Next Issue
Volume 47, September
Previous Issue
Volume 47, July
 
 
cimb-logo

Journal Browser

Journal Browser

Curr. Issues Mol. Biol., Volume 47, Issue 8 (August 2025) – 98 articles

Cover Story (view full-size image): The red blood cell membrane is a highly specialized structure where transmembrane proteins and cytoskeletal components form dynamic multiprotein complexes. Central to this architecture is Anion Exchanger 1 (known as Band 3 protein), which associates with glycophorins, ankyrin, and spectrin to ensure membrane stability, mechanical resilience, and flexibility during blood circulation. The figure illustrates the distinct anchoring modes of Band 3, within the actin junctional complex, the ankyrin complex, or as mobile Band 3, highlighting the molecular interplay that underlies erythrocyte deformability and survival. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
39 pages, 1435 KB  
Review
Extracellular Vesicles in Osteogenesis: A Comprehensive Review of Mechanisms and Therapeutic Potential for Bone Regeneration
by Sreyee Biswas, Prakash Gangadaran, Chandrajeet Dhara, Shreya Ghosh, Soumya Deep Phadikar, Akash Chakraborty, Atharva Anand Mahajan, Ranit Mondal, Debdeep Chattopadhyay, Trisha Banerjee, Anuvab Dey, Subhrojyoti Ghosh, Anand Krishnan, Byeong-Cheol Ahn and Ramya Lakshmi Rajendran
Curr. Issues Mol. Biol. 2025, 47(8), 675; https://doi.org/10.3390/cimb47080675 - 21 Aug 2025
Viewed by 968
Abstract
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the [...] Read more.
Extracellular vesicles (EVs) are nanoscale, membrane-bound particles secreted by diverse cell types and act as pivotal mediators of intercellular communication during bone regeneration. These vesicles transport bioactive cargo including proteins, lipids, mRNAs, and microRNAs that modulate osteogenesis, angiogenesis, and immune responses within the bone microenvironment. EVs originating from mesenchymal stem cells, osteoblasts, endothelial cells, and macrophages have demonstrated substantial potential to promote bone formation, inhibit bone resorption, and enhance vascularization. This review examines the biogenesis, classification, and cellular uptake mechanisms of EVs, focusing on their roles in osteogenesis and their therapeutic applications in fracture healing, osteoporosis, and bone tissue engineering. Despite their promise, significant challenges remain, including the need for standardization, scalable production, and assessment of long-term safety to enable clinical translation of EV-based therapies. Here, we provide a comprehensive overview of EV biology, elucidate the molecular mechanisms of EVs in bone regeneration, and discuss innovative strategies to optimize their therapeutic efficacy, highlighting their potential as next-generation orthobiologics. Full article
Show Figures

Graphical abstract

21 pages, 693 KB  
Review
Selected Protective Mechanisms of Human Milk Against Intestinal Protozoal Infections in Infants
by Joanna Wróblewska, Anna Długosz, Marcin Wróblewski, Jarosław Nuszkiewicz, Paweł Sutkowy and Alina Woźniak
Curr. Issues Mol. Biol. 2025, 47(8), 674; https://doi.org/10.3390/cimb47080674 - 21 Aug 2025
Viewed by 635
Abstract
Human milk, especially colostrum, is a biologically complex fluid with potent protective properties against gastrointestinal disturbances in infants. Among intestinal protozoa transmitted via the fecal–oral route, this review focuses on Giardia lamblia and Entamoeba histolytica, as the protective role of milk-derived factors [...] Read more.
Human milk, especially colostrum, is a biologically complex fluid with potent protective properties against gastrointestinal disturbances in infants. Among intestinal protozoa transmitted via the fecal–oral route, this review focuses on Giardia lamblia and Entamoeba histolytica, as the protective role of milk-derived factors against these parasites is the most extensively documented. Its protective effects result from a wide range of bioactive components, including mucins, lactoferrin, human milk oligosaccharides, melatonin, and secretory IgA, which support the integrity of the intestinal barrier, regulate immune responses, and inhibit the adhesion and activity of pathogens. The composition of human milk can be influenced by maternal factors such as nutritional status, stress, sleep quality, and physical activity, which may modulate its immunological potential. Dietary intake of micronutrients, fermentable fibers, and fermented foods also appears to play a role in shaping the milk’s protective properties. This review discusses the molecular mechanisms by which selected milk components contribute to the defense against protozoan infections in early life and considers how maternal health and lifestyle may affect the effectiveness of these protective mechanisms. Full article
Show Figures

Figure 1

20 pages, 6354 KB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Viewed by 498
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

21 pages, 1385 KB  
Review
Mistletoe in Cancer Cell Biology: Recent Advances
by Chang-Eui Hong and Su-Yun Lyu
Curr. Issues Mol. Biol. 2025, 47(8), 672; https://doi.org/10.3390/cimb47080672 - 20 Aug 2025
Viewed by 754
Abstract
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties, [...] Read more.
Mistletoe (Viscum album L.) has been used in complementary cancer therapy for decades, but its mechanisms remained poorly understood until recently. This review synthesizes transformative advances in mistletoe cancer research from 2020 to 2025, focusing on newly discovered molecular mechanisms, immunomodulatory properties, and clinical applications. We conducted a comprehensive analysis of controlled studies, mechanistic investigations, and real-world evidence published between 2020 and 2025. The discovery of mistletoe-induced immunogenic cell death (ICD) represents a paradigm shift in understanding its anticancer effects. Mistletoe extracts trigger endoplasmic reticulum stress, leading to calreticulin exposure in 18–51% of cancer cells and a 7-fold increase in adenosine triphosphate (ATP) release. Three-dimensional culture models revealed enhanced macrophage reprogramming effects, with a 15.8% increase in pro-inflammatory interleukin (IL)-6 and a 26.4% reduction in immunosuppressive IL-10. Real-world evidence from over 400 non-small-cell lung cancer patients shows that combining mistletoe with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors doubles median overall survival (6.8 to 13.8 months), with biomarker-selected populations experiencing up to a 91.2% reduction in death risk. The Johns Hopkins Phase I trial established intravenous administration safety at 600 mg three times weekly. Advanced analytical approaches including metabolomics, chronobiology, and machine learning are enabling precision medicine applications. These findings position mistletoe as a scientifically validated component of integrative oncology, bridging traditional medicine with evidence-based cancer care. Future research should focus on ferroptosis mechanisms, single-cell immune profiling, and standardized clinical protocols. Full article
(This article belongs to the Special Issue Phytochemicals in Cancer Chemoprevention and Treatment: 2nd Edition)
Show Figures

Figure 1

16 pages, 14697 KB  
Article
Comparative Study of Reprogramming Efficiency and Regulatory Mechanisms of Placental- and Fibroblast-Derived Induced Pluripotent Stem Cells (iPSCs) in Mules
by Fangyuan Liu, Jia Zhang, Lingyu Kong, Rihan Wu, Qiqi Jiang, Ying Lu and Xihe Li
Curr. Issues Mol. Biol. 2025, 47(8), 671; https://doi.org/10.3390/cimb47080671 - 19 Aug 2025
Viewed by 425
Abstract
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells [...] Read more.
As an interspecies hybrid inheriting genetic material from horse and donkey lineages, mules provide a unique model for studying allele-specific regulatory dynamics. Here, we isolated adult fibroblasts (AFs) and placental fibroblasts (PFs) from mule tissues and reprogrammed them into induced pluripotent stem cells (iPSCs). Intriguingly, placental fibroblast-derived iPSCs (mpiPSCs) exhibited reduced reprogramming efficiency compared to adult fibroblast-derived iPSCs (maiPSCs). Through allele-specific expression (ASE) analysis, we systematically dissected transcriptional biases in parental cell types and their reprogrammed counterparts, revealing conserved preferential expression of asinine alleles in core pluripotency regulators (e.g., POU5F1/OCT4, SOX2, NANOG) across both cell lineages. Strikingly, mpiPSCs displayed stronger asinine allele dominance than maiPSCs, suggesting tissue-specific parental genomic imprinting. Mechanistic exploration implicated PI3K-AKT signaling as a potential pathway mediating the reprogramming inefficiency in placental fibroblasts. By integrating transcriptomic profiling with ASE technology, this study uncovers allele selection hierarchies during somatic cell reprogramming in hybrids and establishes a framework for understanding how parental genomic conflicts shape pluripotency establishment. These findings advance interspecies iPSC research by delineating allele-specific regulatory networks and providing insights into the molecular constraints of hybrid cellular reprogramming. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 4429 KB  
Article
Bioinformatic Analysis of the Value of Mitophagy and Immune Responses in Corneal Endothelial Dysfunction
by Ruilin Guo, Chenjia Xu, Yi Yu, Minglu Ma, Xiaojuan Dong, Jing Wu, Chen Ouyang, Jie Ling and Ting Huang
Curr. Issues Mol. Biol. 2025, 47(8), 670; https://doi.org/10.3390/cimb47080670 - 19 Aug 2025
Viewed by 422
Abstract
This study was conducted to elucidate the mitophagy-related differentially expressed genes (MRDEGs) in corneal endothelial dysfunction (CED) and to identify key hub genes that could provide insights into the disease pathogenesis and potential targeted therapies. To achieve this, CED models were established in [...] Read more.
This study was conducted to elucidate the mitophagy-related differentially expressed genes (MRDEGs) in corneal endothelial dysfunction (CED) and to identify key hub genes that could provide insights into the disease pathogenesis and potential targeted therapies. To achieve this, CED models were established in female SD rats, and RNA sequencing of coronal endothelium samples was conducted to generate a self-testing dataset. Comprehensive bioinformatics analyses were executed, which included the identification of differentially expressed genes (DEGs), GO and KEGG enrichment analyses, GSEA, and GSVA. A protein–protein interaction (PPI) network was constructed to identify highly interconnected hub genes, followed by the construction of ROC curves to validate MRDEGs within the dataset, alongside qRT-PCR assays. Our findings revealed a total of 18,511 DEGs, among which 20 genes were characterized as MRDEGs. Enrichment analyses indicated significant associations with monocyte differentiation and lymphocyte proliferation. Importantly, eight hub genes emerged from the PPI network as promising therapeutic targets. In conclusion, this study underscores the important role of MRDEGs and immune infiltration in CED, laying the groundwork for future investigations into targeted therapies for this disease. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

2 pages, 436 KB  
Correction
Correction: Kardaş et al. Gallic Acid Protects from Sepsis-Induced Acute Lung Injury. Curr. Issues Mol. Biol. 2024, 46, 1–10
by Süleyman Kardaş, Osman Sezer Çınaroğlu, Ejder Saylav Bora and Oytun Erbaş
Curr. Issues Mol. Biol. 2025, 47(8), 669; https://doi.org/10.3390/cimb47080669 - 19 Aug 2025
Viewed by 253
Abstract
In the original publication [...] Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 9229 KB  
Article
Brassinosteroid Coordinates with ROS, Auxin and Gibberellin to Promote Mesocotyl Elongation and Deep-Sowing Tolerance in Maize
by Yahui Wang, Ying Li, Yuze Ma, Xiaolin Wu, Wei Wang, Hui Liu and Xiaoming Li
Curr. Issues Mol. Biol. 2025, 47(8), 668; https://doi.org/10.3390/cimb47080668 - 18 Aug 2025
Viewed by 372
Abstract
Mesocotyl elongation is the key determinant of deep-sowing tolerance in maize. Sowing at an appropriate depth allows the seedling to exploit water and nutrients stored in deeper soil layers, thereby enhancing its ability to withstand drought and other abiotic stresses. Mesocotyl elongation is [...] Read more.
Mesocotyl elongation is the key determinant of deep-sowing tolerance in maize. Sowing at an appropriate depth allows the seedling to exploit water and nutrients stored in deeper soil layers, thereby enhancing its ability to withstand drought and other abiotic stresses. Mesocotyl elongation is regulated by the phytohormones brassinosteroid (BR), auxin (IAA), gibberellin (GA), and reactive oxygen species (ROS). However, whether and how BR coordinates IAA, GA, and ROS to control mesocotyl elongation in maize remains unclear. Here, we demonstrated that BRs orchestrate ROS, IAA, and GA signaling to remodel cell-wall metabolism in mesocotyl cells, promote cell elongation, and, consequently, strengthen deep-sowing tolerance. BR promoted mesocotyl elongation through multiple routes: (1) decreasing the contents of cell-wall components (hemicellulose, cellulose, and pectin); (2) activating cell-wall-loosening enzymes (cellulase, pectinase, and acidic xylanase); and (3) disturbing ROS homeostasis by elevating superoxide dismutase (SOD) activity. Combined treatments of BR with either IAA or GA further enhanced mesocotyl elongation in a concentration-dependent manner. In deep-sowing trials (15 cm), application of BR alone or in combination with IAA or GA markedly increased mesocotyl length and emergence rate, thereby improving deep-sowing tolerance. Our work indicated that BR integrated ROS, IAA, and GA signals to restructure the cell wall and derived mesocotyl cell elongation, providing both theoretical insights and practical strategies for breeding maize varieties with enhanced deep-sowing tolerance. Full article
(This article belongs to the Special Issue Plant Hormones, Development, and Stress Tolerance)
Show Figures

Figure 1

23 pages, 3101 KB  
Review
Hydroxytyrosol and Brain Tumors: Mechanisms of Action and Therapeutic Potential
by Cristina Cueto-Ureña, María Jesús Ramírez-Expósito, María Pilar Carrera-González and José Manuel Martínez-Martos
Curr. Issues Mol. Biol. 2025, 47(8), 667; https://doi.org/10.3390/cimb47080667 - 18 Aug 2025
Viewed by 476
Abstract
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present [...] Read more.
Central nervous system (CNS) tumors, especially gliomas and IDH-wildtype glioblastoma, present high aggressiveness, low response to current treatments and limited survival. Several biological processes such as oxidative stress, inflammation, apoptosis, and autophagy are involved in their development. Hydroxytyrosol (HTX), a phenolic compound present in olives, has shown relevant effects on these processes in experimental models. This review analyzes its chemical characteristics, bioavailability, and ability to cross the blood–brain barrier, as well as its mechanisms of action. Despite its rapid metabolism, HTX can reach the brain in small but functional amounts, and various formulation methods can enhance its delivery to nervous tissue. HTX acts on cellular pathways such as Nrf2, NF-κB, JAK/STAT, PI3K/Akt and SIRT1, regulating redox balance, inflammation, programmed cell death, and autophagy. It can also influence gene expression through epigenetic mechanisms. In cell models, it has shown inhibitory effects on tumor growth and activation of apoptosis, without affecting non-tumor cells. These results support its possible usefulness as an adjunct in the treatment of brain tumors, although further studies in animal and human models are required. Full article
Show Figures

Figure 1

23 pages, 32109 KB  
Article
K-562 Extracellular Vesicles Partially Protect Intact Cells from Oxidative Stress and Provide Limited Resistance to Imatinib
by Jiana Sbiet, Einat Beery, Zinab Sarsor, Pia Raanani and Orit Uziel
Curr. Issues Mol. Biol. 2025, 47(8), 666; https://doi.org/10.3390/cimb47080666 - 18 Aug 2025
Viewed by 338
Abstract
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue [...] Read more.
Chronic myeloid leukemia (CML) results from the formation of the BCR-ABL1 chimeric protein which serves as a target for clinically used tyrosine kinase inhibitors (TKIs), such as imatinib mesylate (IM). Although very efficient, the development of resistance to TKIs remains a critical issue for a subset of patients. In our study we aimed to identify one aspect of IM resistance in K-562 cells, a cell line used as a model for CML. Secreted from all cell types, extracellular vesicles (EVs) are nanoparticles that function as mediators of cell–cell communication. Upon engulfment by other cells they may modulate their phenotype. IM is linked to changes in oxidative metabolism in K-562 cells. Our study explored the putative involvement of EVs secreted from K-562 cells in providing protection from oxidative stress and resistance to IM in these cells. The results of our study showed that the protection from oxidative stress provided by previously exposed K-562 cell, derived EVs is only partial. Similarly, these EVs provided intact K-562 cells with some resistance to IM treatment. These results may suggest that resistance to IM may develop and expand to other cells by EVs that are secreted from already resistant cells, similar to a horizontal transfer of resistance provided by plasmids in bacteria. Full article
Show Figures

Figure 1

9 pages, 1106 KB  
Communication
PRMT5 Inhibition as a Potential Strategy for KRAS Mutant CRC: Downstream Mediators of the PRMT5–KRAS Crosstalk
by Mark Spivak, Moshe Pahmer, Dorna Delrahimnia, Tzuriel Sapir and David Shifteh
Curr. Issues Mol. Biol. 2025, 47(8), 665; https://doi.org/10.3390/cimb47080665 - 18 Aug 2025
Viewed by 387
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), [...] Read more.
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide with KRAS mutations present in nearly 45% of cases. Compared to KRAS wild-type (WT) CRC, KRAS-mutant CRC is associated with poorer prognosis and fewer effective treatment options. Protein Arginine Methyltransferase 5 (PRMT5), an epigenetic regulator involved in diverse cellular processes, is currently under investigation as a therapeutic target in multiple cancer types. Our previous work demonstrated that PRMT5 inhibition produces stronger therapeutic effects in KRAS-mutant CRC cells than in KRAS WT cells, suggesting potential crosstalk between PRMT5 and KRAS. In this study, we aimed to identify key downstream proteins that may mediate this interaction. Through a literature review, protein–protein interaction analysis (STRING database), gene expression analysis (GEPIA database), and correlation analysis (GEPIA database), we identified MYC, E2F1, and EIF4E as critical candidates. These proteins are shown to interact with both PRMT5 and KRAS in STRING, are overexpressed in CRC tumor samples, and show positive gene expression correlations with PRMT5 and KRAS in patient data. These findings are significant, as they provide new insights into the PRMT5–KRAS crosstalk and suggest potential targets for novel and combination therapies in KRAS-mutant CRC. Further research and biological experiments are needed to verify and outline the exact molecular processes behind MYC, E2F1, and EIF4E’s interactions with both PRMT5 and KRAS. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

25 pages, 868 KB  
Review
Circadian Rhythm Disruptions and Cardiovascular Disease Risk: The Special Role of Melatonin
by Jarosław Nuszkiewicz, Wojciech Rzepka, Julia Markiel, Marta Porzych, Alina Woźniak and Karolina Szewczyk-Golec
Curr. Issues Mol. Biol. 2025, 47(8), 664; https://doi.org/10.3390/cimb47080664 - 17 Aug 2025
Viewed by 1020
Abstract
Circadian rhythms are endogenous biological cycles that regulate essential cardiovascular functions, including blood pressure, heart rate, vascular tone, and metabolic homeostasis. Disruption of these rhythms due to factors such as shift work, artificial light at night, irregular sleep–wake cycles, or mistimed eating has [...] Read more.
Circadian rhythms are endogenous biological cycles that regulate essential cardiovascular functions, including blood pressure, heart rate, vascular tone, and metabolic homeostasis. Disruption of these rhythms due to factors such as shift work, artificial light at night, irregular sleep–wake cycles, or mistimed eating has been increasingly recognized as an independent risk factor for cardiovascular disease. A growing body of evidence links circadian misalignment to key pathophysiological mechanisms, including endothelial dysfunction, oxidative stress, inflammation, and autonomic imbalance. Melatonin, a hormone produced primarily by the pineal gland, plays a central role in circadian regulation and exhibits potent antioxidant, anti-inflammatory, and cardiometabolic properties. This narrative review synthesizes current findings on the interplay between circadian disruption and cardiovascular risk, with a particular emphasis on the mechanistic and therapeutic role of melatonin. We also highlight the potential of chronotherapeutic strategies, such as timed melatonin supplementation, antihypertensive dosing, and time-restricted eating, to restore circadian alignment and improve cardiovascular outcomes. Despite promising data, translation into clinical practice remains limited. Future research should focus on identifying practical circadian biomarkers, refining chronotherapy protocols, and integrating circadian variables into risk models and clinical workflows. Full article
Show Figures

Figure 1

22 pages, 1654 KB  
Article
Astaxanthin Attenuates Chlorpyrifos-Induced Pulmonary Cytotoxicity by Modulating Mitochondrial Redox and Inflammatory Pathways
by Mediha Demet Okudan Altındaş and Adem Güner
Curr. Issues Mol. Biol. 2025, 47(8), 663; https://doi.org/10.3390/cimb47080663 - 17 Aug 2025
Viewed by 416
Abstract
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative [...] Read more.
Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative stress studies. However, its efficacy against CPF-induced lung cell damage remains uncharacterized. This study revealed the protective role of ASX, as a pretreatment and co-treatment, against CPF-induced cytotoxicity in human A549 lung adenocarcinoma cells by assessing cell viability, intracellular reactive oxygen species (IROS), total oxidative status (TOS), total antioxidant capacity (TAC), mitochondrial membrane potential (MMP), intracellular calcium ions (Ca2+), lactate dehydrogenase (LDH) release, malondialdehyde (MDA) levels, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, DNA fragmentation, and apoptosis/inflammation-associated gene expression. CPF treatment significantly decreased cell viability and TAC, while elevating IROS, TOS, MMP, intracellular Ca2+, and LDH release. CPF also increased MDA levels and suppressed GPx and SOD activities. DNA fragmentation and quantitative polymerase chain reaction (qPCR) analysis revealed upregulation of pro-apoptotic and inflammatory markers such as BCL2-associated X protein (BAX), caspase-3 (CASP3), tumor protein p53 (TP53), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor kappa B (NFκB), and voltage-dependent anion-selective channel protein 1 (VDAC1) and suppression of anti-apoptotic B-cell lymphoma 2 (BCL2) and antioxidant defense genes nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). ASX treatment, particularly when administered as a pretreatment, significantly reversed CPF-induced oxidative and inflammatory responses by restoring SOD, GPx, and TAC levels, reducing IROS, TOS, MDA, and LDH release, and downregulating apoptotic and inflammatory gene expressions. ASX pretreatment notably decreased MMP and intracellular Ca2+ levels, indicating protection against mitochondrial dysfunction and calcium dysregulation. ASX upregulated Nrf2 and HO-1 expression and restored the BCL2/BAX balance, suggesting inhibition of mitochondrial-mediated apoptosis. Additionally, ASX significantly attenuated CPF-induced anti-angiogenic effects in the in ovo Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) assay. These findings demonstrate, for the first time, that ASX exerts a broad spectrum of protective effects against CPF-induced cytotoxicity in lung cells, mainly through the stabilization of mitochondrial redox status and modulation of apoptosis- and inflammation-related gene pathways, highlighting ASX as a promising candidate for further therapeutic development. Furthermore, the pronounced efficacy observed in the pretreatment regimen suggests that ASX can be evaluated as a potential nutritional preventive strategy in high-risk populations with occupational or environmental CPF exposure. Full article
Show Figures

Figure 1

21 pages, 1395 KB  
Article
Unlocking the Anti-Breast Cancer Potential of Aralia chinensis L.
by Juan Xue, Lei Li, Yongjia Shu, Chengshi Xie, Tian Lu and Huifang Chai
Curr. Issues Mol. Biol. 2025, 47(8), 662; https://doi.org/10.3390/cimb47080662 - 16 Aug 2025
Viewed by 374
Abstract
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in [...] Read more.
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in conjunction with Q Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) alongside serum pharmacochemistry to analyze the chemical constituents of total saponins derived from A. chinensis (TSAC) and to identify the blood-absorbed prototypes in a rat model. Network pharmacology predicted targets and pathways of serum prototypes, validated by molecular docking and in vitro experiments. We identified 38 triterpenoid saponins, 3 steroidal saponins, and 8 triterpenoids in TSAC, with 22 prototype compounds detected in serum. An integrative analysis encompassing 486 compound targets and 1747 genes associated with breast cancer elucidated critical pathways, notably the PI3K-Akt signaling pathway and resistance mechanisms to EGFR tyrosine kinase inhibitors. Molecular docking confirmed strong binding of araloside A and elatoside L to SRC, PIK3R1, PIK3CA, STAT3, and EGFR. In MCF-7 cells, TSAC suppressed proliferation and migration while downregulating Src, PI3K, and EGFR expression at the gene and protein levels. This study successfully identified TSAC’s serum-absorbed bioactive components and demonstrated their anti-breast cancer effects via multi-target mechanisms involving the Src/PI3K/EGFR axis, providing a crucial pharmacological foundation for developing A. chinensis-derived breast cancer therapies. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

19 pages, 3962 KB  
Article
Potential of Alkaloids from Zanthoxylum nitidum var. tomentosum in Treating Rat Rheumatoid Arthritis Model and Validation of Molecular Mechanisms
by Yuanle Shen, Linghui Zou, Yinggang Zeng, Ting Xia, Zhenjie Liu, Kaili Hu, Liuping Wang and Jianfang Feng
Curr. Issues Mol. Biol. 2025, 47(8), 661; https://doi.org/10.3390/cimb47080661 - 15 Aug 2025
Viewed by 382
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and this study aims to investigate the underlying molecular mechanisms involved. Methods: A complete Freund’s adjuvant (CFA)-induced arthritis model in male SD rats (n = 64) was used to evaluate ARSHs. Groups included control, model, methotrexate (MTX), and ARSH-treated. Therapeutic effects were assessed via arthritis index, paw swelling, and serum cytokines (IL-1β, IL-6, IL-17A). Network pharmacology identified bioactive alkaloids and core targets, validated by molecular docking. In vitro mechanisms (proliferation, apoptosis, signaling pathways) were examined in MH7A synovial cells. Results: ARSHs significantly attenuated joint inflammation and damage in CFA rats (* p < 0.01 vs. model), reducing pro-inflammatory cytokines. Fifteen alkaloids (e.g., dihydrochelerythrine, magnoflorine) and 24 targets (e.g., SRC, STAT3, MAPK3) were prioritized. Molecular docking confirmed strong binding (binding energy < −7.0 kcal/mol). In vitro, ARSHs suppressed MH7A proliferation and induced apoptosis via Bcl-2/Bax dysregulation and the inhibition of SRC/STAT3/MAPK3 phosphorylation. Conclusions: ARSHs mitigate RA pathogenesis by targeting the SRC/STAT3/MAPK3 signaling axis in synovial cells. This study provides mechanistic validation of ARSHs as multi-target phytotherapeutic agents against inflammatory arthritis. Full article
Show Figures

Figure 1

10 pages, 2923 KB  
Case Report
Partial Remission Without Recurrence in a 9-Year-Old Golden Retriever with Nasal Carcinoma Treated with Prednisolone/Chlorambucil Metronomic Combination Therapy: A Case Report and Literature Review of Molecular Mechanisms
by Kyuhyung Choi
Curr. Issues Mol. Biol. 2025, 47(8), 660; https://doi.org/10.3390/cimb47080660 - 15 Aug 2025
Viewed by 428
Abstract
This paper reports the first case in which a hyperlipidemic retriever (due to hypothyroidism) with a nasal tumor was successfully treated—achieving partial remission—and managed using a metronomic combination of chlorambucil (3.74 mg/m2, SID) and prednisolone (0.28 mg/kg, SID) orally for 9 [...] Read more.
This paper reports the first case in which a hyperlipidemic retriever (due to hypothyroidism) with a nasal tumor was successfully treated—achieving partial remission—and managed using a metronomic combination of chlorambucil (3.74 mg/m2, SID) and prednisolone (0.28 mg/kg, SID) orally for 9 months at a general practice. A 35 kg spayed female golden retriever aged 8 years and 8 months with nosebleeds visited the Bundang New York Animal Hospital in July 2023 after being diagnosed with nasal carcinoma. A protocol of 4 weeks of chemotherapy followed by 1 week of rest was repeated in two cycles and continued metronomically for 9 months without pause after the two cycles. The nasal exudate was significantly reduced. The size of the nasal tumor was monitored using computed tomography (CT) imaging at a referral hospital. Since the first occurrence of epistaxis, 18 months have passed (as of January 2025) and the nasal exudate is barely visible, and the vital signs and weight of the dog remain stable. The size of the nasal tumor significantly decreased after 9 months of chemotherapy completion without moderate side effects, and all the blood work was normalized, including hypercholesteremia. This study demonstrates that, in hyperlipidemic cancer patients, a prednisolone/chlorambucil metronomic combination which is cost-effective can be an alternative to tyrosine kinase inhibitors such as sorafenib, even when excluding the price. Through a literature review, the author also investigates the effect of the hyperlipidemic state on cancer, focusing on carcinoma and vascular endothelial growth factor (VEGF), as well as the RAS-RAF-MEK pathway, which is a target for tyrosine kinase inhibitors, in order to reveal the molecular mechanism of chlorambucil metronomic chemotherapy. Also, the author investigates the molecular pathway of carcinoma development in human hyperlipidemia patients through single-cell RNA sequence analysis using open public data, and discusses the molecular action of chlorambucil. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

28 pages, 1195 KB  
Review
Targeting Intracellular Pathways in Atopic Dermatitis with Small Molecule Therapeutics
by Georgiana Nitulescu, Octavian Tudorel Olaru, Corina Andrei, George Mihai Nitulescu and Anca Zanfirescu
Curr. Issues Mol. Biol. 2025, 47(8), 659; https://doi.org/10.3390/cimb47080659 - 15 Aug 2025
Viewed by 1230
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder characterized by immune dysregulation and epidermal barrier dysfunction. Advances in understanding the interplay of genetic predisposition, cytokine signaling, and environmental triggers have led to the emergence of targeted therapies. Although biologic agents such [...] Read more.
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder characterized by immune dysregulation and epidermal barrier dysfunction. Advances in understanding the interplay of genetic predisposition, cytokine signaling, and environmental triggers have led to the emergence of targeted therapies. Although biologic agents such as dupilumab, tralokinumab, and lebrikizumab have revolutionized AD management, their high costs, injectable administration, and limited global accessibility highlight the need for alternative options. Small molecule therapies are gaining momentum as they target intracellular pathways central to AD pathogenesis and offer oral or topical administration routes. This review provides a comprehensive analysis of key agents including Janus kinase (JAK) inhibitors (upadacitinib, abrocitinib, baricitinib, ruxolitinib, delgocitinib), phosphodiesterase 4 (PDE4) inhibitors (crisaborole, difamilast, roflumilast, apremilast), as well as STAT6 degraders (KT621, NX3911), aryl hydrocarbon receptor modulators, histamine H4 receptor antagonists (adriforant, izuforant), and sphingosine-1-phosphate receptor modulators (etrasimod, BMS-986166). We summarize their mechanisms of action, pharmacological profiles, and pivotal clinical trial data, emphasizing their potential to address unmet therapeutic needs. Finally, we discuss safety concerns, long-term tolerability, and future directions for integrating small molecule therapies into precision treatment strategies for moderate-to-severe AD. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

26 pages, 5445 KB  
Article
Exploring Novel Inhibitory Compounds Against Phosphatase Gamma 2: A Therapeutic Target for Male Contraceptives
by Hashim M. Aljohani, Bayan T. Bokhari, Alaa M. Saleh, Areej Yahya Alyahyawi, Renad M. Alhamawi, Mariam M. Jaddah, Mohammad A. Alobaidy and Alaa Abdulaziz Eisa
Curr. Issues Mol. Biol. 2025, 47(8), 658; https://doi.org/10.3390/cimb47080658 - 15 Aug 2025
Viewed by 475
Abstract
Men have limited options for contraception, despite the widely accepted public health benefits of it, placing the contraceptive burden solely on women. The current study focuses on inhibiting the PP1γ2 enzyme, which plays a role in sperm maturation and motility. The study considered [...] Read more.
Men have limited options for contraception, despite the widely accepted public health benefits of it, placing the contraceptive burden solely on women. The current study focuses on inhibiting the PP1γ2 enzyme, which plays a role in sperm maturation and motility. The study considered three top compounds based on the findings of molecular docking. The three compounds exhibited a good interaction profile with a binding affinity score of D751-0223 (−8.7 kcal/mol), D751-014 (−8.1 kcal/mol), and N117-0087 (−8 kcal/mol) measured in kcal/mol. Molecular dynamics simulation (MDS) were performed on the PP1γ2–ligand complexes along with the Apo form. The results suggested that all the complexes were stable with no major deviations observed compared to Apo. The average RMSDs for PP1γ2-D751-0223, D751-014, and Apo were 1.27 Å, 1.73 Å, 1.39 Å, and 1.69 Å, respectively. The PP1γ2–ligand complexes were observed with unique salt bridge interactions such as Glu133-Arg137, Asp4-Lys107, Asp188-Arg116, and Glu120-Arg90. The principal component analysis (PCA) findings indicated that every complex had a distinctive motion state. Furthermore, the net MM/PBSA scores for D751-0223, D751-0143, and N117-0087 were −80.01 kcal/mol, −72.18 kcal/mol, and −64.26 kcal/mol, respectively, while the MM/GBSA and MM/PBSA values were −82, −73.07,−67.26 and −80.01, −72.18, −64.26, measured in kcal/mol, respectively. The WaterSwap energy estimation was performed to validate the former technique, and the findings demonstrated that PP1γ2-D751-0223 is a stable complex, with a value of −51.05 kcal/mol. This work provides a baseline to researchers for the identification of novel therapeutic approaches for non-hormonal male contraceptives. Full article
(This article belongs to the Special Issue Harnessing Genomic Data for Disease Understanding and Drug Discovery)
Show Figures

Figure 1

19 pages, 1906 KB  
Review
The Duodenum-Centered Neurohormonal Hypothesis of Type 2 Diabetes: A Mechanistic Review and Therapeutic Perspective
by Athena N. Kapralou, Christos Yapijakis and George P. Chrousos
Curr. Issues Mol. Biol. 2025, 47(8), 657; https://doi.org/10.3390/cimb47080657 - 14 Aug 2025
Viewed by 859
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based [...] Read more.
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based therapies suggest that the gut contributes actively beyond nutrient absorption. Yet, a cohesive framework integrating these observations remains absent, leaving a critical gap in our understanding of T2DM’s upstream pathophysiology. This work builds upon the anti-incretin theory, which posits that nutrient-stimulated neurohormonal signals—termed “anti-incretins”—arise from the proximal intestine to counteract incretin effects and regulate glycemic homeostasis. The excess of anti-incretin signals, perhaps stimulated by macronutrient composition or chemical additives of modern diets, disrupts this balance and may cause insulin resistance and β-cell depletion, leading to T2D. We hypothesize that the neuroendocrine signals produced by cholecystokinin (CCK)-I and secretin-S cells, both located in the proximal intestine, function as endogenous anti-incretins. In this context, we hypothesize a novel model centered on the chronic overstimulation of I and S cells by high-fat, high glycemic index modern diets. This drives what we term “amplified digestion”—a state marked by heightened vagal and hormonal stimulation of biliary and pancreatic secretions, increased enzymatic and bile acid activity, and alterations in bile acid composition. This condition leads to an extended breakdown of carbohydrates, lipids, and proteins into absorbable units, thereby promoting excessive nutrient absorption and ultimately contributing to insulin resistance and progressive β-cell failure. Multiple lines of clinical, surgical, and experimental evidence converge to support our model, rooted in the physiology of digestion and absorption. Western dietary patterns appear to induce an over-digestive adaptation—marked by excessive vagal and hormonal stimulation of biliary and pancreatic secretion—which amplifies digestive signaling. This heightened state correlates with increased nutrient absorption, insulin resistance, and β-cell dysfunction. Interventions that disrupt this maladaptive signaling—such as truncal vagotomy combined with duodenal bypass—may offer novel, physiology-based strategies for T2DM treatment. This hypothesis outlines a potential upstream contributor to insulin resistance and T2DM, grounded in digestive tract-derived neurohormonal dysregulation. This gut-centered model may provide insight into early, potentially reversible stages of the disease and identify a conceptual therapeutic target. Nonetheless, both the hypothesis and the accompanying surgical strategy—truncal vagotomy combined with proximal intestinal bypass—remain highly exploratory and require systematic validation through mechanistic and clinical studies. Further investigation is warranted to clarify the molecular regulation of I and S enteroendocrine cells, including the genetic and epigenetic factors that may drive hypersecretion. While speculative, interventions—surgical or pharmacologic—designed to modulate these digestive signals could represent a future avenue for research into T2DM prevention or remission, pending rigorous evidence. Full article
Show Figures

Figure 1

10 pages, 1645 KB  
Article
Molecular Characterization of Citrus Accessions Grown for Pre-Breeding Purposes
by Israel Felipe Gonçalves Soares, Felipe Cruz Paula, Conceição de Maria Batista Oliveira, José Dias de Souza Neto, Talles de Oliveira Santos, Rafael Nunes de Almeida, Ana Paula Candido Gabriel Berilli, Sávio da Silva Berilli, Taís Cristina Bastos Soares, Jardel Oliveira Santos, Alexandre Cristiano Santos Júnior and Monique Moreira Moulin
Curr. Issues Mol. Biol. 2025, 47(8), 656; https://doi.org/10.3390/cimb47080656 - 14 Aug 2025
Viewed by 379
Abstract
The objective of this work was to analyse the genetic diversity of a population of Citrus spp. in the south of the State of Espírito Santo, Brazil, for pre-breeding studies. For that, a total of sixty genotypes were analysed, including ten citrus varieties [...] Read more.
The objective of this work was to analyse the genetic diversity of a population of Citrus spp. in the south of the State of Espírito Santo, Brazil, for pre-breeding studies. For that, a total of sixty genotypes were analysed, including ten citrus varieties from four species of the Citrus genus. The methodology involved DNA extraction, amplification via polymerase chain reaction, and the use of a set of 16 Simple Sequence Repeat markers. These markers identified 42 alleles, with a variation of one to four alleles per locus, an average heterozygosity value of 0.53, and an average polymorphic information content of up to 0.29 per species. After the analysis, a dissimilarity matrix was generated using Jaccard distance and a dendrogram, revealing the formation of two groups: Group I, comprising Citrus sinensis varieties, and Group II, comprising varieties of Citrus latifolia, Citrus aurantifolia, and Citrus reticulata. Our study demonstrated that the combination of these markers allowed for the differentiation of genotypes within the collection. The results obtained are valuable for the future management of the collection and the efficient use of genetic diversity estimation in Citrus spp. Full article
(This article belongs to the Special Issue Molecular Breeding and Genetics Research in Plants, 2nd Edition)
Show Figures

Figure 1

35 pages, 2758 KB  
Review
Redox Homeostasis in Red Blood Cells: From Molecular Mechanisms to Antioxidant Strategies
by Sara Spinelli, Angela Marino, Alessia Remigante and Rossana Morabito
Curr. Issues Mol. Biol. 2025, 47(8), 655; https://doi.org/10.3390/cimb47080655 - 14 Aug 2025
Viewed by 609
Abstract
Red blood cells (RBCs) are uniquely vulnerable to oxidative stress due to their role in O2 transport and their high content of heme iron and polyunsaturated fatty acids (PUFAs). Despite lacking nuclei and organelles, RBC homeostasis relies on a finely tuned redox [...] Read more.
Red blood cells (RBCs) are uniquely vulnerable to oxidative stress due to their role in O2 transport and their high content of heme iron and polyunsaturated fatty acids (PUFAs). Despite lacking nuclei and organelles, RBC homeostasis relies on a finely tuned redox system to preserve membrane integrity, cytoskeletal organization, and metabolic function. Impairment of this delicate balance results in a series of oxidative events that ultimately leads to the premature clearance of RBCs from the bloodstream. This review outlines the main oxidative mechanisms that affect RBC at different levels, such as membrane, cytoskeleton, and intracellular environment, with a focus on the molecular targets of reactive species. The role of major antioxidant systems in preventing or reversing redox damage will also be examined, revealing their multiple mechanisms of action ranging from direct ROS scavenging to the enhancement of endogenous antioxidant defense pathways. Redox regulatory mechanisms in RBCs are required to maintain membrane integrity, cytoskeletal organization, and metabolic function. Disruption of these processes causes several oxidative processes that trigger premature RBC removal. Cumulative evidence places oxidative stress at the core of RBC dysfunction in both physiological aging and pathological conditions, including diabetes, inflammatory conditions, and hemolytic disorders. Antioxidant-based strategies, rather than providing generalized protection, should aim to selectively target the specific molecular pathways affected in distinct clinical settings. Full article
Show Figures

Figure 1

23 pages, 1140 KB  
Review
Hypersensitivity to Folic Acid and/or Folinic Acid—A Review of Clinical Cases, Potential Mechanism, Possible Cross-Allergies and Current Diagnostic Options
by Kinga Lis
Curr. Issues Mol. Biol. 2025, 47(8), 654; https://doi.org/10.3390/cimb47080654 - 14 Aug 2025
Viewed by 709
Abstract
Folic acid and its derivatives (e.g., folinic acid) are a group of water-soluble compounds collectively known as vitamin B9. Synthetic folic acid is a component of dietary supplements, medications and other pharmaceuticals and fortified foods. Folinic acid (5-formyltetrahydrofolic acid) is the active metabolite [...] Read more.
Folic acid and its derivatives (e.g., folinic acid) are a group of water-soluble compounds collectively known as vitamin B9. Synthetic folic acid is a component of dietary supplements, medications and other pharmaceuticals and fortified foods. Folinic acid (5-formyltetrahydrofolic acid) is the active metabolite of folic acid. It is used to treat vitamin B9 deficiency and as an adjunct to various combination therapies. Hypersensitivity reactions to folic acid or folinic acid are rare and occur following exposure to synthetic folic acid or its derivatives but not on natural folates. In people allergic to folates, cross-reactions are possible following exposure to folic acid analogues (including antifolates, e.g., methotrexate). The mechanism of hypersensitivity to folic acid and/or folinic acid has not been clearly established. Both IgE-dependent and non-IgE-dependent hypersensitivity reactions are likely. It is possible that folic or folinic acid is either an immunogen or a hapten. Diagnosing hypersensitivity to folic/folinic acid is difficult. There are no validated in vitro or in vivo diagnostic tests. The basophil activation test (BAT) appears to be a promising tool for diagnosing folate allergy. The aims of the manuscript were to review published clinical cases of hypersensitivity reactions to folic or folinic acid, potential mechanisms of these reactions and possible cross-allergies, and current diagnostic possibilities of folate hypersensitivity. Full article
Show Figures

Figure 1

27 pages, 1370 KB  
Review
Immune Organoids: A Review of Their Applications in Cancer and Autoimmune Disease Immunotherapy
by David B. Olawade, Emmanuel O. Oisakede, Eghosasere Egbon, Saak V. Ovsepian and Stergios Boussios
Curr. Issues Mol. Biol. 2025, 47(8), 653; https://doi.org/10.3390/cimb47080653 - 13 Aug 2025
Viewed by 1227
Abstract
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, [...] Read more.
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, cellular diversity, and functional dynamics, providing a more accurate alternative to traditional two-dimensional cultures and animal models. Their ability to mimic complex immune microenvironments has positioned immune organoids at the forefront of cancer immunotherapy development, autoimmune disease modeling, and personalized medicine. This narrative review highlights the advances in immune organoid technology, with a focus on their applications in testing immunotherapies, such as checkpoint inhibitors, CAR-T cells, and cancer vaccines. It also explores how immune organoids facilitate the study of autoimmune disease pathogenesis with insights into their molecular basis and support in high-throughput drug screening. Despite their transformative potential, immune organoids face significant challenges, including the replication of systemic immune interactions, standardization of fabrication protocols, scalability limitations, biological heterogeneity, and the absence of vascularization, which restricts organoid size and maturation. Future directions emphasize the integration of immune organoids with multi-organ systems to better replicate systemic physiology, the development of advanced biomaterials that closely mimic lymphoid extracellular matrices, the incorporation of artificial intelligence (AI) to optimize organoid production and data analysis, and the rigorous clinical validation of organoid-derived findings. Continued innovation and interdisciplinary collaboration will be essential to overcome existing barriers, enabling the widespread adoption of immune organoids as indispensable tools for advancing immunotherapy, vaccine development, and precision medicine. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

24 pages, 10962 KB  
Article
Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer
by Kaiyuan Xing, Liangshuang Li, Yingnan Ma and Jiang Zhu
Curr. Issues Mol. Biol. 2025, 47(8), 652; https://doi.org/10.3390/cimb47080652 - 13 Aug 2025
Viewed by 514
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer, with its treatment and prognosis particularly challenging due to metastasis. The immune response is involved in the whole process of CRC development, and immunotherapy has increasingly become a part of CRC patients’ treatment. However, comprehensive [...] Read more.
Colorectal cancer (CRC) is a highly aggressive cancer, with its treatment and prognosis particularly challenging due to metastasis. The immune response is involved in the whole process of CRC development, and immunotherapy has increasingly become a part of CRC patients’ treatment. However, comprehensive research on the immune microenvironment driving CRC metastasis remains limited. Given this limitation, we proposed a bioinformatics method to construct a metastasis–based immune prognostic model (MIPM) by integrating CRC single–cell RNA sequencing (scRNA–seq) and bulk data. Our study identified several MIPM genes significantly associated with CRC metastasis and progression. MIPM reliably predicted overall survival (OS) and tumor recurrence in CRC across eleven bulk validation datasets. Notably, MIPM could independently predict outcomes beyond traditional clinical factors such as age, sex, and stage. It showed high predictive accuracy in CRC patients treated with chemotherapy. Drug sensitivity and multifaceted immune analyses further underscored the importance of MIPM in therapeutic and immunotherapy response modulation. In conclusion, our findings have profound implications for the illustration of MIPM, which could serve as a new plausible prognostic marker for CRC patients and provide new insights for treatment strategies. The further evaluation and investigation of MIPM will enhance the prognosis and precision therapy of CRC patients. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 1885 KB  
Article
BCG Impact on PD-1/PD-L1 Expression in Peripheral Immunocytes of Cancer Patients—A Potential Explanation for Its Activity in Preventing Alzheimer’s Disease
by Benjamin Y. Klein, Ofer N. Gofrit and Charles L. Greenblatt
Curr. Issues Mol. Biol. 2025, 47(8), 651; https://doi.org/10.3390/cimb47080651 - 13 Aug 2025
Viewed by 408
Abstract
We found, retrospectively, that BCG therapy in non-muscle invasive bladder cancer (NMIBC) reduces the rate of Alzheimer’s disease. Blockade of the ligand PD-L1 or its checkpoint receptor PD-1 has been shown to improve cognitive function and reduce brain pathology features in a mouse [...] Read more.
We found, retrospectively, that BCG therapy in non-muscle invasive bladder cancer (NMIBC) reduces the rate of Alzheimer’s disease. Blockade of the ligand PD-L1 or its checkpoint receptor PD-1 has been shown to improve cognitive function and reduce brain pathology features in a mouse model of Alzheimer’s disease (AD). Given that peripheral blood mononuclear cells (PBMCs) are involved in aging brain pathology and thus represent a potential AD therapeutic target, we analyzed the impact of BCG on the expression of PD-1, PD-L1, and inflammation modulators in PBMCs. Cryopreserved PBMCs pre- and post-BCG-treated six melanoma and six NMIBC patients were repurposed for immunoelectrophoretic analysis of PBMC-extracted proteins. PBMCs, post-BCG treatment in melanoma patients, were harvested only 4 months after the start of treatment (short BCG period), whereas the PBMCs of NMIBC patients were harvested 24 to 52 months after starting the BCG treatment. In melanoma PBMCs, BCG upregulated PD-L1 (p = 0.052) while downregulating PD-1 (insignificantly, p = 0.16). In contrast, in NMIBC patients, BCG downregulated PD-L1 (insignificantly, p = 0.67), while upregulating PD-1 (p = 0.0082). PD-L1 positive correlation with p-IkB (r = 0.7228) under BCG is inverted to that of PD-L1 against IkB (p = −0.9491). The difference between these opposite correlations is significant (p = 0.011), indicating that PD-L1 is upregulated early after BCG treatment, in association with p-IKB, which enables inflammation. This association subsided later, and for PD-1, did not occur at the short or long BCG periods. Experiments with a larger number of patients may substantiate the hypothesis that an increase in PD-1 by BCG relative to PD-L1 may protect against AD. Full article
Show Figures

Graphical abstract

17 pages, 2011 KB  
Review
A Narrative Review of Heavy Metals and Sperm Quality: The Interplay with Antioxidant Imbalance and Reactive Oxygen Species
by Soukaina Azil, Khaoula Errafii, Moncef Benkhalifa, Noureddine Louanjli, Bouchra Ghazi and Salsabil Hamdi
Curr. Issues Mol. Biol. 2025, 47(8), 650; https://doi.org/10.3390/cimb47080650 - 13 Aug 2025
Viewed by 473
Abstract
Reproductive infertility is characterized by the inability to achieve pregnancy after a year or more of unprotected sexual intercourse. This review highlights the significant impact of exposure to both types of heavy metals (essential and non-essential) on the reproductive performance of various species, [...] Read more.
Reproductive infertility is characterized by the inability to achieve pregnancy after a year or more of unprotected sexual intercourse. This review highlights the significant impact of exposure to both types of heavy metals (essential and non-essential) on the reproductive performance of various species, particularly humans. Heavy metals present a high atomic density and weight, including lead, mercury, cadmium, nickel, chromium, and arsenic, and are delivered into the environment through natural and human activities, posing a threat to ecological systems and human reproductive health. These heavy metals have the potential for bioaccumulation and can adversely affect male fertility and sperm quality due to their role in disrupting endocrine functions, altering hormone levels responsible for sperm production, and inducing oxidative stress. The elevated production of reactive oxygen species (ROS) exceeds the capability of antioxidants and can lead to the alteration of sperm quality. Seminal fluid contains antioxidants like vitamin C, vitamin E, zinc, and selenium to counteract the impacts of ROS and also to preserve the sperm function. This review aims also to explore the impact of heavy metals on sperm quality and their relationship with antioxidant imbalance and ROS. The exposure to heavy metals whether through occupational or environmental means increases the production of ROS and therefore leads to an imbalance of antioxidants production. All these factors have no doubt an impact on male reproductive health. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Graphical abstract

21 pages, 3063 KB  
Article
Evaluation of the Safety and Antiproliferative Activity of Bulgarian Rose Essential Oil: An In Vitro and In Silico Model of Colorectal Adenocarcinoma
by Rayna Nenova, Kalin Kalinov, Deyana Nedeva, Ana Dobreva, Neli Vilhelmova-Ilieva, Ani Georgieva and Ivan Iliev
Curr. Issues Mol. Biol. 2025, 47(8), 649; https://doi.org/10.3390/cimb47080649 - 13 Aug 2025
Viewed by 442
Abstract
The side effects of conventional cancer treatments, such as chemotherapy, radiotherapy, etc., worsen the quality of life of patients. Therefore, it is necessary to explore the possibilities of creating new drugs containing natural products with low toxicity. The experimental scientific pharmacological research of [...] Read more.
The side effects of conventional cancer treatments, such as chemotherapy, radiotherapy, etc., worsen the quality of life of patients. Therefore, it is necessary to explore the possibilities of creating new drugs containing natural products with low toxicity. The experimental scientific pharmacological research of rose preparations in Bulgaria began in the first half of the 20th century. Bulgarian rose essential oil (BREO) is qualified by GC FID analysis. To study the effect of the BREO, we used HCT-8 and HT-29 tumor cell lines. As a model of healthy tissue, we used the non-tumorigenic cells MCF-12F. Cells were treated with twofold increasing concentrations of BREO from 7.5 µg/mL to 1000 µg/mL. The NRU test and MTT assay were used for evaluation of the safety, antiproliferative activity and colony formation assay. Our results showed low cytotoxicity (CC50 = 629.72 ± 22.38 μg/mL) and high level of photosafety (PIF = 0.92) of BREO. The antiproliferative activity test shows that the BREO has an IC50 = 290.45 ± 10.79 μg/mL for the HT-29 cells. In the normal cell line MCF-12F, this effect is lower (IC50 = 383.90 ± 34.75 μg/mL). Furthermore, colony forming assay showed a significant reduction in IC50 value (IC50 = 163.79 ± 10.25 μg/mL) in HT-29 cells. The in silico experiments confirmed the potential of the BREO for antiproliferative effect and further activation of different pathways leading to apoptosis. Full article
Show Figures

Figure 1

17 pages, 1715 KB  
Article
Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine
by Elif Bilgin Doğru, Selçuk Erdem, Hilal Oğuz Soydinç, Ayça İribaş and Derya Duranyıldız
Curr. Issues Mol. Biol. 2025, 47(8), 648; https://doi.org/10.3390/cimb47080648 - 13 Aug 2025
Viewed by 293
Abstract
Prostate cancer is a clinically heterogeneous disease. Since PSA is not cancer-specific, and due to the bone metastases seen in the advanced stage and bone deformations caused by hormone therapy, it is necessary to use new biomarkers. Formin-like-protein 1 (FMNL1), a member of [...] Read more.
Prostate cancer is a clinically heterogeneous disease. Since PSA is not cancer-specific, and due to the bone metastases seen in the advanced stage and bone deformations caused by hormone therapy, it is necessary to use new biomarkers. Formin-like-protein 1 (FMNL1), a member of the formin protein family, is of great importance in actin polymerization, cell attachment, and migration processes. p21-activated kinase 1 (PAK1) proteins, members of the PAK protein kinases, play a role in cytoskeletal organization, as well as regulating other cellular activities such as cell survival, mitosis, and transcription. In our study, plasma and urine samples of 60 prostate cancer patients and 20 healthy controls were studied using RT-PCR and ELISA methods. No statistical difference was found between FMNL1 mRNA and protein expression levels of patients and controls in both plasma and urine samples (p > 0.05). There was no statistical difference between PAK1 mRNA expression levels of patients and controls in plasma and urine samples (p > 0.05). While no significant difference was found in PAK1 protein levels in plasma samples (p > 0.05), it was found to be lower in urine samples of patients compared to the control group (p = 0.00). Both marker molecules have low expression levels in early-stage PCa. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

23 pages, 1316 KB  
Review
Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review
by Stanisław Krokosz, Maria Obrycka and Anna Zalewska
Curr. Issues Mol. Biol. 2025, 47(8), 647; https://doi.org/10.3390/cimb47080647 - 12 Aug 2025
Viewed by 695
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent and lethal forms of cancer worldwide with early detection playing a crucial role in improving the survival rate. Salivary biomarkers have emerged as a promising non-invasive alternative for CRC early detection. A comprehensive [...] Read more.
Colorectal cancer (CRC) stands as one of the most prevalent and lethal forms of cancer worldwide with early detection playing a crucial role in improving the survival rate. Salivary biomarkers have emerged as a promising non-invasive alternative for CRC early detection. A comprehensive search of the Web of Science, Scopus, and PubMed databases was performed to identify relevant studies published between 2018 and April 2025. Inclusion criteria focused on studies analyzing salivary biomarkers in adult CRC patients, while pediatric studies, non-diagnostic applications, and studies with insufficient statistical power were excluded. A total of 12 studies were included in this review, identifying various salivary biomarkers associated with CRC. Salivary microbiota, including Fusobacterium nucleatum and other bacterial species, demonstrated potential as diagnostic markers. Metabolomic profiling revealed elevated levels of lactate and pyruvate, reflecting metabolic alterations in CRC. Several microRNAs, such as miR-92a and miR-29a, exhibited high sensitivity and specificity for CRC detection. Additionally, protein-based biomarkers, including chemerin and sHLA-G, were found to be significantly elevated in CRC patients. Salivary biomarkers show great promise as a non-invasive, cost-effective approach for CRC detection and prognosis. Their ability to reflect systemic disease processes makes them a valuable complement to existing screening methods. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 2441 KB  
Article
Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells
by Jen-Lung Chen, Yi-Shih Ma, Kuen-Jang Tsai, Hsin-Yi Tsai, Li-Jen Yeh, Hung-Wen Tsai, Judy Yen, Hong-Wen Tsai and Ming-Wei Lin
Curr. Issues Mol. Biol. 2025, 47(8), 646; https://doi.org/10.3390/cimb47080646 - 12 Aug 2025
Viewed by 416
Abstract
Although chemotherapy is the preferred treatment for gastric cancer, the therapeutic drugs currently available have limited efficacy and severe side effects. Cancer stem cells within tumor masses have the distinctive properties of self-renewal, maintenance, and resistance to chemotherapy. Hence, agents capable of targeting [...] Read more.
Although chemotherapy is the preferred treatment for gastric cancer, the therapeutic drugs currently available have limited efficacy and severe side effects. Cancer stem cells within tumor masses have the distinctive properties of self-renewal, maintenance, and resistance to chemotherapy. Hence, agents capable of targeting stemness in gastric tumors with minimal side effects are urgently required. Enzymes that generate reactive oxygen species contribute to the high oxidation levels observed in tumors. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidant transcription factor, regulates cancer stemness. Increasing evidence highlights the potential of nutritional supplementation to treat cancer stemness. ω-3 polyunsaturated fatty acids support human health and offer benefits for cancer treatment. Linolenic acid (LA), an ω-3 polyunsaturated fatty acid, inhibits the expression of proteins associated with stemness and promotes apoptosis in gastric cancer cells. Our findings indicated that LA treatment substantially inhibited key characteristics of gastric cancer stemness and induced oxidative stress and caspase-3-mediated apoptosis by downregulating Nrf2-mediated expression. These results suggest that LA is a promising nutritional supplement for targeting cancer stemness in the treatment of gastric cancer. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironment for Cancer Therapy, 3rd Edition)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop