Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations
Abstract
1. Introduction
2. Methodology
2.1. Geometrical Model
2.2. Meshing Topology
2.3. Numerical Methodology
3. Validation
3.1. Mesh Convergence
3.2. Propeller Rotation
4. Results
4.1. Aerodynamic Interactions and Stability
4.2. Aerodynamic Interactions and Flow Behavior
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
RPM | Revolutions per minute |
CFD | Computational fluid dynamics |
RANS | Reynolds-averaged Navier–Stokes |
LES | Large eddy simulation |
MRF | Multiple reference frame |
D | Diameter of drone |
CT | Thrust coefficient |
CP | Power coefficient |
SST | Shear stress transport |
References
- Paz, C.; Suárez, E.; Gil, C.; Baker, C. CFD analysis of the aerodynamic effects on the stability of the flight of a quadcopter UAV in the proximity of walls and ground. J. Wind. Eng. Ind. Aerodyn. 2020, 206, 104378. [Google Scholar] [CrossRef]
- Hage, C.; Sophy, T.; Aglzim, E.-H. CFD analyses of the aerodynamic effects on a quadcopter propeller in the proximity of fixed and horizontal moving obstacles. In Proceedings of the 2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 26–28 May 2023; pp. 273–278. [Google Scholar]
- Yilmaz, E.; Hu, J. CFD study of quadcopter aerodynamics at static thrust conditions. In Proceedings of the ASEE Northeast 2018 Annual Conference, West Hartford, CT, USA, 27–28 April 2018. [Google Scholar]
- Deters, R.W.; Kleinke, S.; Selig, M.S. Static testing of propulsion elements for small multirotor unmanned aerial vehicles. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017; p. 3743. [Google Scholar]
- Hage, C.; Sophy, T.; Aglzim, E.H. A comprehensive study on the aerodynamic influence of stationary and moving obstacles on an isolated phantom DJI 3 UAV propeller. J. Eng. 2024, 2024, e12374. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Atmaca, M.; Çetin, B.; Yılmaz, E. CFD analysis of unmanned aerial vehicles (UAV) moving in flocks. Acta Phys. Pol. A 2019, 135, 694–696. [Google Scholar] [CrossRef]
- Gupta, A.; Afrin, T.; Scully, E.; Yodo, N. Advances of UAVs toward future transportation: The state-of-the-art, challenges, and opportunities. Future Transp. 2021, 1, 326–350. [Google Scholar] [CrossRef]
- Kuantama, E.; Craciun, D.; Tarca, I.; Tarca, R. Quadcopter propeller design and performance analysis. In New Advances in Mechanisms, Mechanical Transmissions and Robotics: Proceedings of the Joint International Conference of the XII International Conference on Mechanisms and Mechanical Transmissions (MTM) and the XXIII International Conference on Robotics (Robotics’ 16), Aachen, Germany, 26–27 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 269–277. [Google Scholar]
- Rajendran, P.; Jayaprakash, A. Numerical performance analysis of a twin blade drone rotor propeller. Mater. Today Proc. 2023, 80, 492–498. [Google Scholar] [CrossRef]
- Ventura Diaz, P.; Yoon, S. High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles. In Proceedings of the 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018; p. 1266. [Google Scholar]
- Khuntia, S.K.; Ahuja, A.S. Optimal design and CFD analysis of wing of a small-scale UAV to obtain maximum efficiency. J. Aeronaut. Aerosp. Eng. 2018, 7, 1–7. [Google Scholar]
- Dbouk, T.; Drikakis, D. Computational aeroacoustics of quadcopter drones. Appl. Acoust. 2022, 192, 108738. [Google Scholar] [CrossRef]
- Umar, C.M.I.C.; Zulkafli, M.F. Distance and Rotational Speed Analysis of Coaxial Rotors for UTHM C-Drone. Prog. Aerosp. Aviat. Technol. 2021, 1, 46–55. [Google Scholar] [CrossRef]
- McKay, M.E.; Niemiec, R.; Gandhi, F. Performance comparison of quadcopters with variable-RPM and variable-pitch rotors. J. Am. Helicopter Soc. 2019, 64, 1–14. [Google Scholar] [CrossRef]
- Al-Haddad, L.A.; Jaber, A.A.; Giernacki, W.; Khan, Z.H.; Ali, K.M.; Tawafik, M.A.; Humaidi, A.J. Quadcopter unmanned aerial vehicle structural design using an integrated approach of topology optimization and additive manufacturing. Designs 2024, 8, 58. [Google Scholar] [CrossRef]
- Oktay, T.; Eraslan, Y. Computational fluid dynamics (CFD) investigation of a quadrotor UAV propeller. In Proceedings of the International Conference on Energy, Environment and Storage of Energy, Osaka, Japan, 29 June–3 July 2020; pp. 1–5. [Google Scholar]
- Gullberg, P.; Sengupta, R. Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011. [Google Scholar]
- Hage, C.; Sophy, T.; Aglzim, E.-H. Investigating UAV propellers performances near moving obstacles: CFD study, thrust control, and battery energy management. IEEE Open J. Veh. Technol. 2023, 4, 590–609. [Google Scholar] [CrossRef]
- Remaki, L.; Ramezani, A.; Blanco, J.M.; Garcia, I. New simplified algorithm for the multiple rotating frame approach in computational fluid dynamics. J. Fluids Eng. 2017, 139, 081104. [Google Scholar] [CrossRef]
- Patil, N.; Shete, S.; Shinde, N.; Takawane, R.; Todkari, S. Analysis & Practical Testing of Hexacopter Drone. Int. J. Ingenious Res. Invent. Dev. 2023, 1, 24–33. [Google Scholar]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- Bangura, M.; Mahony, R. Thrust control for multirotor aerial vehicles. IEEE Trans. Robot. 2017, 33, 390–405. [Google Scholar] [CrossRef]
- Six, D.; Briot, S.; Erskine, J.; Chriette, A. Identification of the propeller coefficients and dynamic parameters of a hovering quadrotor from flight data. IEEE Robot. Autom. Lett. 2020, 5, 1063–1070. [Google Scholar] [CrossRef]
- Bianchi, D.; Di Gennaro, S.; Di Ferdinando, M.; Acosta Lua, C. Robust control of uav with disturbances and uncertainty estimation. Machines 2023, 11, 352. [Google Scholar] [CrossRef]
- Garofano-Soldado, A.; Sanchez-Cuevas, P.J.; Heredia, G.; Ollero, A. Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low Reynolds numbers. Aerosp. Sci. Technol. 2022, 126, 107625. [Google Scholar] [CrossRef]
- Liu, Y.; Kan, Z.; Li, H.; Gao, Y.; Li, D.; Zhao, S. Analysis and modeling of the aerodynamic ceiling effect on small-scale propellers with tilted angles. Aerosp. Sci. Technol. 2024, 147, 109038. [Google Scholar] [CrossRef]
- Garofano-Soldado, A.; Heredia, G.; Ollero, A. Aerodynamic interactions of non-planar rotor pairs and model derivation in ground approach. Aerosp. Sci. Technol. 2023, 142, 108672. [Google Scholar] [CrossRef]
- Aljuhaishi, S.; Al-Timimi, Y.K.; Wahab, B.I. Comparing Turbulence Models for CFD Simulation of UAV Flight in a Wind Tunnel Experiments: Comparing turbulence models. Period. Polytech. Transp. Eng. 2024, 52, 301–309. [Google Scholar] [CrossRef]
- Könözsy, L. The k-ω shear-stress transport (SST) turbulence model. In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows: Volume I: Theoretical Background and Development of an Anisotropic Hybrid K-Omega Shear-Stress Transport/Stochastic Turbulence Model; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–66. [Google Scholar]
Mesh Size (mm) | Max. Skewness | No. of Nodes | No. of Elements | ||
---|---|---|---|---|---|
0.7 | 0.4461 | 10.4 × 106 | 3.12 × 106 | 0.101 | 0.050 |
0.6 | 0.4257 | 12.3 × 106 | 3.74 × 106 | 0.102 | 0.051 |
0.5 | 0.6170 | 14.2 × 106 | 4.25 × 106 | 0.101 | 0.050 |
0.4 | 0.5525 | 16.1 × 106 | 4.84 × 106 | 0.101 | 0.050 |
0.3 | 0.4341 | 21.6 × 106 | 6.49 × 106 | 0.102 | 0.051 |
0.2 | 0.6373 | 28.9 × 106 | 8.59 × 106 | 0.101 | 0.050 |
0.1 | 0.4589 | 49.5 × 106 | 14.8 × 106 | 0.102 | 0.051 |
Components | Max. Skewness | No. of Nodes | No. of Elements |
---|---|---|---|
Case-I | 0.84 | 28.22 × 106 | 8.53 × 106 |
Case-II | 0.83 | 27.85 × 106 | 8.42 × 106 |
RPM | Case-I (At 1 m) | Case-II (At 0.5 m) | ||
---|---|---|---|---|
UAV-1 | UAV-2 | UAV-1 | UAV-2 | |
3000 | 0.001827 | 0.004895 | 0.00353 | 0.00008 |
4000 | 0.004078 | 0.008018 | 0.00507 | 0.00143 |
5000 | 0.004243 | 0.011292 | 0.00582 | −0.00050 |
6000 | 0.005188 | 0.016323 | 0.00412 | −0.00312 |
7000 | 0.003720 | 0.021917 | 0.00544 | −0.00387 |
8000 | 0.005425 | 0.028963 | 0.00804 | −0.00790 |
RPM | Case-I (m/s) | Case-II (m/s) |
---|---|---|
3000 | 37.83 | 37.83 |
4000 | 50.44 | 50.44 |
5000 | 63.05 | 63.05 |
6000 | 75.70 | 75.70 |
7000 | 88.30 | 88.30 |
8000 | 100.89 | 100.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, K.M.; Zhao, L.; Xue, K. Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations. Drones 2025, 9, 712. https://doi.org/10.3390/drones9100712
Arslan KM, Zhao L, Xue K. Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations. Drones. 2025; 9(10):712. https://doi.org/10.3390/drones9100712
Chicago/Turabian StyleArslan, Khan Muhammad, Liangyu Zhao, and Kuiju Xue. 2025. "Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations" Drones 9, no. 10: 712. https://doi.org/10.3390/drones9100712
APA StyleArslan, K. M., Zhao, L., & Xue, K. (2025). Investigation of Aerodynamic Interference Between Vertically Aligned Quadcopters at Varying Rotor Speeds and Separations. Drones, 9(10), 712. https://doi.org/10.3390/drones9100712