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Highlights

What are the main findings?

• ADG-YOLO achieves a lightweight architecture with only 1.77 M parameters and
5.7 GFLOPs, while maintaining a high detection accuracy of 98.4% mAP0.5 and 27 FPS
on an edge computing device.

• The integrated monocular ranging method based on similar triangles achieves an
average distance estimation error of 2.40–4.18% across 0.5–50 m for three different
UAV models.

What is the implication of the main finding?

• This work provides a practical and efficient solution for real-time UAV detection and
ranging on resource-constrained edge platforms, enabling onboard intelligence for
autonomous UAV operations.

• The proposed framework demonstrates the feasibility of deploying advanced percep-
tion systems on low-power devices, paving the way for wider adoption of AI-driven
UAVs in military and commercial applications.

Abstract

The rapid evolution of UAV technology has increased the demand for lightweight airborne
perception systems. This study introduces ADG-YOLO, an optimized model for real-time
target detection and ranging on UAV platforms. Building on YOLOv11n, we integrate
C3Ghost modules for efficient feature fusion and ADown layers for detail-preserving
downsampling, reducing the model’s parameters to 1.77 M and computation to 5.7 GFLOPs.
The Extended Kalman Filter (EKF) tracking improves positional stability in dynamic
environments. Monocular ranging is achieved using similarity triangle theory with known
target widths. Evaluations on a custom dataset, consisting of 5343 images from three drone
types in complex environments, show that ADG-YOLO achieves 98.4% mAP0.5 and 85.2%
mAP0.5:0.95 at 27 FPS when deployed on Lubancat4 edge devices. Distance measurement
tests indicate an average error of 4.18% in the 0.5–5 m range for the DJI NEO model, and an
average error of 2.40% in the 2–50 m range for the DJI 3TD model. These results suggest
that the proposed model provides a practical trade-off between detection accuracy and
computational efficiency for resource-constrained UAV applications.

Keywords: UAV detection; monocular ranging; edge computing; YOLOv11n; real-time
tracking
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1. Introduction
With the rapid evolution of unmanned aerial vehicle (UAV) technology, its significance

has been steadily rising across military, civilian, and commercial domains. In modern
military operations, UAVs are increasingly used not only in auxiliary roles but also for
direct operational tasks, influencing combat strategies and operational planning [1–3].
Breakthroughs in artificial intelligence (AI), low-cost manufacturing, and stealth flight tech-
nology have endowed various unmanned systems with enhanced perception, autonomous
decision-making, and strike capabilities. A representative case is the “Operation Spider’s
Web” conducted in June 2025, in which a coordinated deployment of over 100 FPV UAVs
demonstrated the potential of UAV swarms for precision strike tasks. This operation
highlights the growing complexity of UAV missions and the operational challenges for
conventional defense systems, emphasizing the need for advancements in target detection,
path planning, and low-latency response mechanisms.

Currently, the development of unmanned systems technology exhibits two prominent
trends. First, AI-empowered intelligent systems are progressively enhancing autonomous
decision-making and operational coordination, with UAV swarms demonstrating closed-
loop capabilities in simulated and real-world missions. Second, counter-UAV strategies
are evolving, including communication jamming, deception interference, and terrain-
based evasion tactics [4,5]. Within this technological contest, improving the perception
capabilities of unmanned systems—ensuring reliable detection, operational stability, and
energy efficiency—remains a critical focus for tactical applications.

Compared to conventional ground-based fixed observation platforms, airborne per-
ception systems integrate visual ranging functions directly onto UAV platforms, achieving
mobile and real-time sensing. Airborne platforms allow closer proximity to targets, enable
dynamic close-range tracking, and support complex tasks such as autonomous obstacle
avoidance, formation coordination, and precision operations—thereby enhancing oper-
ational autonomy in diverse scenarios [2]. However, airborne deployment also imposes
stringent demands on system lightweight design, low power consumption, and real-time
responsiveness, motivating the development of visual ranging and target detection al-
gorithms optimized for embedded edge computing platforms. Advancing efficient and
reliable airborne visual ranging systems is not only a key technology for UAV intelligence
upgrades but also an important enabler for improving future UAV operational effectiveness
and mission reliability.

At present, mainstream ranging methods include radar [6], laser [7], ultrasonic [8],
and visual ranging [9]. While radar and laser offer high precision and long detection
ranges, their bulky size, high power consumption, and cost render them unsuitable for
small UAV applications. Visual ranging, with its non-contact nature, low cost, and ease
of integration, has become a research focus for lightweight perception systems. Based on
camera configurations, visual ranging can be categorized into binocular and monocular
systems. Binocular vision offers higher accuracy but requires extensive calibration and
disparity computation resources [10,11]. In contrast, monocular vision—with its simple
hardware structure and algorithmic flexibility—has emerged as the preferred solution for
edge and embedded platforms [12,13].

Monocular visual ranging methods fall into two categories: depth map estimation
and physical distance regression. The former relies on convolutional neural networks to
generate relative depth maps, which are suitable for scene modeling but lack direct physical
distance outputs [14–19]. The latter directly outputs target distances based on geometric
modeling or end-to-end regression, offering faster and more practical responses. Geometric
modeling approaches, such as perspective transformation, inverse perspective mapping
(IPM), and similar triangle modeling, estimate depth by mapping pixel data to physical
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parameters [20–25]. In recent years, deep learning techniques have been introduced to
monocular ranging models to enhance adaptability in unstructured environments [26].
Traditional two-stage detection algorithms such as RCNN [27], Fast R-CNN [28], and Faster
R-CNN [29] excel in detection accuracy but are limited by their complex architectures and
high computational demands—making them less suitable for edge platforms that require
low power and real-time performance, thus restricting their practical applications in UAV
scenarios.

In the field of target detection, the YOLO (You Only Look Once) family of algorithms
has gained widespread use in unmanned systems due to its fast detection speed and com-
pact architecture, ideal for edge deployment [30–41]. To enhance small-object detection
and long-range recognition on embedded platforms, researchers have proposed various
improvements based on YOLOv5, YOLOv8, and YOLOv11, incorporating lightweight
convolutions, attention mechanisms, and feature fusion modules [42–45]. However, most
existing studies focus on ground-based or general-purpose deployments and lack sys-
tematic research on lightweight airborne deployment and integrated perception-ranging
systems. Particularly on ultra-low-power, computation-constrained mobile platforms,
balancing detection accuracy, ranging stability, and frame rate remains a critical unre-
solved challenge. Reference [46] explored a low-power platform based on Raspberry Pi
combined with YOLOv5 for real-time UAV target detection. Although it did not deeply
address deployment efficiency and response latency, it provided a valuable reference for
lightweight applications. In addition, several recent studies have emphasized the impor-
tance of dataset augmentation strategies to enhance small-drone detection robustness and
improve generalization across diverse environments [47–51].

To this end, this study expands the research perspective and application scope of
UAV visual perception. Transitioning from traditional ground-based observation models
to onboard autonomous sensing, we propose a lightweight airborne perception system
mounted directly on UAV platforms. This system is designed to meet the integrated
requirements of target detection and distance measurement, achieving real-time, in-flight
optimization of both functionalities. The main innovations and contributions of this study
are summarized as follows:

1. Lightweight Detection Architecture Design: Based on the YOLOv11n model, this
study introduces the C3GHOST and ADown modules to construct an efficient de-
tection architecture tailored for edge computing platforms. The C3GHOST module
reduces computational overhead through lightweight feature fusion while enhancing
feature representation capability. The ADown module employs an efficient down-
sampling strategy that lowers computational cost without compromising detection
accuracy. Systematic evaluation on a custom-built dataset demonstrates the model’s
capability for joint optimization in terms of frame rate and ranging precision.

2. Target Tracking Optimization: To further improve the stability of UAV target tracking,
this study incorporates the Extended Kalman Filter (EKF) approach. EKF performs
target position estimation and trajectory prediction in dynamic environments, sig-
nificantly reducing position jitter and sporadic false detections during the tracking
process, thereby enhancing robustness and consistency.

3. Dataset Expansion: Based on a publicly available dataset from CSDN, this study
conducts further expansion by constructing a comprehensive dataset that covers
a wide range of UAV models and complex environments. The dataset includes
image samples captured under varying flight altitudes, viewing angles, and lighting
conditions. This expansion enables the proposed model to not only adapt to different
types of UAV targets, but also maintain high detection accuracy and stability in
complex flight environments.
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4. Model Conversion and Deployment on Edge Devices: To facilitate practical deploy-
ment, the trained model was converted from its standard format to a format compati-
ble with edge computing devices based on the RK3588S chipset. The converted model
was successfully deployed onto the edge platform, ensuring efficient operation on
resource-constrained hardware.

2. Methodology
2.1. ADG-YOLO

In this section, we present a lightweight UAV visual perception framework based on
the YOLOv11n architecture for edge devices, integrating C3Ghost and ADown modules.
The framework achieves a balanced trade-off between detection accuracy and real-time
performance, enabling reliable target detection.

2.1.1. C3Ghost

In this study, the standard C3k2 modules are replaced with C3Ghost modules to
achieve a more lightweight design and improved computational efficiency in feature fusion.
The C3Ghost module consists of a series of GhostConv layers integrated within a Cross-
Stage Partial (CSP) architecture, combining efficient information flow with compact network
structure [52]. As shown in Figure 1, GhostConv divides the input feature map into two
parts: the first part generates primary features using standard convolution, while the second
part produces complementary “ghost” features through low-cost linear transformations
such as depthwise separable convolutions. These two parts are then concatenated to form
the final output. By exploiting the inherent redundancy in feature representations, this
design significantly reduces the number of parameters and floating-point operations, while
retaining a representational capacity comparable to conventional convolutions.

Figure 1. The Ghost module. The figure is redrawn by the authors for clarity, based on the original
design of Han et al. [52].

On this basis, C3Ghost integrates multiple GhostConv layers into the CSP structure
to form a lightweight feature fusion unit. As illustrated in Figure 2, the input is split into
two parallel branches. One branch extracts higher-level features through a series of stacked
GhostBottleneck layers, and the other directly passes the input via a shortcut connection
to preserve original information. The outputs from both branches are then concatenated
and fused using a 1 × 1 convolution. This design enhances feature representation while
keeping computational cost and model complexity to a minimum [53].

Figure 2. The C3Ghost module. The figure is redrawn by the authors for clarity, based on the original
design of Ji et al. [53].
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2.1.2. ADown

In this study, an ADown module is introduced to replace conventional convolution-
based downsampling operations, aiming to improve efficiency while preserving fine-
grained feature information. As illustrated in Figure 3, the core design of ADown consists
of the following stages: the input feature map is first processed through average pooling
and downsampled to half the spatial resolution. It is then split into two branches along
the channel dimension. The first branch applies a 3 × 3 convolution to extract local detail
features, while the second branch undergoes max pooling for downsampling, followed
by a 1 × 1 convolution for channel compression and nonlinear transformation. Finally,
the outputs from both branches are concatenated along the channel axis to form the
downsampled output [54].

Figure 3. The ADown module. The figure is redrawn by the authors for clarity, based on the original
design of Fang et al. [54].

Compared to standard convolution or conventional pooling-based downsampling,
ADown offers several distinct advantages. Its multi-path structure allows for the inte-
gration of both global and local information, mitigating the severe loss of detail often
caused by traditional downsampling methods. Additionally, by reducing spatial resolution
through pooling before applying lightweight convolutions, ADown achieves efficient fea-
ture extraction with significantly fewer parameters and lower FLOPs, without sacrificing
representational power.

Moreover, ADown can be seamlessly integrated with existing multi-scale feature
fusion modules, such as SPPF or FPN, enhancing the capacity of both the backbone and
neck components to retain fine-grained features. This is particularly beneficial for small
object detection tasks. In UAV imagery, where targets tend to be small and highly resolution-
sensitive, the hierarchical detail preserved by ADown proves critical for accurately detecting
small-scale objects. Its design not only improves fine-feature retention but also enhances
the overall robustness of the model in multi-scale environments.

2.1.3. Proposed ADG-YOLO

To enhance the detection capability of lightweight networks for low-altitude, low-
speed, and small-sized UAVs—commonly referred to as “low-slow-small” targets—under
resource-constrained environments, this study proposes a novel architecture named ADG-
YOLO (Adown + Ghost modules YOLO), based on the original YOLOv11n framework.
While maintaining detection accuracy, ADG-YOLO significantly reduces model parameter
size and computational complexity. The architecture incorporates systematic structural
optimizations in three key areas: feature extraction, downsampling strategy, and multi-
scale feature fusion. These improvements collectively strengthen the model’s perception
capability for low-altitude UAV targets in ground-based scenarios, thereby better meeting
the practical demands of UAV detection from aerial perspectives. The overall network
architecture of ADG-YOLO is illustrated in Figure 4.
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Figure 4. ADG-YOLO algorithm structure.

Firstly, in both the backbone and the neck, the original C3k2 modules were systemat-
ically replaced with C3Ghost modules. Specifically, in the backbone, the C3k2 blocks at
the 256-, 512-, and 1024-channel stages were replaced, while in the neck, all C3k2 layers
immediately following each feature upsampling–concatenation operation were also substi-
tuted with C3Ghost. This design ensures consistent lightweight representation across the
entire network without altering the overall FPN–PAN topology. This ensures consistent
lightweight representation across both backbone and neck without altering the overall FPN–
PAN topology. C3Ghost is a lightweight residual module constructed using GhostConv,
initially introduced in GhostNet, and incorporates a Cross Stage Partial (CSP) structure
to enable cross-stage feature fusion. Its core design concept lies in generating primary
features through standard convolution, while reusing redundant information by producing
additional “ghost” features through low-cost linear operations such as depthwise separable
convolutions. This approach significantly reduces the number of parameters and the overall
computational cost (FLOPs), making it especially suitable for deployment on edge devices
with limited computing resources. Additionally, the stacked structure of GhostBottleneck
layers further enhances the network’s ability to represent features across multiple semantic
levels.

Secondly, all stride = 2 downsampling operations in the network are replaced with the
ADown module. Instead of conventional 3 × 3 strided convolutions, ADown adopts a dual-
path structure composed of average pooling and max pooling for spatial compression. Each
path extracts features at different scales through lightweight 3 × 3 and 1 × 1 convolutions,
and the outputs are concatenated along the channel dimension. This asymmetric parallel
design allows ADown to preserve more rich texture and edge information while reducing
feature map resolution. Such a design is particularly beneficial in UAV-based detection
scenarios where objects are small and captured from high-altitude viewpoints against
complex backgrounds. Compared to standard convolutions, ADown effectively reduces
computational burden without compromising detection accuracy, while improving the
flexibility and robustness of the downsampling process.

Thirdly, the Spatial Pyramid Pooling—Fast (SPPF) module is retained at the end of
the backbone to enhance the modeling of long-range contextual information. Meanwhile,
in the neck, a series of alternating operations—upsampling, feature concatenation, and
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downsampling via ADown—are introduced for feature fusion. This design facilitates
the precise supplementation of low-level detail with high-level semantic information and
improves alignment and interaction across multi-scale feature maps. As a result, the
model’s ability to detect small objects and capture boundary-level details is significantly
enhanced. Combined with the lightweight feature extraction capability of the C3Ghost
modules at various stages, the entire network achieves high detection accuracy while
substantially reducing deployment cost and system latency.

In summary, the improvements of ADG-YOLO presented in this study are threefold:
the C3Ghost modules enable efficient lightweight feature representation; the ADown
module reconstructs a more effective downsampling pathway; and the SPPF module,
together with multi-scale path interactions, strengthens fine-grained feature aggregation,
particularly for small object detection. The complete network architecture of ADG-YOLO
is shown in Figure 4, where the overall design seamlessly integrates lightweight structure
with multi-scale feature enhancement. This model achieves a well-balanced trade-off
among accuracy, inference speed, and computational resource consumption, offering high
adaptability and practical value for real-world deployment.

2.2. Model Conversion and Edge Deployment

Considering factors such as device size, weight, scalability, and cost, this study selects
the LubanCat 4 development board as the deployment platform for the ADG-YOLO
model. The board is equipped with the Rockchip RK3588S processor and integrates an
AI acceleration NPU capable of INT4, INT8, and INT16 mixed-precision computing, with
a peak performance of up to 6 TOPS. It includes 4 GB of onboard memory and supports
peripheral interfaces such as mini HDMI output and USB camera input, with an overall
weight of approximately 62 g.

Given the limited computing capacity of the CPU, it is necessary to maximize inference
efficiency by converting the model from its original .pt format (trained with PyTorch 1.8.1)
to the .rknn format compatible with the NPU. The conversion pipeline proceeds as follows:
first, the trained model is exported to the ONNX format using the torch.onnx.export
interface in PyTorch; then, the RKNN Toolkit is used to convert the ONNX model into
RKNN format. The overall conversion process is illustrated in Figure 5.

Figure 5. ADG-YOLO Model Conversion Process Diagram.

After conversion, the model is deployed onto the development board to enable real-
time detection of UAV targets from live video input via the connected USB camera. With
the aid of hardware acceleration provided by the NPU, the system is capable of maintaining
a high frame rate and fast response speed while ensuring detection accuracy, thereby
fulfilling the dual demands of real-time performance and lightweight deployment in
practical application scenarios.

2.3. Target Monitoring Based on ADG-YOLO Detection and EKF Tracking

In this study, we propose a method that integrates the ADG-YOLO object detection
algorithm with the Extended Kalman Filter (EKF) for target monitoring in dynamic scenar-
ios. The YOLO model is employed to extract bounding box information from consecutive
image frames in real time, including the center position and size parameters of the detected
targets. To enable temporal filtering and motion trajectory prediction of the detected objects,
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the target state is modeled as a six-dimensional vector x = [cx, cy, vx, vy, w, h]T , consisting
of the center coordinates (cx, cy), the horizontal and vertical velocity components (vx, vy),
and the width w and height h of the bounding box. Considering that targets typically follow
a constant velocity linear motion within short time intervals and that their size changes
are relatively stable, a state transition model is formulated under this assumption. The
corresponding state transition matrix is defined as follows:

F =



1 0 ∆t 0 0 0
0 1 0 ∆t 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(1)

The observations provided by YOLO are the bounding box parameters of the detected
target in the image, represented as [cx, cy, w, h]T. The correspondence between these
observations and the system state vector is modeled through an observation matrix, which
is expressed as follows:

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (2)

The execution process of the Extended Kalman Filter (EKF) consists of two stages:
prediction and update. In the prediction stage, the target state and its covariance are
estimated based on the current state and the state transition model, as expressed by:{

x′ = F · x,
P′ = F · P · FT + Q

(3)

Here, Q denotes the process noise covariance matrix, and P represents the observation
noise covariance matrix. Upon receiving a new observation z from the YOLO algorithm,
the update stage is performed as follows:

Residual computation:
y = z − H · x′ (4)

Kalman gain computation:

K = P′ · HT · (H · P′ · HT + R)
−1

(5)

State update:
x = x′ + K · y (6)

Covariance update:
P = (I − K · H) · P′ (7)

Here, I denotes the identity matrix.
The integration of the EKF module helps to mitigate the potential localization fluctua-

tions and occasional false detections that may occur in YOLO’s single-frame inference. This
facilitates smoother target position estimation and further enhances the tracking consistency
and robustness of the system in multi-frame processing scenarios.
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2.4. Monocular Ranging for UAVs Using Similar Triangles

Figure 6 illustrates the UAV target detection results based on the YOLO model, where
the red bounding boxes accurately locate and outline the position and size of the targets in
the monocular images. The pixel width of the bounding box is denoted as p, representing
the projected size of the target in the image, which serves as a key parameter for subsequent
distance estimation. Neglecting lens distortion, and based on the principle of similar
triangles, when the actual width of the target is W, the camera focal length is f, and the
physical size of a single pixel on the image sensor is s, the actual projected width w of the
target on the imaging plane can be expressed as:

w = p · s (8)

 

Figure 6. Drone Projection Width w Diagram.

As shown in Figure 7, when the target plane Ω1 is perpendicular to the optical axis of
the camera, the imaging process can be abstracted as two similar triangles, which satisfy
the following proportional relationship:

W
D

=
w
f

(9)

Here, D denotes the distance from the target to the camera along the optical axis. Based
on this relationship, the formula for computing the target distance is derived as follows:

D =
W · f
p · s

(10)

In this study, the training dataset comprises three different types of UAVs, each
associated with a known physical width Wn. The YOLO model not only outputs the
bounding box coordinates but also possesses target classification capability, enabling precise
identification of the specific UAV type. Once the target type is detected, the corresponding
Wn is automatically selected and substituted into the distance estimation Formula (10),
thereby enhancing the accuracy and generalizability of the distance measurement.
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Figure 7. UAV Projection Width w Diagram.

3. Model Analysis
3.1. Dataset

A comprehensive UAV detection dataset was constructed for this study, comprising a
total of 5343 high-resolution images. This dataset integrates two subsets: a custom-target
subset with 2670 images and a generalization subset with 2664 images. The custom subset
focuses on three specific UAV models: DJI 3TD (DJI, Shenzhen, China), with 943 training
and 254 testing images (labeled as drone1); DJI NEO (DJI, China), with 739 training and
170 testing images (drone2); and DWI-S811(DWI, China), with 454 training and 110 testing
images (drone3). All images in this subset were captured under strictly controlled con-
ditions, with target distances ranging from 5 to 30 m and 360-degree coverage, to reflect
variations in object appearance under different perspectives and distances.

The generalization subset was collected from publicly available multirotor UAV image
resources published on the CSDN object detection platform. It contains quadrotor and
hexarotor UAVs from popular brands, appearing in diverse environments including urban
buildings, rural landscapes, highways, and industrial areas. Additionally, the images cover
challenging weather conditions such as bright sunlight, fog, and rainfall. All images were
annotated using LabelImg, a widely used open-source image annotation tool, ensuring
consistency and efficiency. To ensure annotation consistency, a subset of the labeled images
was cross-checked by multiple annotators, and discrepancies were resolved through con-
sensus. The annotations strictly follow the YOLOv11 format, including normalized center
coordinates (x, y) and relative width w and height h of each bounding box.

All images in the custom-target subset are collected and annotated by our team. The
dataset is made publicly available to facilitate reproducibility and further studies. For the
generalization subset, any publicly sourced images that might raise personal privacy or
portrait rights concerns have been removed, and all data comply with applicable usage and
licensing regulations.

Figure 8 shows representative images of the three specific UAV models from the custom
subset, highlighting multi-angle and multi-distance variations. Figure 9 presents sample
images from the generalization subset, illustrating environmental and visual diversity.
Table 1 provides an overview of the dataset composition, including the number of training
and testing images for each subset and the corresponding label formats.
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Figure 8. Typical Samples of Custom Subset UAVs.

    

    

Figure 9. Samples of Multirotor UAVs in Generalization Subset.

Table 1. Overview of the UAV Detection Dataset Used in This Study.

Subset Total Images Training Set Testing Set Drone Models Annotation Standard

Custom-Target
(three kinds) 2670 2136 534 DJI 3TD/NEO/DWI-

S811
drone1/drone2/dro-ne3

labels

Generalization 2664 2363 301 Multi-brand
quad/hexa-rotor drone label

Total 5334 4499 835 - YOLO format

A differentiated sampling strategy was used to partition the dataset. The custom
subset contains 2136 training images and 534 testing images, while the generalization
subset includes 2363 training and 301 testing images. To enhance detection performance on
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specific UAV types, the test set was intentionally supplemented with additional samples of
DJI 3TD, DJI NEO, and DWI-S811. This allows the model to better learn and evaluate fine-
grained appearance features of these UAVs, contributing to improved detection accuracy
and robustness.

3.2. Experimental Environment and Experimental Parametes

To evaluate the performance of the proposed ADG-YOLO model in UAV object de-
tection tasks, the model was trained on the custom dataset described in Section 3.1. Com-
parative experiments were conducted against several representative algorithms under
identical training configurations. To ensure the reproducibility and fairness of the results,
the experimental environment settings and training parameters are summarized in Tables 2
and 3, respectively.

Table 2. Configuration experimental environment.

Environment Parameters

CPU Intel (R) Xeon (R) Platinum 8358P
GPU RTX 3090

GPU memory size 90 GB
Operating system ubuntu18.04

Language Python 3.8
Frame PyTorch 1.8.1

CUDA version CUDA 11.1

Table 3. Training parameters setting.

Parameters Setup

Epochs 500
Input image size 640 × 640

Batch size 16
Optimizer SGD

Initial learning rate 0.01

3.3. Evaluation Metrics

In target detection tasks, the Mean Average Precision (mAP) is widely employed to
evaluate the detection performance of a model [55]. Based on the model’s prediction results,
two key metrics can be further computed: Precision (P) and Recall (R). Precision measures
the proportion of correctly predicted targets among all samples identified as targets by
the model, whereas Recall reflects the model’s ability to detect actual targets, defined as
the ratio of correctly detected targets to all true targets. Typically, there exists a trade-off
between Precision and Recall, where improving one may lead to a reduction in the other.
Therefore, a Precision–Recall (PR) curve is plotted to comprehensively analyze the detection
performance of the model. For a single category, the Average Precision (AP) is defined as
the area under the PR curve, which is calculated as follows:

AP =
∫ 1

0
P(R)dR (11)

In practical computations, a discrete approximation method is typically employed:

AP =
1
m

m

∑
i=1

P(Ri) (12)
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Here, Ri represents the sampled recall values, and P(Ri) denotes the corresponding
precision at each recall point. The calculation of AP varies slightly across different datasets.
For instance, the PASCAL VOC dataset adopts an interpolation method based on 11 fixed
recall points, whereas the COCO evaluation protocol computes the mean over all recall
points. For multi-class object detection, the Mean Average Precision (mAP) is defined as
the mean AP across all categories:

mAP =
1
N

N

∑
i=1

APi (13)

Here, N denotes the total number of categories, and APi represents the Average
Precision of the i-th target category.

In practical object detection scenarios, in addition to model accuracy, the actual runtime
speed of the model is also of significant concern. Frames Per Second (FPS) is a key metric
for evaluating the runtime efficiency of a model, representing the number of image frames
the model can process per second [56]. The FPS can be calculated as follows:

FPS =
Ns

T
(14)

Here, Ns denotes the total number of processed frames, and T represents the total
processing time in seconds. A higher FPS indicates that the model can process input images
more rapidly, thereby enhancing its capability for real-time detection.

3.4. Ablation Study

To evaluate the effectiveness of the proposed lightweight modules, we conducted an
ablation study based on YOLOv11n using the dataset described in Section 3.1, sequentially
incorporating the C3Ghost and ADown structures, with the original network serving as
the baseline. As shown in Table 4, the baseline model contains 2.58 M parameters and
6.3 GFLOPs, achieving 98.2% mAP with a power consumption of 5.71 W and an energy per
frame of 0.2284 J. Introducing the C3Ghost module reduces the parameter size to 2.25 M
with a slight increase in GFLOPs to 6.7, while slightly lowering power consumption to
5.67 W and energy per frame to 0.2181 J, indicating that C3Ghost can enhance efficiency
without compromising accuracy. Incorporating the ADown module alone decreases both
parameters (2.06 M) and computational cost (4.8 GFLOPs), yielding comparable accuracy
(98.3% mAP) with reduced power consumption of 5.51 W and energy per frame of 0.2119 J.
When both C3Ghost and ADown are integrated, the model achieves the best trade-off,
reducing parameters to 1.77 M and GFLOPs to 5.7, while maintaining 98.4% mAP with
5.39 W power consumption and 0.1996 J energy per frame.

Table 4. Ablation experiment.

Baseline C3Ghost ADown Params
(M)

GFLOPs
(G) mAP0.5 mAP0.5:0.95 FPS

Power
Consumption

(W)

Energy Per
Frame (J)

√
2.58 6.3 98.2% 85.3% 25 5.71 0.2284√ √
2.25 6.7 98.2% 85.2% 26 5.67 0.2181√ √
2.06 4.8 98.3% 84.5% 26 5.51 0.2119√ √ √
1.77 5.7 98.4% 85.2% 27 5.39 0.1996

To further visualize the trade-offs between accuracy, computational cost, and power
consumption, two Pareto plots are presented in Figure 10a,b; the vertical axis shows
detection accuracy (mAP), and the color denotes power consumption in watts. Figure 10b
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illustrates mAP50:95 vs. GFLOPs, where the horizontal axis represents computational
complexity (GFLOPs). Figure 10a presents mAP50:95 vs. Params, with model parameter
count on the horizontal axis, providing a direct view of the efficiency–accuracy trade-off
in terms of model size. Both plots clearly demonstrate that the integration of C3Ghost
and ADown substantially reduces model complexity and computational burden, increases
efficiency, and maintains high detection accuracy, highlighting the superior performance–
efficiency–power trade-off of the proposed ADG-YOLO.

  
(a) (b) 

Figure 10. Detection Results of the ADG-YOLO Model. (a) mAP0.5:0.95 vs. Params. (b) mAP0.5:0.95 vs.
GFLOPs.

In summary, the ablation study demonstrates that integrating C3Ghost and ADown
effectively reduces model complexity and computational cost, lowers power consumption,
minimizes energy per frame, and maintains high mAP, confirming the efficiency and
robustness of ADG-YOLO.

3.5. Compration Expriment

To evaluate the overall performance of the ADG-YOLO model in UAV target detec-
tion, three mainstream lightweight models—YOLOv5s, YOLOv8n, and YOLOv11n—were
selected as baseline comparisons. All models were converted to RKNN INT8 models
using the RKNN Toolkit v2(Rockchip, Fuzhou, China), with quantization performed on a
representative calibration dataset of 20 images randomly sampled from the validation set to
ensure accurate weight scaling. During real-time inference on the Lubancat 4 development
board, the input resolution was set to 640 × 640. The power consumption measurements
were conducted using the same KWS-X1 Type-C USB power meter (TGEINHVDU, Shen-
zhen, China) as described in the previous section, with the specific measurement scenario
illustrated in Figure 11. The FPS, power consumption, and energy per frame reported in
this study were measured under these quantized runtime conditions. These YOLO variants
are chosen because they are currently among the most mature and high-performing single-
stage detection methods, which facilitates a fair and consistent comparison across model
parameters, computational complexity (GFLOPs), FPS, detection accuracy (mAP), power
consumption (W), and energy per frame (J). The experimental results are summarized in
Table 5.

ADG-YOLO contains only 1.77 M parameters and requires 5.7 GFLOPs, representing
a substantial simplification compared to YOLOv5s, which has 7.02 M parameters and
15.8 GFLOPs. It is also more lightweight than YOLOv8n (3.00 M parameters, 8.1 GFLOPs)
and YOLOv11n (2.58 M parameters, 6.3 GFLOPs), making it well-suited for deployment on
resource-constrained edge platforms. In terms of detection accuracy, ADG-YOLO achieves
98.4% mAP0.5 and 85.2% mAP0.5:0.95, slightly outperforming the other models. Notably,
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its mAP0.5:0.95 is significantly higher than that of YOLOv5s and YOLOv8n (both 84.2%),
and comparable to YOLOv11n (85.3%), demonstrating strong robustness. In addition,
ADG-YOLO achieves a competitive inference speed of 27 FPS, with a power consumption
of 5.39 W and an energy per frame of 0.1996 J, indicating an optimal balance between model
compactness, computational efficiency, and energy efficiency for edge deployment.

 

Figure 11. Experimental setup for power consumption measurement.

Considering the full inference pipeline, including image capture, pre-processing, NPU
inference, post-processing/Non-Maximum Suppression (NMS), and EKF-based monocular
ranging, the end-to-end latency is expected to be within the frame interval of the camera
(approximately 25–28 ms per frame for ADG-YOLO at 27 FPS). Given the camera’s actual
frame rate of 35–40 FPS, the pipeline can process images in near real-time, indicating that
the proposed system is suitable for practical UAV target detection on edge platforms.

To further evaluate the generalization capability of the ADG-YOLO model, we con-
ducted a separate performance analysis on the generalization subset. The results are sum-
marized in Table 6. Compared with the baseline models, ADG-YOLO consistently achieves
higher mAP values (95.1% mAP0.5 and 66.5% mAP0.5:0.95), outperforming YOLOv5s (94.1%
mAP0.5, 62.8% mAP0.5:0.95), YOLOv8n (94.5% mAP0.5, 64.4% mAP0.5:0.95), and YOLOv11n
(94.5% mAP0.5, 66.0% mAP0.5:0.95). These results demonstrate that ADG-YOLO not only
excels on the controlled subset but also generalizes effectively to unseen UAV types and
diverse environments, confirming its robustness and practical applicability beyond the
three specific UAV models. Moreover, ADG-YOLO maintains the most compact model
size (1.77 M parameters) and the lowest computational complexity (5.7 GFLOPs) among
the compared models, highlighting its suitability for deployment on resource-constrained
platforms.

Table 5. Comparison of Lightweight Detection Models in Terms of Model Size, Accuracy, and
Inference Speed (all kinds).

Model Params (M) GFLOPs
(G) mAP0.5 mAP0.5:0.95 FPS

Power
Consumption

(W)

Energy Per
Frame (J)

YOLOv5s 7.02 15.8 98.2% 84.2% 15 3.96 0.264
YOLOv8n 3.00 8.1 98.2% 84.2% 28 5.78 0.206
YOLOv11n 2.58 6.3 98.2% 85.3% 25 5.71 0.2284

ADG-YOLO 1.77 5.7 98.4% 85.2% 27 5.39 0.1996
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Table 6. Comparison of Lightweight Detection Models in Terms of Model Size, mAP (generalization
subset).

Model Params (M) GFLOPs (G) mAP0.5 mAP0.5:0.95

YOLOv5s 7.02 15.8 94.1% 62.8%
YOLOv8n 3.00 8.1 94.5% 64.4%

YOLOv11n 2.58 6.3 94.5% 66.0%
ADG-YOLO 1.77 5.7 95.1% 66.5%

To further compare the ADG-YOLO model with other mainstream lightweight models,
we conducted additional experiments on the VisDrone dataset, considering Params (M),
GFLOPs, FPS, power consumption (W), and energy per frame (J). The corresponding results
are summarized in Table 7. As shown in the table, ADG-YOLO achieves the smallest model
size with only 1.77 million parameters and the lowest computational cost of 5.7 GFLOPs,
significantly lower than YOLOv5s (7.02 M, 15.8 G) and YOLOv8n (3.00 M, 8.1 G). In terms
of inference speed, ADG-YOLO reaches 20 FPS, outperforming all compared models,
including YOLOv11n (16 FPS). Moreover, ADG-YOLO maintains competitive detection
accuracy with an mAP of 33.2% and a recall of 19.0%. Notably, ADG-YOLO exhibits
superior energy efficiency, consuming only 0.1600 joules per frame—the lowest among
all models—while operating at a power consumption of 3.2 watts. This highlights its
advantage in resource-constrained UAV applications. In addition, PR curves for the ADG-
YOLO model were generated, as shown in Figure 12, providing a quantitative evaluation of
its detection performance and demonstrating its strong precision and recall. These results
further confirm the robustness and practical applicability of ADG-YOLO in real-world
UAV detection scenarios.

Figure 12. PR curves of ADG-YOLO on Visdrone dataset.

Table 7. Comparison of Lightweight Detection Models in Terms of Model Size, mAP and power.
(Visdrone dataset).

Model Params (M) GFLOPs (G) mAP0.5 mAP0.5:0.95 FPS Power
Consumption (W)

Energy Per
Frame (J)

YOLOv5s 7.02 15.8 34.3% 18.9% 12 3.4 0.2833
YOLOv8n 3.00 8.1 32.6% 19.0% 10 3.2 0.3200

YOLOv11n 2.58 6.3 34.2% 20.0% 16 3.4 0.2125
ADG-YOLO 1.77 5.7 33.2% 19.0% 20 3.2 0.1600
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In summary, ADG-YOLO achieves an optimal trade-off among accuracy, model size,
and resource consumption, making it particularly suitable for real-time UAV detection tasks
in computationally constrained environments. The model also exhibits strong engineering
adaptability for practical deployment.

4. Target Distance Estimation Experiment
4.1. Experimental Setup and Deployment Overview

To verify the accuracy of UAV altitude measurement, the ADG-YOLO model was
converted into the .rknn format and deployed on the Lubancat 4 development board
(EmbedFire, Dongguan, China). The target UAVs used in the distance measurement experi-
ments were DJI 3TD and DJI NEO, both known for their flight stability. Visual data were
captured using a Raspberry Pi USB camera (Zhongwei Aoke, Shenzhen, China) module,
which was connected to the development board via a USB cable. Five lenses with focal
lengths of 12 mm, 16 mm, 25 mm, 35 mm, and 50 mm were selected for distance measure-
ment experiments at various ranges. The captured images and corresponding distance
information were displayed on a YCXSQ-10 display screen (ZINCTUNG, Shenzhen, China),
which features a 10-inch size and a resolution of 1920 × 1080 pixels. The camera was
mounted on a tripod, while the display screen was connected to the development board via
an HDMI cable for real-time visualization of detection results and distance measurements.

Figure 13 illustrates the experimental setup: (a) the distance measurement platform,
(b) the lenses used in this experiment, and (c) the UAVs employed for the experiment.

   
(a) (b) (c) 

Figure 13. Experimental Setup. (a) Distance Measurement Platform. (b) The lens used in this
experiment. (c) UAVs used for Experiment.

To further validate the model beyond laboratory conditions, experiments were con-
ducted both indoors and outdoors. The DJI 3TD, with strong wind resistance, was used
for outdoor experiments in an open area with buildings, trees, and pavement as the back-
ground, under sufficient natural lighting. During testing, the UAV was manually flown
along a straight path aligned with the camera’s optical axis, maintaining a level attitude to
ensure stable visual features and reduce interference from yaw or pitch. The DJI NEO, due
to its smaller size and lower wind tolerance, was tested indoors in a closed room with stable
lighting and minimal airflow, providing favorable conditions for high-precision distance
calibration.

The Lubancat 4 development board runs the ADG-YOLO model with an estimated
processing time of ~37 ms per frame (corresponding to ~27 FPS) and a power consumption
of approximately 5 W. This setup demonstrates the feasibility of deploying ADG-YOLO in
real-world scenarios with both indoor and outdoor UAV tests, while providing high-speed
and energy-efficient performance.
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4.2. Distance Measurement for UAV Targets

In our UAV distance measurement experiments, two drone models were selected as
test targets: the DJI 3TD and the DJI NEO, with rotor spans of 62 cm and 15 cm, respectively.
To assess the adaptability of the proposed measurement method across different UAV sizes
and operational environments, each model was tested under distinct conditions.

The DJI 3TD, featuring strong wind resistance, was used for outdoor experiments.
During testing, the UAV was manually flown along a straight path aligned with the
camera’s optical axis, maintaining a level attitude to ensure stable visual features and
reduce interference from yaw or pitch. As shown in Figure 14a, the test was conducted in
an open outdoor area, where a standard measuring tape was laid along the flight path to
mark reference distance points. The camera system was fixed on a stationary tripod, and
images were captured at each distance for subsequent evaluation.

In contrast, the DJI NEO, due to its smaller size and lower wind tolerance, was tested
indoors to ensure stable hovering. As shown in Figure 14b, the indoor experiment was
conducted in a closed room, with the measuring tape placed along a straight line. The
UAV hovered at various predefined points to collect image samples at known distances.
The controlled indoor environment—with stable lighting and minimal airflow—provided
favorable conditions for high-precision distance calibration.

 

Figure 14. Distance Measurement Experimental Scene.

In this study, distance estimation was performed using the principle of similar triangles.
Based on the known physical width of the UAV and the width of the corresponding
bounding box output by the detection model, the distance between the UAV and the camera
was calculated. All estimated distances were compared with ground-truth values obtained
from physical measurements using a tape measure. This comparison was conducted to
evaluate the effectiveness and stability of the proposed distance estimation method under
real-world conditions.

To further quantify the accuracy of the system in UAV distance estimation, relative
error was introduced as a performance evaluation metric. By calculating the ratio between
the prediction error and the ground-truth distance, this metric reflects the overall precision
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of the proposed distance measurement method. The formula for computing the relative
error emea is given in Equation (11) [57].

emea =
|dreal − dmea|

dreal
× 100% (15)

The distance estimation results for the DJI NEO are summarized in Table 8, obtained
using a 12 mm lens. The experimental results for the DJI 3TD are presented in Table 9,
based on tests conducted with five different lens focal lengths. In addition, representative
experimental images are provided to visually demonstrate the distance measurement
process and outcomes—Figure 15 shows the measurement setup for the DJI NEO, while
Figure 16 presents the measurement setup for the DJI 3TD.

 

Figure 15. Distance Measurement Scene of DJI NEO.

The UAV distance estimation method based on the principle of similar triangles
demonstrated excellent performance in real-world scenarios. As shown in Tables 8 and 9,
the DJI NEO achieved an average relative error of 4.18% across 10 test cases within the
range of 0.5 to 5 m. For the DJI 3TD, a total of 45 measurements across various focal lengths
and distances ranging from 2 to 50 m resulted in a combined average relative error of only
2.40%. High accuracy was maintained across all test distances, with the maximum error
not exceeding 12.33%. Notably, even at a distance of 50 m, the method achieved a minimal
error of 0.26%, further validating the effectiveness and stability of the proposed approach.

Table 8. Distance Measurement of DJI NEO (f = 12 mm).

Experiment ID dreal(m) dmea(m) emea

1 0.5 0.52 4%
2 1 0.95 5%
3 1.5 1.64 9.3%
4 2 2.13 6.5%
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Table 8. Cont.

Experiment ID dreal(m) dmea(m) emea

5 2.5 2.36 5.6%
6 3 3.05 1.7%
7 3.5 3.61 3.1%
8 4 3.98 0.5%
9 4.5 4.36 3.1%

10 5 4.90 2%

 

Figure 16. Distance Measurement Scene of DJI 3TD.

Table 9. Distance Measurement of DJI 3TD.

Experiment ID Focal Length (mm) dreal(m) dmea(m) emea

1 12 2 2.15 7.50%
2 12 3 3.37 12.33%
3 12 4 4.28 7.00%
4 12 5 4.99 0.20%
5 12 6 5.85 2.50%
6 12 7 7.58 8.29%
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Table 9. Cont.

Experiment ID Focal Length (mm) dreal(m) dmea(m) emea

7 12 8 8.07 0.88%
8 12 9 8.81 2.11%
9 16 11 10.59 3.73%

10 16 12 11.62 3.17%
11 16 13 13.01 0.08%
12 16 14 13.73 1.93%
13 16 15 14.79 1.40%
14 16 16 16.35 2.19%
15 16 17 16.87 0.76%
16 16 18 18.02 0.11%
17 16 19 18.33 3.53%
18 25 21 21.06 0.29%
19 25 22 22.36 1.64%
20 25 23 22.59 1.78%
21 25 24 23.66 1.42%
22 25 25 25.39 1.56%
23 25 26 26.78 3.00%
24 25 27 27.66 2.44%
25 25 28 28.21 0.75%
26 25 29 29.33 1.14%
27 35 31 30.52 1.55%
28 35 32 31.78 0.69%
29 35 33 33.26 0.79%
30 35 34 33.70 0.88%
31 35 35 34.96 0.11%
32 35 36 35.78 0.61%
33 35 37 38.21 3.27%
34 35 38 38.62 1.63%
35 35 39 39.45 1.15%
36 50 41 40.73 0.66%
37 50 42 42.56 1.33%
38 50 43 43.34 0.79%
39 50 44 43.97 0.07%
40 50 45 45.26 0.58%
41 50 46 45.69 0.67%
42 50 47 46.91 0.19%

5. Discussion
The proposed ADG-YOLO framework demonstrates significant advancements in

real-time UAV detection and distance estimation on edge devices. Nonetheless, several
challenges remain that warrant further investigation to enhance its scalability and real-
world applicability.

First, although the current custom dataset (5343 images) includes three UAV models
across diverse backgrounds, its limited scope constrains the generalization of the proposed
framework. The dataset size was inherently restricted by practical limitations, including
the availability of UAV models, time, and funding, which prevented the acquisition of
a larger and more diverse collection. Despite these constraints, the dataset maintains
significant diversity through multi-angle, multi-distance, and multi-condition image acqui-
sition, as well as supplementation from publicly available UAV resources. Experimental
results demonstrate that the model achieves robust detection performance across both the
custom-target and generalization subsets, indicating that the dataset is sufficient to support
the objectives of the current study. Nevertheless, future work should focus on building
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a large-scale, open-source UAV dataset covering various drone types (e.g., quadrotors,
hexarotors, fixed-wing), sizes (micro to commercial), and environmental conditions (e.g.,
night, adverse weather, swarm operations), particularly under low-SNR settings prone
to false positives. Collaborative data collection across platforms may further accelerate
this expansion and improve the model’s generalization capability. Compared with large-
scale UAV benchmarks such as UAVDT, which contain over 100,000 images, the current
dataset is relatively limited. Future efforts will focus on collaborative data collection across
institutions and open-source release to further enhance the dataset’s diversity and support
broader research reproducibility.

Second, current distance estimation depends on known UAV dimensions (e.g., DJI
3TD: 62 cm, DJI NEO: 15 cm), which limits its flexibility in handling unknown models. Fu-
ture research should explore multi-model support through an onboard UAV identification
module containing pre-calibrated physical parameters. The feasibility of the pre-calibrated
identification module is supported by the possibility to store physical parameters of known
UAV models onboard, enabling rapid retrieval during detection without significant compu-
tational overhead. Additionally, geometry-independent approaches, such as monocular
depth estimation fused with detection outputs, offer promising alternatives that remove
dependency on prior shape knowledge. For instance, monocular depth estimation can
be combined with multi-scale feature fusion and uncertainty-aware refinement to reduce
errors arising from perspective distortion, particularly in high-altitude scenarios. Although
the current controlled dataset covers target distances from 5 to 30 m, real-world UAV
applications such as aerial surveillance or infrastructure monitoring often involve higher
flight height exceeding 50 m. Under such scenarios, monocular distance estimation may
experience increased errors due to reduced image resolution and perspective distortion. To
mitigate these challenges, adaptive focal length calibration, multi-scale training strategies,
or fusion with onboard UAV identification modules and monocular depth estimation could
be adopted. These enhancements are expected to improve model robustness and extend its
applicability to high-altitude UAV operations.

Third, while ADG-YOLO achieves 27 FPS on the Lubancat4 edge device, its practical
deployment on UAVs introduces additional challenges. These include optimizing the model
for ultra-low-power processors, ensuring efficient thermal dissipation during extended
operation, and compensating for dynamic motion via IMU and EKF integration to stabilize
detection during rapid pitch or yaw movements. Moreover, expanding the system to air-to-
air detection, such as in drone swarm environments, requires altitude-invariant ranging
models and training strategies that are robust to occlusion. Furthermore, evaluating
energy consumption and latency across different edge processors can guide optimization
for practical UAV deployment. Strategies such as occlusion-aware training and data
augmentation are expected to improve swarm detection robustness under challenging
scenarios. Finally, achieving sub-20 ms end-to-end latency is essential for enabling closed-
loop tasks such as autonomous interception and cooperative formation flight.

Building on the above discussion of ADG-YOLO’s performance, limitations, and poten-
tial improvements, it is also informative to consider alternative UAV detection modalities,
such as LiDAR- and radar-based systems. While LiDAR and radar provide advantages
in ranging accuracy, wider field-of-view (FoV), and robustness to environmental condi-
tions, they typically incur higher power consumption, increased weight, and elevated
cost, which may limit their deployment on small UAV platforms. In contrast, computer
vision (CV)-based approaches, exemplified by ADG-YOLO, offer lightweight, low-power
solutions well-suited for onboard UAV integration, albeit with trade-offs in maximum
detection range and sensitivity under low-SNR or occluded scenarios. Importantly, these
approaches are not mutually exclusive; rather, they can be complementary. Hybrid sys-
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tems that integrate CV, LiDAR, and radar could leverage the strengths of each modality,
enabling more robust, flexible, and energy-efficient UAV perception. Our work focuses on
CV for edge-deployed, real-time UAV detection, which aligns with rather than conflicts
with LiDAR- or radar-focused studies, and provides a foundation for future multi-sensor
collaborative frameworks.

6. Conclusions
This study proposes ADG-YOLO, a lightweight and efficient framework for real-

time UAV target detection and distance estimation on edge devices. The framework
integrates multiple key innovations: (1) a computationally optimized architecture that
incorporates C3Ghost modules and ADown layers, reducing model parameters to 1.77 M
and GFLOPs to 5.7, while maintaining high detection accuracy with 98.4% mAP0.5; (2) an
EKF-based tracking mechanism that significantly improves detection stability in dynamic
environments; (3) a monocular distance estimation method based on similarity triangle
theory, which achieves average relative errors ranging from 2.40% to 4.18% over distances
of 0.5–50 m; (4) successful real-time deployment on the Lubancat4 edge platform (RK3588S
NPU) at 27 FPS, demonstrating its practical applicability in resource-constrained settings.

Overall, ADG-YOLO effectively balances detection accuracy and computational effi-
ciency, bridging the gap between advanced perception and edge deployment for UAV-based
applications. Future work will focus on expanding large-scale UAV datasets, enabling
generalized ranging for unknown UAV models, and facilitating deployment in autonomous
aerial systems to support next-generation capabilities in both military and commercial UAV
operations. In addition, the proposed framework holds strong potential for broader appli-
cation domains, including environmental monitoring, precision agriculture, infrastructure
inspection, urban air traffic management, and search and rescue, as well as security and
defense operations. These directions will further enhance the scalability and generalization
of ADG-YOLO in real-world scenarios.
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Unmanned Aerial Vehicles Using Vision-Based Systems in Unknown Environments. Electronics 2021, 10, 1647. [CrossRef]

10. Tian, X.; Liu, R.; Wang, Z.; Ma, J. High Quality 3D Reconstruction Based on Fusion of Polarization Imaging and Binocular Stereo
Vision. Inf. Fusion 2022, 77, 19–28. [CrossRef]

11. Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit Detection and Positioning Technology for a Camellia Oleifera C. Abel Orchard
Based on Improved YOLOv4-Tiny Model and Binocular Stereo Vision. Expert Syst. Appl. 2023, 211, 118573. [CrossRef]

12. Bao, D.; Wang, P. Vehicle Distance Detection Based on Monocular Vision. In Proceedings of the 2016 IEEE International Conference
on Progress in Informatics and Computing (PIC), Shanghai, China, 23–25 December 2016; pp. 187–191.

13. Ali, A.A.; Hussein, H.A. Distance Estimation and Vehicle Position Detection Based on Monocular Camera. In Proceedings of
the 2016 IEEE Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and Applications
(AIC-MITCSA), Baghdad, Iraq, 9–10 May 2016; pp. 1–4.

14. Liu, F.; Shen, C.; Lin, G. Deep Convolutional Neural Fields for Depth Estimation from a Single Image. In Proceedings of the 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5162–5170.

15. Li, J.; Klein, R.; Yao, A. A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single RGB Images. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3372–3380.

16. Eigen, D.; Fergus, R. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional
Architecture. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 2650–2658.

17. Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image Using a Multi-Scale Deep Network. Adv. Neural Inf.
Process. Syst. 2014, 27.

18. Jiao, J.; Cao, Y.; Song, Y.; Lau, R. Look Deeper into Depth: Monocular Depth Estimation with Semantic Booster and Attention-
Driven Loss. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11219, pp. 55–71, ISBN 978-3-030-01266-3.

19. Zhe, T.; Huang, L.; Wu, Q.; Zhang, J.; Pei, C.; Li, L. Inter-Vehicle Distance Estimation Method Based on Monocular Vision Using
3D Detection. IEEE Trans. Veh. Technol. 2020, 69, 4907–4919. [CrossRef]

20. Mallot, H.A.; Bülthoff, H.H.; Little, J.J.; Bohrer, S. Inverse Perspective Mapping Simplifies Optical Flow Computation and Obstacle
Detection. Biol. Cybern. 1991, 64, 177–185. [CrossRef]

21. Tuohy, S.; O’Cualain, D.; Jones, E.; Glavin, M. Distance Determination for an Automobile Environment Using Inverse Perspective
Mapping in OpenCV. In Proceedings of the IET Irish Signals and Systems Conference (ISSC 2010), Cork, Ireland, 23–24 June 2010;
pp. 100–105.

22. Wongsaree, P.; Sinchai, S.; Wardkein, P.; Koseeyaporn, J. Distance Detection Technique Using Enhancing Inverse Perspective
Mapping. In Proceedings of the 2018 IEEE 3rd International Conference on Computer and Communication Systems (ICCCS),
Nagoya, Japan, 27–30 April 2018; pp. 217–221.

23. Huang, L.; Zhe, T.; Wu, J.; Wu, Q.; Pei, C.; Chen, D. Robust Inter-Vehicle Distance Estimation Method Based on Monocular Vision.
IEEE Access 2019, 7, 46059–46070. [CrossRef]

24. Qi, S.H.; Li, J.; Sun, Z.P.; Zhang, J.T.; Sun, Y. Distance Estimation of Monocular Based on Vehicle Pose Information. J. Phys. Conf.
Ser. 2019, 1168, 032040. [CrossRef]

25. Jiafa, M.; Wei, H.; Weiguo, S. Target Distance Measurement Method Using Monocular Vision. IET Image Process. 2020, 14,
3181–3187. [CrossRef]

26. Yang, R.; Yu, S.; Yao, Q.; Huang, J.; Ya, F. Vehicle Distance Measurement Method of Two-Way Two-Lane Roads Based on
Monocular Vision. Appl. Sci. 2023, 13, 3468. [CrossRef]

27. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

28. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015; pp. 1440–1448.

https://doi.org/10.3390/drones9010076
https://doi.org/10.3390/mi13040520
https://doi.org/10.3390/electronics10141647
https://doi.org/10.1016/j.inffus.2021.07.002
https://doi.org/10.1016/j.eswa.2022.118573
https://doi.org/10.1109/TVT.2020.2977623
https://doi.org/10.1007/BF00201978
https://doi.org/10.1109/ACCESS.2019.2907984
https://doi.org/10.1088/1742-6596/1168/3/032040
https://doi.org/10.1049/iet-ipr.2019.1293
https://doi.org/10.3390/app13063468


Drones 2025, 9, 707 25 of 26

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

31. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

32. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
33. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934. [CrossRef]
34. Zhang, Y.; Guo, Z.; Wu, J.; Tian, Y.; Tang, H.; Guo, X. Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability

2022, 14, 12274. [CrossRef]
35. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection

Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [CrossRef]
36. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475. [CrossRef]

37. Jacob, I.J.; Piramuthu, S.; Falkowski-Gilski, P. (Eds.) Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2023;
Algorithms for Intelligent Systems; Springer Nature: Singapore, 2024; ISBN 978-981-99-7999-8.

38. Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In
Computer Vision–ECCV 2024, Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024;
Springer Nature: Cham, Switzerland, 2024; pp. 1–21.

39. Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. Adv. Neural Inf.
Process. Syst. 2024, 37, 107984–108011.

40. Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725.
[CrossRef]

41. Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524.
42. Cheng, Q.; Wang, Y.; He, W.; Bai, Y. Lightweight Air-to-Air Unmanned Aerial Vehicle Target Detection Model. Sci. Rep. 2024, 14,

2609. [CrossRef] [PubMed]
43. Su, J.; Qin, Y.; Jia, Z.; Liang, B. MPE-YOLO: Enhanced Small Target Detection in Aerial Imaging. Sci. Rep. 2024, 14, 17799.

[CrossRef]
44. Wang, C.; Han, Y.; Yang, C.; Wu, M.; Chen, Z.; Yun, L.; Jin, X. CF-YOLO for Small Target Detection in Drone Imagery Based on

YOLOv11 Algorithm. Sci. Rep. 2025, 15, 16741. [CrossRef]
45. Zhou, S.; Yang, L.; Liu, H.; Zhou, C.; Liu, J.; Wang, Y.; Zhao, S.; Wang, K. Improved YOLO for Long Range Detection of Small

Drones. Sci. Rep. 2025, 15, 12280. [CrossRef]
46. Kanjalkar, P.; Kinhikar, S.; Zagade, A.; Rane, S.; Kanjalkar, J. Intelligent Surveillance Tower for Detection of the Drone from the

Other Aerial Objects Using Deep Learning. In Intelligent Systems for Smart Cities, Proceedings of the International Conference on
Information Science and Applications (ICISA 2023), Singapore, 23–25 May 2023; Springer Nature: Singapore, 2023; pp. 39–51.

47. Laroca, R.; Santos, M.D.; Menotti, D. Improving Small Drone Detection through Multi-Scale Processing and Data Augmentation.
arXiv 2025, arXiv:2504.19347. [CrossRef]

48. Dadboud, F.; Patel, V.; Mehta, V.; Bolic, M.; Mantegh, I. Single-Stage UAV Detection and Classification with YOLOV5: Mosaic
Data Augmentation and PANet. In Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), Washington, DC, USA, 16 November 2021; pp. 1–8.

49. Arezoomandan, S.; Klohoker, J.; Han, D.K. Data Augmentation Pipeline for Enhanced UAV Surveillance. In Pattern Recognition,
Proceedings of the International Conference on Pattern Recognition (ICPR 2025), Kolkata, India, 1–5 December 2024; Springer: Cham,
Switzerland, 2025; pp. 366–380.

50. Gishyan, K. Improving UAV Object Detection through Image Augmentation. Math. Probl. Comput. Sci. 2020, 54, 53–68. [CrossRef]
51. Kim, B.H.; Khan, D.; Bohak, C.; Choi, W.; Lee, H.J.; Kim, M.Y. V-RBNN Based Small Drone Detection in Augmented Datasets for

3D LADAR System. Sensors 2018, 18, 3825. [CrossRef]
52. Han, K.; Wang, Y.; Xu, C.; Guo, J.; Xu, C.; Wu, E.; Tian, Q. GhostNets on Heterogeneous Devices via Cheap Operations. Int. J.

Comput. Vis. 2022, 130, 1050–1069. [CrossRef]
53. Ji, C.L.; Yu, T.; Gao, P.; Wang, F.; Yuan, R.Y. YOLO-TLA: An Efficient and Lightweight Small Object Detection Model Based on

YOLOv5. J. Real-Time Image Process. 2024, 21, 141. [CrossRef]
54. Fang, S.; Chen, C.; Li, Z.; Zhou, M.; Wei, R. YOLO-ADual: A Lightweight Traffic Sign Detection Model for a Mobile Driving

System. World Electr. Veh. J. 2024, 15, 323. [CrossRef]

https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.3390/su141912274
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.48550/arXiv.2410.17725
https://doi.org/10.1038/s41598-024-53181-2
https://www.ncbi.nlm.nih.gov/pubmed/38297020
https://doi.org/10.1038/s41598-024-68934-2
https://doi.org/10.1038/s41598-025-99634-0
https://doi.org/10.1038/s41598-025-95580-z
https://doi.org/10.48550/arXiv.2504.19347
https://doi.org/10.51408/1963-0059
https://doi.org/10.3390/s18113825
https://doi.org/10.1007/s11263-022-01575-y
https://doi.org/10.1007/s11554-024-01519-4
https://doi.org/10.3390/wevj15070323


Drones 2025, 9, 707 26 of 26

55. Tian, Z.; Chu, X.; Wang, X.; Wei, X.; Shen, C. Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images.
In Advances in Neural Information Processing Systems (NeurIPS 2022), Proceedings of the 36th International Conference on Neural
Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Neural Information Processing Systems
Foundation Inc.: San Diego, CA, USA, 2022; Volume 35, pp. 34899–34911.

56. Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot Object Detection. arXiv 2019, arXiv:1911.09516. [CrossRef]
57. Ky, H.H. Notes on the Use of Propagation of Error Formulas. J. Res. Natl. Bur. Stand. C Eng. Instrum. 1966, 70, 263.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1911.09516

	Introduction 
	Methodology 
	ADG-YOLO 
	C3Ghost 
	ADown 
	Proposed ADG-YOLO 

	Model Conversion and Edge Deployment 
	Target Monitoring Based on ADG-YOLO Detection and EKF Tracking 
	Monocular Ranging for UAVs Using Similar Triangles 

	Model Analysis 
	Dataset 
	Experimental Environment and Experimental Parametes 
	Evaluation Metrics 
	Ablation Study 
	Compration Expriment 

	Target Distance Estimation Experiment 
	Experimental Setup and Deployment Overview 
	Distance Measurement for UAV Targets 

	Discussion 
	Conclusions 
	References

