) constraints
and exhibits H∞ performance.

3. An active fault-tolerant cooperative control law is proposed to handle actuator faults.
The AFTCC method quickly compensates for the time-varying faults and prevents fault
propagation within the multi-QUAVs formation system, thereby enhancing the robustness
of the multi-QUAV system.

2. Preliminaries
2.1. Graph Theory

A multi-QUAV system is composed of N QUAV, and the interaction of the multi-
QUAVs can be described by an undirected graph G = (V , E), where V = {vi|i = 1, · · · , N}
and E ⊆ V × V denote the node set and edge set, respectively. The adjacent matrix of G
is A =

[
aij

]
∈ RN×N and aij = 0 , if

(
vi, vj

)
/∈ E ; aij = 1, otherwise. aij = 1 indicates

that the i-th QUAV can receive information from the j-th QUAV, and Ni is the set of all
neighboring nodes. The degree of the i-th node is di = ∑N

j=1 aij and the degree matrix
D = diag(d1, d2, · · · , dN). The Laplacian matrix of the graph G is defined as follows:

Lij =

di if i = j,

−aij if i ̸= j.

Lemma 1 ([29]). For a connected undirected graph G , the symmetric matrix L is rank deficient
and the eigenvalues of L can be written as λN > λN−1 > · · · > λ2 > λ1 = 0. Furthermore ,
there exists an orthogonal matrix N such that NTLN = diag(λN , · · · , λ2, λ1).

2.2. H∞ Theory

In robust control theory, the H∞ norm of a multiple-input multiple-output (MIMO)
system with transfer function matrix G(s) is defined as the peak of the maximum singular
value of the frequency response [30], i.e., ∥G(s)∥H∞

= supω∈R σ
(
G(jω)

)
. For a linear time-

invariant (LTI) system, the infinity-norm of this system can be equivalently defined as the in-
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duced L2-gain and proven via Parseval’s identity in [31], i.e., ∥G(s)∥H∞
= supω(t) ̸=0

∥z(t)∥2
∥ω(t)∥2

,
where ω(t) is the exogenous input signal and z(t) is the regulated output signal. The L2-
gain of a MIMO system is defined as the supremum of the ratio between the system
input–output’s L2 norm. The L2 norm of any signal f (t) can be calculated as follows:

∥ f (t)∥2 =

√∫ ∞

0
f T(t) f (t)dt (1)

Lemma 2 ([32]). The LTI system is asymptotically stable and converges with a stability margin
exponent α > 0 if and only if there exists a matrix X ∈ Rn×n such that

ATX + XT A + 2αX < 0

Lemma 3 ([33]). For a given symmetric matrix Ω =

[
P Q

QT R

]
, the following conditions are

equivalent:
i. Ω < 0 .
ii. R < 0 and P − QR−1Q < 0 .

3. Active Fault-Tolerant Cooperative Control Scheme Design
3.1. Observable Relative Multi-QUAV System

This section mainly considers leader-following multi-QUAVs where communication is
strictly limited and only relative measurements are accessible. Based on the aforementioned
context, this subsection will conduct linearization of QUAV and establish an observable
model for a multi-QUAV system.

3.1.1. Linearizing Quadrotor UAV Model

The QUAV has a simple geometric structure as shown in Figure 1, with four motors
symmetrically distributed around the fuselage. To balance the torques, the adjacent motors
rotate in opposite directions to generate thrust. Furthermore, the inertial frame and the
body frame are defined to describe the motion of a 6-DOF rigid body.

Figure 1. Structure of the Quadrotor UAV.
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The dynamics of QUAV have been explored by many researchers as described in [34].
For a multi-QUAV system with N + 1 QUAVs, the dynamic model of the i-th QUAV can be
expressed as follows:

ẍi = (cos ϕi sin θi cos ψi + sin ϕi sin ψi)
U1,i
m − kdx ẋi

m ,

ÿi = (cos ϕi sin θi sin ψi − sin ϕi cos ψi)
U1,i
m − kdy ẏi

m ,

z̈i = cos ϕi cos θi
U1,i
m − kdz żi

m − g,

ϕ̈i = θ̇iψ̇i
(Iy−Ix)

Ix
+

U2,i
Ix

− Lkϕ
ϕ̇i
Ix

,

θ̈i = ϕ̇iψ̇i
(Iz−Ix)

Iy
+

U3,i
Iy

− Lkθ
θ̇i
Iy

,

ψ̈i = θ̇iϕ̇i
(Ix−Iy)

Iz
+

U4,i
Iz

− Lkψ
ϕ̇i
Iz

.

(2)

where coordinates (xi, yi, zi) and (ϕi, θi, θi) represent the position and the Euler angles of
roll, pitch, and yaw of i-th QUAV, respectively; m is the mass of QUAV, g denotes the
gravitational acceleration, L is the distance between the mass center of QUAV and the
center of the rotor, and kdx, kdy, kdz, kϕ, kθ , kψ are the drag coefficients in and around three
directions, respectively; Ix, Iy, Iz are the moments of inertia along three axes, respectively.

The inputs U1,i, U2,i, U3,i, U4,i are the i-th QUAV’s total lift force and moments about the
roll, pitch, and yaw axes, respectively. The system inputs of the i-th QUAV are as follows:

U1,i = F1,i + F2,i + F3,i + F4,i,

U2,i = L(F3,i − F4,i),

U3,i = L(F1,i − F2,i),

U4,i = Ky(F1,i + F2,i − F3,i − F4,i).

(3)

where Ky is the thrust-to-moment scaling factor, and F1,i, F2,i, F3,i, F4,i denote the individual
thrusts generated by the four rotors of the i-th QUAV.

Assumption 1. The multi-QUAV system operates in hovering mode (U1,i ≈ mg) and exe-
cutes slow translational and rotational motions such that all drag force can be neglected, and the
ϕ, θ, ψ angles of each QUAV are small such that all Euler angles and their time derivatives are
approximately zero.

Based on Assumption 1, the nonlinear dynamic model of the i-th QUAV can be
simplified into a linear time-invariant system as follows:

ẍi = θg,

ÿi = −ϕg,

z̈i =
U1,i
m − g,

ϕ̈i =
U2,i
Ix

,

θ̈i =
U3,i
Iy

,

ψ̈i =
U4,i
Iz

.

(4)

The MIMO state-space form of the linearized dynamic system of a QUAV can be
written as follows:  ξ̇i(t) = Aξi(t) + Bui(t) + Ggg,

zi(t) = ∑j∈Ni
C(ξi(t)− ξ j(t)).

(5)
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where ξi denotes [xi ẋi yi ẏi zi żi ϕi ϕ̇i θi θ̇i ψi ψ̇i]
T ∈ R12×1, ui represents [F1,i F2,i F3,i F4,i]

T ∈
R4×1, and Ni ⊂ {0, 1, 2, · · · , N} \ {i} is the QUAVs with which the i-th QUAV interacts.
zi(t) ∈ Rp×1 is the sum of relative measurements of the i-th QUAV. The matrices A, B, and
Gg can be defined as follows:

A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



, B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m

1
m

1
m

1
m

0 0 0 0
0 0 L

Ix − L
Ix

0 0 0 0
L
Iy − L

Iy 0 0

0 0 0 0
Ky
Iz

Ky
Iz −Ky

Iz −Ky
Iz



, Gg =



0
0
0
1
0
0
0
0
0
0
0
0


During the actual flight mission, the system may experience both time-varying faults

and external disturbances due to motors overheating, leading to aging and other unex-
pected physical parameters. Therefore, the dynamic model of the i-th QUAV with external
disturbances and actuator faults can be written as follows: ξ̇i(t) = Aξi(t) + Bui(t) + Ddi(t) + E fi(t) + Ggg,

zi(t) = ∑j∈Ni
C(ξi(t)− ξ j(t)).

(6)

where di(t) ∈ Rd×1 and fi(t) ∈ Rr×1 are the disturbance signal and fault signal, respectively.
Moreover, the external disturbance signal and time-varying fault signal are bounded, i.e.,
∥ fi(t)∥ < β f , ∥ui(t)∥ < βu for i = 1, 2, · · · , N, where β f and βu are positive known
constants. The matrix are C ∈ Rp×12, D ∈ R12×d, and E ∈ R12×r.

3.1.2. Observable Subsystem of the Multi-QUAV System

The aim of this paper is to design an AFTCC law for a leader-following multi-QUAV
system using the relative measurements, with the primary objective of maintaining collabo-
rative stability. The multi-QUAVs operate under communication bandwidth limitations,
in which only relative output information is accessible to each QUAV. Consequently, a
collection of N + 1 QUAVs is considered as a total system. For that purpose, the following
assumptions are needed.

Assumption 2. The communication topology between the leader and followers is limited and
unidirectional, but the information exchange among followers is bidirectional. Furthermore, the
leader QUAV is fault-free throughout the flight such that f0(t) ≡ 0, and the dynamic model can be
defined as follows:  ξ̇0(t) = Aξ0(t) + Bu0(t) + Dd0(t) + Ggg,

y0(t) = Cξ0.
(7)

Assumption 3. The control input matrix B and fault distribution matrix E satisfy rank([B E]) =
rank(B), implying that (In − BB†)E = 0, i.e., the effect of actuator faults belongs to the actuation
space Im(B).

The overall multi-QUAV system is given as follows:
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 ξ̇(t) = (IN+1 ⊗ A)ξ(t) + (IN+1 ⊗ B)u(t) + (IN+1 ⊗ D)d(t) + (IN+1 ⊗ E) f (t) + (IN ⊗ Gg)g,

z(t) = (L⊗ C)ξ(t).
(8)

where ξ(t) = [ξ0(t), ξ1(t), · · · , ξN(t)]T, u(t) = [u0(t), · · · , uN(t)]T, d(t) = [d0(t), · · · , dN(t)]T,
f (t) = [0, f1(t), · · · , fN(t)]T , and z(t) = [z0(t), z1(t), · · · , zN(t)]T .

According to [35], the observability matrix of system (8) has a non-zero null space, so
certain subspaces in the state vector are not observable. To extract an observable subspace,
define a coordinate transformation ξ → T1ξ = ξ

′
, where T1 = N−1 ⊗ In. Let N be a

nonsingular matrix:

N−1 =

[
1 0N

−1N IN

]
where 1N ∈ RN×1 is all non-negative ones, and each element of 0N ∈ R1×N is zero.

Applying the transformation T1 to the state vector:

ξ
′
(t) = Col(ξ0(t), ξ̄(t)) = [ξT

0 (t), ξ̄T
1 (t), · · · , ξ̄T

N(t)] (9)

where ξ̄i(t) = ξi(t)− ξ0(t), for i ∈ 1, 2, · · · , N, and ξ̄(t) = (ξ̄T
1 (t), · · · , ξ̄T

2 (t), · · · , ξ̄T
N(t)).

The transformation (A, B, C, D, E) → (Ā, B̄, C̄, D̄, Ē) is defined, where

A1 = T1(IN+1 ⊗ A)T−1
1 = (IN ⊗ A),

B1 = T1(IN+1 ⊗ B) = (N−1 ⊗ B) = (IN ⊗ B)(N−1 ⊗ Im),

D1 = T1(IN+1 ⊗ D) = (N−1 ⊗ D) = (IN ⊗ D)(N−1 ⊗ Id),

E1 = T1(IN+1 ⊗ E) = (N−1 ⊗ E) = (IN ⊗ E)(N−1 ⊗ Ir),

Gg1 = T1
(

IN+1 ⊗ Gg
)
= (N−1 ⊗ Gg) = (IN ⊗ Gg)(N−1 ⊗ I12),

C1 = (L⊗ C)T−1
1 = (L⊗ C)(N ⊗ In) = (LN ⊗ C).

(10)

This transformation T1 yields a new system representation. ξ̇ ′(t) = A1ξ ′(t) + B1u(t) + D1d(t) + E1 f (t) + Gg1g,

z′(t) = C1ξ ′(t).
(11)

To decouple the relative sensing signal, define the scaling transformation Z1 = (NT ⊗
Ip) on the vector z0(t) to create the following:

z0(t) = (NT ⊗ Ip)z′(t) = (NT ⊗ Ip)(LN ⊗ C)ξ ′(t) = (NTLN ⊗ C)ξ ′(t) (12)

Based on Assumption 2 and the row-sum-equal-to-zero property of the Laplacian
matrix L, it can be checked easily:

NTLN =

[
0 q1×N

0N×1 L̃

]
(13)

where the upper-left element is the constant 0 due to the row-sum-equal-to-zero property
of L, and q1×N is an appropriate vector. L̃ ∈ RN×N is a submatrix of the Laplacian matrix
L obtained by setting the first column and row to zero.

The scaled relative output measurements in the new coordinate system are

z1(t) = (

[
0 q1×N

0N×1 L̃

]
⊗ C)

[
ξ0(t)
ξ̄(t)

]
(14)
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From the definition (10), one has the following:

B1u(t) = (IN+1 ⊗ B)(N−1 ⊗ Im)u(t) = (IN+1 ⊗ B)Col(u0(t), ū(t))︸ ︷︷ ︸
u′

,

D1d(t) = (IN+1 ⊗ D)(N−1 ⊗ Id)d(t) = (IN+1 ⊗ D)Col(d0(t), d̄(t))︸ ︷︷ ︸
d′

,

E1 f (t) = (IN+1 ⊗ E)(N−1 ⊗ Ir) f (t) = (IN+1 ⊗ E)Col( f0(t), f̄ (t))︸ ︷︷ ︸
f ′

,

Gg1g = (IN+1 ⊗ Gg)(N−1 ⊗ I12)g = (IN+1 ⊗ Gg)Col(g, 0, · · · , 0)︸ ︷︷ ︸
N

.

(15)

The observable subsystem can be extracted from system (11) by considering the last
N × n rows of the partitioned structure of ξ ′, u, and z′, and the observable subsystem can
be defined as follows: ˙̄ξ(t) = (IN ⊗ A)ξ̄(t) + (IN ⊗ B)ū(t) + (IN ⊗ D)d̄(t) + (IN ⊗ E) f̄ (t)

z̄(t) = (L̃ ⊗ C)ξ̄(t)
(16)

Let Z2 = (L̃−1 ⊗ Ip), and scale z̄(t) by using Z2 to create the following:

z̃(t) = (L̃−1 ⊗ Ip)z̄(t) = (L̃−1 ⊗ Ip)(L̃ ⊗ C)x̄(t) = (IN ⊗ C)x̄(t) (17)

Thus, the decoupled system of the i-th QUAV can be written as follows: ˙̄ξi(t) = Aξ̄i(t) + Būi(t) + Dd̄i(t) + E f̄i(t)

z̃i = Cξi(t)
(18)

for i = 1, 2, · · · , N.

3.2. Relative-Output-Based Fault Estimation Observer

After using transformation and scaling, the decoupled dynamic system (18) can be
used as a basis for the design of adaptive observers for reconstruction of the time-varying
fault signal fi(t).

Define fu,i(t) = B†E fi(t)− u0(t), and the system (18) can be written as follows:

˙̄ξi(t) = Aξ̄i(t) + Bui(t) + Dd̄i(t) + B fu,i(t)

The following observer is designed.
˙̂ξi(t) = Aξ̂i(t) + Bui(t) + B f̂u,i(t)− G(ẑi(t)− z̃i(t)),

ẑi(t) = Cξ̂i(t),
˙̂fu,i(t) = f̂u,i(t) + S(ẑi(t)− z̃i(t)) + R( ˙̂zi(t)− ˙̃zi(t)).

(19)

where ξ̂i(t) ∈ R12×1, ẑi(t) ∈ Rp×1, and f̂i(t) ∈ Rr×1 are state estimation, external measure-
ment estimation, and time-varying fault estimation of the i-th QUAV with integration of
the leader’s control input, respectively. G ∈ R12×p is the gain matrix of the state estimation
equation, and S ∈ Rr×p and R ∈ Rr×p are the gain matrices of the fault estimation equation.
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Let the state estimation error vector ex,i = ξ̂i(t) − ξ̄i(t), the relative outputs error
vector ez,i = ẑi(t)− z̃i(t), and fault estimation error vector e f ,i = f̂u,i(t)− fu,i(t), where
f̂u,i(t) = B†E f̂i(t)− û0(t), one has

ėx,i(t) =
˙̂ξi(t)− ˙̄ξi(t)

= Aξ̂i(t) + Bui(t) + B f̂u,i(t)− G(ẑi(t)− z̃i(t))

− (Aξi(t) + Bui(t) + Dd̄i(t) + B f̄u,i(t))

= Aex,i(t) + Be f ,i(t)− Dd̄i(t)

(20)

and

ė f ,i(t) =
˙̂fu,i(t)− ḟu,i(t)

= f̂u,i(t) + SCex,i(t) + RCėx,i(t)− ḟu,i(t) + ḟu,i(t)− ḟu,i(t)

= (SC + RCA + RCGC)ex,i(t) + (RCE + Ir)e f ,i(t)− RCDd̄i(t) + fu,i(t)− ḟu,i(t)

(21)

By combining Equations (20) and (21), the error dynamics of the augmented system
can be derived as follows:

ėi(t) = (Â + ĜĈ + R̂ĈÂ)ei(t) + [ Î R̂ĈD̂ + D̂]ωi(t) (22)

where Â =

[
A E

0r×12 Ir

]
, Ĝ =

[
−G

S − RCG

]
, R̂ =

[
012×p

R

]
, Ĉ =

[
C 0p×r

]
, D̂ =

[
−D
0r×d

]
,

Î =

[
012×r 012×r

Ir −Ir

]
, ei =

[
ex,i(t)
e f ,i(t)

]
, and wi =

 fu,i(t)
ḟu,i(t)
d̄i(t)

.

Theorem 1. The fault estimation observer (22) is asymptotically stable and converges with a
stability margin exponent α > 0 with H∞ performance of γ if and only if there exists a positive
definite symmetric matrix P such that the following LMI holds:

Ω =


Ω11 PÎ Ω13 I12+r

∗ −γI2r 0 0
∗ ∗ −γId 0
∗ ∗ ∗ −γI12+r

 < 0 (23)

Ω11 + 2αP < 0 (24)

where Ω11 = PÂ + ÂT P + Q1Ĉ + ĈTQ1 + Q2ĈÂ + ÂT ˆCTQ2, Ω13 = Q2ĈD̂ + PD̂, where
Q1, Q2 ∈ R(12+r)×p, and ∗ denotes the symmetric item in a symmetric matrix.

Proof. The following Lyapunov function is considered.

Vi(t) = eT
i (t)Pei(t) (25)

then

V̇i(t) = ėT
i (t)Pei(t) + eT

i (t)Pėi(t)

= eT
i (t)

(
ÂT P + PÂ + ĈT L̂T P + PL̂Ĉ + ÂTĈT R̂T P + PR̂ĈÂ

)
ei(t)

+ 2eT
i (t)

[
PÎ P(R̂ĈD̂ + D̂)

]
ωi(t)

(26)
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The performance index is defined as follows:

Ji(t) = V̇i(t) +
1
γ

eT
i (t)ei(t)− γωT

i (t)ωi(t)

=
[
eT

i (t) ωT
i (t)

]
Π

[
ei(t)
ωi(t)

] (27)

where γ is a scalar, and Π can be defined as follows:

Π =

PÂ + ÂT P + PL̂Ĉ + ĈT L̂T P + PR̂ĈÂ + ÂTĈT R̂T P + 1
γ I12+r PÎ PL̂ĈD̂ + PD̂

∗ −γI2r 0
∗ ∗ −γId

 (28)

For any nonzero ωi(t) ∈ L2[0, ∞), V̇i(t) + 1
γ eT

i (t)ei(t)− γωT
i (t)ωi(t) < 0 if Π < 0.

Under the conditions ei(0) = 0,
∫ t

0 Ji(τ)dτ ≤ 0 and Vi(t) ≥ 0, the following equation
can be proven.

∫ t

0
Ji(τ)dτ =

∫ t

0
V̇i(τ)dτ +

1
γ

∫ t

0
eT

i (τ)ei(τ)dτ − γ
∫ t

0
ωT

i (τ)ωi(τ)dτ

= Vi(t) +
1
γ

∫ t

0
eT

i (τ)ei(τ)dτ − γ
∫ t

0
ωT

i (τ)ωi(τ)dτ

≥ 1
γ

∫ t

0
eT

i (τ)ei(τ)dτ − γ
∫ t

0
ωT

i (τ)ωi(τ)dτ

(29)

Let t → ∞ in (29), it follows that∫ ∞

0
eT

i (τ)ei(τ)dτ≤γ2
∫ ∞

0
ωT

i (τ)ωi(τ)dτ (30)

Therefore, the observer error ei(t) satisfies

∥ei(t)∥2≤γ∥ωi(t)∥2 (31)

ensuring that the H∞ norm of the fault observer is less than γ.
Define Q1 = PĜ, Q2 = PR̂ with Q1, Q2 ∈ R(12+r)×p and applying the Shur Comple-

ment Lemma 3 to Π (28) implies that Ω < 0 if and only if Π < 0.

Ω =


PÂ + ÂT P + Q1Ĉ + ĈTQ1 + Q2ĈÂ + ÂTĈTQ2 PÎ Q2ĈD̂ + PD̂ I12+r

∗ −γI2r 0 0
∗ ∗ −γId 0
∗ ∗ ∗ −γI12+r

 (32)

According to Lemma 2, if Equation (24) holds, the fault estimation error in system (22)
exhibits exponential convergence with an α stability margin.

3.3. Active Fault-Tolerant Cooperative Controller

In this subsection, an AFTCC law is designed to simultaneously compensate for
time-varying faults and ensure formation stability of the leader-following multi-QUAV
system. According to Assumption 2, only the relative measurements are permitted for
communication among QUAVs. Therefore, the coordinates (x̄d,i, ȳd,i, z̄d,i) are defined as the
desired relative location between the i-th follower QUAV and the leader.
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The leader-following formation achieves stability if

lim
t→∞

∥ξi(t)− ξ0(t)∥ = ξ̄d,i i = 1, 2, · · · , N (33)

where ξ̄d,i = [x̄d,i, 0, ȳd,i, 0, z̄d,i, 0, 0, 0, 0, 0, 0, 0]T is the desired relative position of the i-th
QUAV from the leader.

For the i-th QUAV, the relative measurements εi(t) can be written as

εi(t) =
N

∑
j=1

ãijC((ξ̄d,i − ξ̄d,j)− (ξi(t)− ξ j(t))) + wiC(ξ̄d,i − (ξi(t)− ξ0(t))) (34)

where ãi,j is the element of the adjacency matrix Ã and L̃ = D̃ − Ã with D̃ being the degree
matrix; W = diag(w1, w2, · · · , wN), where wi = 1 if the i-th follower QUAV and the leader
are directly connected; wi = 0, otherwise.

Based on Assumption 3, there exists a pseudo-inverse matrix B† ∈ Rm×12 such that
(I12 − BB†)E = 0 and the controller can be developed as follows: ui(t) = hi(t)Kεi(t)− f̂u,i(t)

hi(t) = τiε
T
i (t)Γεi(t)

(35)

where hi(t) denotes the time-varying coupling weight of the i-th QUAV, and τi is a positive
constant. K ∈ Rm×12 and Γ ∈ Rp×p are gain matrices, and f̂u,i(t) represents the deviation
between the fault f̂i(t) estimation and the leader’s input estimation û0(t).

According to the input Equation (35), the decoupled dynamic model (18) of the i-th
QUAV can be defined as follows:

˙̄ξi(t) = Aξ̄i(t) + hi(t)BKεi(t)− B(B†E f̂i(t)− ū0(t))− Bu0(t) + Dd̄i(t) + E f̄i(t)

= Aξ̄i(t) + hi(t)BKC(
N

∑
j=1

âij((ξ̄d,i − ξ̄d,j)− (ξ̄i(t)− ξ̄ j(t))) + wi(ξ̄d,i − ξ̄i(t)))

− Bζu,i(t) + Dd̄i(t) + Eζ f ,i(t)

(36)

where ζu,i = u0(t)− ū0(t) and ζ f ,i = fi(t)− f̂i(t).
Similar to the construction of system (8), we define eξ,i = ξ̄d,i(t)− ξ̄i(t) and derive the

overall error dynamics (36) as follows:

ėξ(t) = (IN ⊗ A − HL̃ ⊗ BKC)eξ(t) + (IN ⊗ B)ζu(t)

− (IN ⊗ D)d̄(t)− (IN ⊗ E)ζ f

− (IN ⊗ A)ξ̄d(t),

ḣi(t) = τi
[
l̃ijCeξ,j(t)

]TΓ
[
l̃ijCeξ,j(t)

]
(37)

where l̃ij is the element of the Laplacian matrix L̃ ∈ RN×N and H = diag(h1, h2, · · · , hN);
eξ(t) = [eT

ξ,1(t), eT
ξ,2(t), · · · , eT

ξ,N(t)]
T . ζ f (t) and ζu(t) denote [ζ f ,1(t), ζ f ,2(t), · · · , ζ f ,N(t)]T

and [ζu,1(t), ζu,2(t), · · · , ζu,N(t)]T , respectively.
Define T = [IN ⊗ B,−IN ⊗ D,−IN ⊗ E,−IN ⊗ A] and η(t) = [ζT

u (t), d̄T(t), ζT
f (t), ξ̄T

d (t)]
T,

where ζT
u (t), d̄T(t), ζT

f (t) and ξ̄T
d (t) are bounded. ėξ(t) = (IN ⊗ A − HL̃ ⊗ BKC)eξ(t) + Tη(t)

ḣi(t) = τi
[
l̃ijCeξ,j(t)

]TΓ
[
l̃ijCeξ,j(t)

] (38)
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Theorem 2. For given scales γ > 0 and β > 0, the error dynamic (38) is asymptotically stable and
the H∞ norm of the error system is less than γ if there exists a positive definite symmetric matrix X
such that the following LMI holds:

Ξi =



Ξi,11 λiXB −λiXD −λiXE −λiXA I12

∗ −γIm 0 0 0 0
∗ ∗ −γId 0 0 0
∗ ∗ ∗ −γIr 0 0
∗ ∗ ∗ ∗ −γI12 0
∗ ∗ ∗ ∗ ∗ −γI12


(39)

where Ξi,11 = λi(XA + ATX) − 2βλ2
i QC, Q = CTΓ = XBK with Q ∈ R12×12 and λi for

i = 1, 2, · · · , N are the eigenvalues of L̃. ∗ denotes the symmetric item in this matrix.

Proof. Considering the following Lyapunov function:

V(t) = eT
ξ (t)(L̃ ⊗ X)eξ(t) +

N

∑
j=1

(hi(t)− β)2

τi
(40)

The derivative of V(t) in (40) is derived as follows:

V̇(t) = eT
ξ (t)

[
L̃ ⊗ (XA + ATX)

]
eξ(t) + 2eT

ξ (t)(L̃ ⊗ X)Tη(t)

− 2eT
ξ (t)(L̃HL̃ ⊗ XBKC)eξ(t) + 2

N

∑
i=1

hi(t)(
N

∑
j=1

l̃ijCTeT
ξ,j(t))Γ(

N

∑
j=1

l̃ijCeξ,j(t))

− 2β
N

∑
i=1

(
N

∑
j=1

l̃ijCTeT
ξ,j(t))Γ(

N

∑
j=1

l̃ijCeξ,j(t))

(41)

To simplify the expression by reducing the quadratic terms in Equation (41), we
introduce the constraint CTΓ = XBK = Q. The quadratic form of the double summation
can be expressed as follows:

2
N

∑
i=1

hi(t)(
N

∑
j=1

l̃ijCTeT
ξ,j(t))Γ(

N

∑
j=1

l̃ijCeξ,j(t)) = 2eT
ξ (t)(L̃HL̃ ⊗ CTΓC)eξ(t) (42)

Then, the V̇(t) can be simplified as follows:

V̇(t) = eT
ξ (t)

[
L̃ ⊗ (XA + ATX)

]
eξ(t) + 2eT

ξ (t)(L̃ ⊗ X)Tη(t)

− 2βeT
ξ (t)(L̃2 ⊗ CTΓC)eξ(t)

= eT
ξ (t)

[
L̃ ⊗ (XA + ATX)− 2βL̃2 ⊗ QC

]
eξ(t) + 2eT

ξ (t)(L̃ ⊗ X)Tη(t)

(43)

Similar to the proof from (26) to (32), the error dynamics (39) are asymptotically stable
with H∞ performance less than γ if the following holds.

L̃ ⊗ (XA + ATX)− 2βL̃2 ⊗ QC L̃ ⊗ XB −L̃ ⊗ XD −L̃ ⊗ XE L̃ ⊗ XA IN ⊗ I12

∗ −γIN ⊗ Im 0 0 0 0
∗ ∗ −γIN ⊗ Id 0 0 0
∗ ∗ ∗ −γIN ⊗ Ir 0 0
∗ ∗ ∗ ∗ −γIN ⊗ I12 0
∗ ∗ ∗ ∗ ∗ −γIN ⊗ I12


< 0 (44)
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Based on Lemma 1, there exists symmetric matrix V such that

Θ = VT L̃V (45)

where Θ = diag(λ1, λ2, · · · , λN).
Define Ṽ = diag(VT ⊗ I12, VT ⊗ Im, VT ⊗ Id, VT ⊗ Ir, VT ⊗ I12, VT ⊗ I12), let matrix in

(44) left multiplying Ṽ and right multiplying ṼT , and we can derive

Θ ⊗ (XA + ATX)− 2βΘL̃ ⊗ QC Θ ⊗ XB −Θ ⊗ XD −Θ ⊗ XE Θ ⊗ XA IN ⊗ I12

∗ −γIN ⊗ Im 0 0 0 0
∗ ∗ −γIN ⊗ Id 0 0 0
∗ ∗ ∗ −γIN ⊗ Ir 0 0
∗ ∗ ∗ ∗ −γIN ⊗ I12 0
∗ ∗ ∗ ∗ ∗ −γIN ⊗ I12


< 0 (46)

Applying appropriate matrix transformation, the matrix (46) can be transformed into

Ξ =


Ξ1 0 · · · 0
0 Ξ2 · · · 0
...

...
. . .

...
0 0 · · · ΞN

 < 0 (47)

Ξ < 0 if and only if Ξi < 0, for i = 1, 2, · · · , N.

4. Simulation
In this section, the effectiveness of the fault estimation observer (19) and AFTCC law

(35) is demonstrated through simulation studies. The simulation is organized into four
parts: experimental setup, fault-tolerant control performance, performance analysis, and
comparative study.

4.1. Experimental Conditions

A leader-following multi-QUAV system with one leader and three followers is
considered, where each QUAV is equipped with relative measurement devices. The
system parameters are set as follows: L = 0.2 m, Ky = 4 m, m = 1.42 kg, g = 9.81 m/s2,
Ix = 0.03 kg · m2, Iy = 0.03 kg · m2, and Iz = 0.04 kg · m2. The matrices are configured
as D = 0.1 ∗ 112 and E = B, considering bounded actuator faults in the four brush-
less motors. The output matrix C = I12. External disturbances are simulated using
sinusoidal signals.

Each follower QUAV can interact with neighboring follower QUAVs; however, only
one follower QUAV is granted a unidirectional communication link to the leader as shown
in Figure 2. Therefore, the communication topology among the four QUAVs can be de-
scribed as follows:

L =


0 0 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 (48)
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Figure 2. Communication network topology.

Assuming that QUAVs are operating in extreme flight conditions, where each follower
QUAV is subjected to time-varying actuator faults at distinct time instants, the actuator
faults are modeled as follows. A step signal fault occurs in the 3rd motor of follower
QUAV 1 at t = 50 s.

f1,3(t) =

0 t < 50 s

5 t ≥ 50 s
(49)

Subsequently, a step signal fault is introduced into the 2nd motor of follower QUAV 2
at t = 100 s.

f2,2(t) =

0 t < 100 s

8 t ≥ 100 s
(50)

Later in the following QUAV 3, the fault situation of the 1st and 4th motor is

f3,1(t) =

0 t < 150 s

20 sin(0.1t) t ≥ 150 s
, f3,4(t) =

0 t < 150 s

20 sin(0.1t) t ≥ 150 s
(51)

After applying transformation and scaling, the decoupled system in the form of (18)
can be derived, and the fault estimation observer analogous to (19) for each decoupled
system can be obtained. The observer gain matrix and controller gain matrix can be
obtained via LMI optimization.

For the fault estimation observer, the gain matrices are

G =


0.0475 −6.8729 0.0475 −6.8719 0.0475 −7.0242 1.3987 −6.8675 −1.3887 −6.9494 0.0475 −6.8789
0.0249 −4.4976 0.0250 −4.4972 0.0250 −4.6639 0.9079 −4.4956 −0.9136 −4.4273 0.0249 −4.5016
0.0467 −6.7937 0.0467 −6.7927 0.0467 −6.9458 1.3819 −6.8632 −1.3729 −6.7971 0.0468 −6.7901
0.0242 −4.4185 0.0242 −4.4181 0.0242 −4.5856 0.8915 −4.3415 −0.8983 −4.4199 0.0242 −4.4127

 (52)

R =


6.9406 0.1905 6.9416 0.0922 6.7891 −34.2872 6.9456 0.0280 6.8663 −7.2000 6.9369 −0.2435
4.5188 0.0535 4.5192 0.1104 4.3524 −34.2660 4.5208 0.0436 4.5937 7.2750 4.5174 −0.2387
6.8692 0.1945 6.8702 0.1070 6.7170 −34.2373 6.8005 −7.2735 6.8661 −0.0274 6.8748 0.2390
4.4560 0.0618 4.4564 0.1293 4.2891 −34.2396 4.5298 7.2015 4.4551 −0.0431 4.4599 0.2438

 (53)

S = 103 ×


0.6643 −0.3228 0.6643 −0.3288 0.6383 −1.9679 0.0744 −0.3332 −0.0610 −0.6786 0.6638 −0.3442
0.4325 −0.2134 0.4325 −0.2116 0.4051 −1.8511 0.0483 −0.2157 −0.0394 0.1292 0.4322 −0.2278
0.6574 −0.3189 0.6575 −0.3244 0.6314 −1.9618 0.0734 −0.6778 −0.0602 −0.3325 0.6580 −0.3174
0.4264 −0.2103 0.4265 −0.2079 0.3991 −1.8471 0.0479 0.1286 −0.0391 −0.2173 0.4269 −0.2020

 (54)

For the AFTCC law, the parameters are β = 3, τi = 0.01, for i = 1, 2, · · · , N.



Drones 2025, 9, 699 15 of 21

K =


0.0099 0.0858 0.0005 −0.0007 0.1843 0.4224 0.0008 −0.0004 0.0964 0.5788 0.0432 0.2789
−0.0086 −0.0845 0.0009 −0.0006 0.1858 0.4222 0.0013 −0.0001 −0.0952 −0.5795 0.0431 0.2781
0.0007 0.0005 −0.0061 −0.0879 0.1852 0.4221 0.1201 0.5782 0.0007 0.0001 −0.0417 −0.2789
0.0014 0.0012 0.0078 0.0869 0.1851 0.4227 −0.1181 −0.5779 0.0007 0.0004 −0.0408 −0.2791

 (55)

Γ =



67.7650 16.2860 0.0243 −0.0565 0.0007 −0.0002 0.0431 −0.0467 0.9261 −1.5739 0.0005 −0.0049
12.1037 70.6070 −0.0852 −0.0278 −0.0430 −0.0334 −0.0123 −0.0234 2.3345 −2.9932 −0.0418 −0.0172
−0.0286 0.0090 67.7543 16.6981 −0.0023 −0.0257 0.1377 1.1740 −0.0041 −0.0621 0.0065 −0.0614
−0.0311 −0.0189 11.6521 70.6005 −0.0282 −0.0124 −3.8572 3.2429 −0.0349 −0.0138 −0.0604 −0.0183
0.0077 −0.0209 0.0020 −0.0621 69.0785 8.6184 0.0361 −0.0937 −0.0077 0.0242 −0.0090 −0.0574
−0.0401 −0.0290 −0.0294 −0.0798 9.9525 64.7698 0.0092 −0.0476 −0.0282 −0.0793 −0.0051 −0.0636
−0.0019 −0.0410 −0.9990 −0.4592 0.0095 −0.0198 53.7888 3.6454 −0.0148 −0.0208 0.0163 −0.0665
−0.0470 −0.0311 1.2286 −0.2129 −0.0065 −0.0447 12.0085 69.6938 −0.0058 −0.0259 −0.0731 0.0057
−0.0113 1.8854 0.0069 −0.0301 0.0217 0.0025 0.0448 −0.0592 53.7644 6.2425 0.0084 −0.0399
−1.0122 −0.1265 −0.0257 −0.0286 −0.0982 0.0098 −0.0374 −0.0162 9.4300 69.7090 0.0044 0.0493
0.0017 −0.0285 −0.0146 −0.0382 0.0149 −0.0423 0.0275 −0.0304 −0.0020 −0.0866 67.4874 15.7348
−0.0695 −0.0329 −0.0267 −0.0212 −0.0200 −0.0120 0.0084 −0.0607 −0.0140 −0.0875 13.6255 90.0328



(56)

4.2. Fault-Tolerant Control Performance

This subsection demonstrates the effectiveness of the proposed AFTCC method
through simulation of a formation transition task. The multi-QUAV system adopts a
linear formation configuration with adjacent QUAVs separated by 5 m. The leader QUAV
is controlled by a PID controller and maintains a constant velocity Vx = 2 m/s along the
x-axis. The solver used in the simulation is odes15.

The trajectory of the multi-QUAVs in the inertial frame is shown in Figure 3.

Figure 3. The trajectory of the multi-QUAVs.

The simulation results are presented in the following figures.
Figure 4 illustrates the relative position of the follower QUAVs under multiple faults

conditions, without the active fault-tolerant control law (35) proposed by this paper. It
is evident that a single fault in one of the follower QUAVs causes the collapse of the
consensus-based formation.

Figures 5–7 show fault estimation results of follower QUAVs based on the fault
estimation observer (19). As shown in Figures 5–7, the fault estimation observer can
accurately estimate the time-varying actuator faults and the inputs of the leader QUAV.
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Then, the estimation of actuator faults and inputs of the leader is used in the active fault-
tolerant control law (39), and the consensus-based formation results of multi-QUAVs is
shown as follows.
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Figure 4. Relative position of QUAVs under non-fault-tolerant control.
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Figure 5. The fault reconstruction of QUAV 1.
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Figure 6. The fault reconstruction of QUAV 2.
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Figure 7. The fault reconstruction of QUAV 3.

From Figure 8, it is evident that the control law (39) can accurately keep a consensus-
based formation by quickly reconstructing the fault signals via the fault estimation observer.
Comparing Figure 4 to Figure 8 demonstrates the effectiveness of the AFTCC scheme
proposed by this paper.
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Figure 8. Relative position of QUAVs under fault-tolerant control.

4.3. Performance Analysis

To further quantify the formation tracking performance and numerically validate the
effectiveness of the proposed AFTCC, the root-mean-square error (RMSE) is calculated
for position tracking accuracy assessment. The position-tracking error of the i-th follower
QUAV is defined as

ep,i(t) = Cp eξ,i(t) (57)

where Cp is as follows:

Cp =

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0


The position RMSE is calculated as follows:

RMSEp,i =

√√√√ 1
M

M

∑
k=1

∥ep,i[k]∥2
2. (58)

The calculated results are summarized in Table 1.

Table 1. Position tracking RMSE for follower QUAVs under the proposed AFTCC (in meters).

Follower Time Interval (s) RMSEp (m)

QUAV 1 [50, 300] 0.0366
QUAV 2 [100, 300] 0.0408
QUAV 3 [150, 300] 0.0411
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As shown in Table 1, the position RMSE values remain consistently small, with all
followers maintaining tracking errors below 0.05 m. These results confirm the effectiveness
of the proposed AFTCC in maintaining precise formation tracking under actuator faults.

4.4. Comparative Experiment

To further validate the effectiveness of the proposed method, a comparative study
is conducted with an existing relative-information-based fault-tolerant control approach
from the literature [36]. Both methods are tested under identical conditions using the same
multi-QUAV system configuration and fault scenarios.

The comparison is performed with the same actuator fault conditions as described
previously, where faults occur at t = 50 s, t = 100 s, and t = 150 s for follower QUAVs 1, 2,
and 3, respectively. Figure 9 illustrates the comparative position tracking performance of
both methods.
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Figure 9. Position tracking comparison between the proposed AFTCC and reference method.

From Figure 9, it can be observed that both the proposed AFTCC and the reference
method can maintain formation stability under actuator faults. However, the proposed
method demonstrates superior performance characteristics. Specifically, the proposed
AFTCC achieves faster fault response and more accurate position tracking with reduced
transient oscillations compared to the reference approach. This improvement can be
attributed to the proportional-integral mechanism incorporated in the fault estimation
observer, which enables faster and more accurate tracking performance.

5. Conclusions
In this paper, appropriate translation and scaling are applied to multi-QUAVs with

relative measurements, and a decoupled observable system is obtained. After deriving the
decoupled dynamics, an adaptive fault estimation observer is designed and proves that it
is asymptotically stable with H∞ performance. Subsequently, a consensus-based AFTCC
law is proposed to quickly compensate for the time-varying actuator faults. Finally, the
effectiveness of the proposed AFTCC is verified by simulations under multiple fault condi-
tions. The RMSE analysis shows that the proposed method maintains precise formation
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tracking performance. Comparative results demonstrate the superior performance of the
proposed approach over existing methods.
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