Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement of Plasma/Urine mRNA Expression Levels of FMNL1 and PAK1
2.2.1. RNA Isolation
2.2.2. Complementary DNA (cDNA) Synthesis
2.2.3. Real-Time Polymerase Chain Reaction (RT-PCR)
2.3. Measurement of Plasma/Urine Protein Levels of FMNL1 and PAK1
2.4. Statistical Analysis
3. Results
3.1. mRNA Expression Levels
3.2. Protein Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FMNL1 | Formin-like-protein 1 |
PAK1 | p21-activated kinase 1 |
PCa | Prostate cancer |
PSA | Prostate-specific antigen |
EMT | Epithelial to mesenchymal transition |
Ct | Threshold cycle |
ROC | Receiver operating characteristic |
AUC | Area under curve |
NSCLC | Non-small-cell lung cancer |
References
- Dhawan, M.; Ryan, C.J.; Ashworth, A. DNA Repair Deficiency Is Common in Advanced Prostate Cancer: New Therapeutic Opportunities. Oncologist 2016, 21, 940–945. [Google Scholar] [CrossRef]
- Higgs, H.N. Formin proteins: A domain-based approach. Trends Biochem. Sci. 2005, 30, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Favaro, P.M.; De Souza Medina, S.; Traina, F.; Bassères, D.S.; Costa, F.F.; Saad, S.T. Human leukocyte formin: A novel protein expressed in lymphoid malignancies and associated with Akt. Biochem. Biophys. Res. Commun. 2003, 311, 365–371. [Google Scholar] [CrossRef]
- Esue, O.; Harris, E.S.; Higgs, H.N.; Wirtz, D. The filamentous actin cross-linking/bundling activity of mammalian formins. J. Mol. Biol. 2008, 384, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.S.; Rouiller, I.; Hanein, D.; Higgs, H.N. Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J. Biol. Chem. 2006, 281, 14383–14392. [Google Scholar] [CrossRef]
- Miller, M.R.; Blystone, S.D. Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. Cellbio 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Cai, M.Y.; Zhang, J.X.; Wang, F.W.; Tang, L.Q.; Liao, Y.J.; Jin, X.H.; Wang, C.Y.; Guo, L.; Jiang, Y.G.; et al. FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1. Oncogene 2018, 37, 6243–6258. [Google Scholar] [CrossRef] [PubMed]
- Manser, E.; Leung, T.; Salihuddin, H.; Zhao, Z.S.; Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994, 367, 40–46. [Google Scholar] [CrossRef]
- Zhang, S.; Han, J.; Sells, M.A.; Chernoff, J.; Knaus, U.G.; Ulevitch, R.J.; Bokoch, G.M. Rho family gtpases regulate p38 mitogen-activated protein kinase through the downstream mediator pak1. J. Biol. Chem. 1995, 270, 23934–23936. [Google Scholar] [CrossRef]
- Sells, M.A.; Knaus, U.G.; Bagrodia, S.; Ambrose, D.M.; Bokoch, G.M.; Chernoff, J. Human p21-activated kinase (pak1) regulates actin organization in mammalian cells. Curr. Biol. 1997, 7, 202–210. [Google Scholar] [CrossRef]
- Liu, K.H.; Huynh, N.; Patel, O.; Shulkes, A.; Baldwin, G.; He, H. P21-activated kinase 1 promotes colorectal cancer survival by up-regulation of hypoxia-inducible factor-1alpha. Cancer Lett. 2013, 340, 22–29. [Google Scholar] [CrossRef]
- Alavi, A.; Hood, J.D.; Frausto, R.; Stupack, D.G.; Cheresh, D.A. Role of raf in vascular protection from distinct apoptotic stimuli. Science 2003, 301, 94–96. [Google Scholar] [CrossRef]
- Yao, D.; Li, C.; Rajoka, M.S.R.; He, Z.; Huang, J.; Wang, J.; Zhang, J. P21-Activated Kinase 1: Emerging biological functions and potential therapeutic targets in Cancer. Theranostics 2020, 10, 9741–9766. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Xu, L.; An, H.; Liu, W.; Liu, Y.; Lin, Z.; Xu, J. P21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via nf-kappab/il-6 activation in renal cell carcinoma. Cell Death Dis. 2015, 6, e1637. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Huynh, N.; Liu, K.H.; Malcontenti-Wilson, C.; Zhu, J.; Christophi, C.; Shulkes, A.; Baldwin, G.S. P-21 activated kinase 1 knockdown inhibits beta-catenin signalling and blocks colorectal cancer growth. Cancer Lett. 2012, 317, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Youn, H.; Kwon, T.; Son, B.; Kang, J.; Yang, H.J.; Seong, K.M.; Kim, W.; Youn, B. Pak1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014, 74, 5520–5531. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.D.; Gao, D.; Redfern, A.; Thompson, E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer 2019, 19, 716–732. [Google Scholar] [CrossRef]
- Favaro, P.M.; Traina, F.; Vassallo, J.; Brousset, P.; Delsol, G.; Costa, F.F.; Saad, S.T. High expression of FMNL1 protein in T non-Hodgkin’s lymphomas. Leuk. Res. 2006, 30, 735–738. [Google Scholar] [CrossRef]
- Favaro, P.; Traina, F.; Machado-Neto, J.A.; Lazarini, M.; Lopes, M.R.; Pereira, J.K.; Costa, F.F.; Infante, E.; Ridley, A.J.; Saad, S.T. FMNL1 promotes proliferation and migration of leukemia cells. J. Leukoc. Biol. 2013, 94, 503–512. [Google Scholar] [CrossRef]
- Kilpinen, S.; Autio, R.; Ojala, K.; Iljin, K.; Bucher, E.; Sara, H.; Pisto, T.; Saarela, M.; Skotheim, R.I.; Björkman, M.; et al. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008, 9, R139. [Google Scholar] [CrossRef]
- Colón-Franco, J.M.; Gomez, T.S.; Billadeau, D.D. Dynamic remodeling of the actin cytoskeleton by FMNL1γ is required for structural maintenance of the Golgi complex. J. Cell Sci. 2011, 124, 3118–3126. [Google Scholar] [CrossRef]
- Gardberg, M.; Heuser, V.D.; Iljin, K.; Kampf, C.; Uhlen, M.; Carpén, O. Characterization of Leukocyte Formin FMNL1 Expression in Human Tissues. J. Histochem. Cytochem. 2014, 62, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Liao, J.J.; Xue, W.R. FMNL1 down-regulation suppresses bone metastasis through reducing TGF-β1 expression in non-small cell lung cancer (NSCLC). Biomed. Pharmacother. 2019, 117, 109126. [Google Scholar] [CrossRef]
- Higa, N.; Shinsato, Y.; Kamil, M.; Hirano, T.; Takajo, T.; Shimokawa, M.; Minami, K.; Yamamoto, M.; Kawahara, K.; Yonezawa, H.; et al. Formin-like 1 (FMNL1) Is Associated with Glioblastoma Multiforme Mesenchymal Subtype and Independently Predicts Poor Prognosis. Int. J. Mol. Sci. 2019, 20, 6355. [Google Scholar] [CrossRef]
- Zhang, M.F.; Li, Q.L.; Yang, Y.F.; Cao, Y.; Zhang, C.Z. FMNL1 Exhibits Pro-Metastatic Activity via CXCR2 in Clear Cell Renal Cell Carcinoma. Front. Oncol. 2020, 10, 564614. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gururaj, A.E.; Barnes, C.J. p21-activated kinases in cancer. Nat. Rev. Cancer 2006, 6, 459–471. [Google Scholar] [CrossRef]
- Kichina, J.V.; Goc, A.; Al-Husein, B.; Somanath, P.R.; Kandel, E.S. PAK1 as a therapeutic target. Expert Opin. Ther. Targets 2010, 14, 703–725. [Google Scholar] [CrossRef]
- Eswaran, J.; Lee, W.H.; Debreczeni, J.E.; Filippakopoulos, P.; Turnbull, A.; Fedorov, O.; Deacon, S.W.; Peterson, J.R.; Knapp, S. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure 2007, 15, 201–213. [Google Scholar] [CrossRef]
- Li, Z.; Zou, X.; Xie, L.; Dong, H.; Chen, Y.; Liu, Q.; Wu, X.; Zhou, D.; Tan, D.; Zhang, H. Prognostic importance and therapeutic implications of PAK1, a drugable protein kinase, in gastroesophageal junction adenocarcinoma. PLoS ONE 2013, 8, e80665. [Google Scholar] [CrossRef]
- Song, B.; Wang, W.; Zheng, Y.; Yang, J.; Xu, Z. P21-activated kinase 1 and 4 were associated with colorectal cancer metastasis and infiltration. J. Surg. Res. 2015, 196, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Zheng, M.H.; Luo, Q.; Ye, Q.; Feng, B.; Lu, A.G.; Wang, M.L.; Chen, X.H.; Su, L.P.; Liu, B.Y. P21-activated protein kinase 1 induces colorectal cancer metastasis involving ERK activation and phosphorylation of FAK at Ser-910. Int. J. Oncol. 2010, 37, 951–962. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.; Wang, C.; Cai, X.; Du, Z.; Xu, H.; Li, F. Downregulation of p21-activated kinase-1 inhibits the growth of gastric cancer cells involving cyclin B1. Int. J. Cancer 2009, 125, 2511–2519. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.M.; Park, J.K.; Huang, S.; Kwak, S.Y.; Ryu, K.A.; Kong, G.; Park, J.; Koo, B.S. Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis of head and neck cancer. Head Neck 2015, 37, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wang, F.; Yuan, S.Q.; Guo, Y.; Zeng, Z.L.; Li, L.R.; Yang, J.; Wang, D.S.; Liu, M.Y.; Zhao, H.; et al. Reduced expression of p21-activated protein kinase 1 correlates with poor histological differentiation in pancreatic cancer. BMC Cancer 2014, 14, 650. [Google Scholar] [CrossRef] [PubMed]
- Schrantz, N.; Da Silva Correia, J.; Fowler, B.; Ge, Q.; Sun, Z.; Bokoch, G.M. Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J. Biol. Chem. 2004, 279, 1922–1931. [Google Scholar] [CrossRef]
- Yang, F.; Li, X.; Sharma, M.; Zarnegar, M.; Lim, B.; Sun, Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J. Biol. Chem. 2001, 276, 15345–15353. [Google Scholar] [CrossRef]
- Goc, A.; Al-Azayzih, A.; Abdalla, M.; Al-Husein, B.; Kavuri, S.; Lee, J.; Moses, K.; Somanath, P.R. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J. Biol. Chem. 2013, 288, 3025–3035. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, G.; Li, Y.; Liu, J.; Luo, J.; Zhang, J.; Xu, G.; Chen, G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017, 8, 22563–22580. [Google Scholar] [CrossRef]
Age | Stage | |||||
---|---|---|---|---|---|---|
<65 | ≥65 | Local | Local Advanced | Metastatic | ||
N | 60 | 21 | 39 | 38 | 18 | 4 |
% | 100 | 35 | 65 | 63.3 | 30 | 6.7 |
Reaction Components | Volume for 1 Sample |
---|---|
Rnase-free Water | 10.5 μL |
SCRIPT RT Reaction Buffer | 4 μL |
10 mM Deoxynucleotide Mixture | 1 μL |
DTT Stock Solution | 1 μL |
RNase Inhibitor | 1 μL |
SCRIPT Reverse Transkriptase | 0.5 μL |
RNA Product | 2 μL |
Gene | Forward Primer F (5′-3′) | Reverse Primer R (5′-3′) |
---|---|---|
FMNL1 | AACTTCCGTGTCTTCCTGCAA | CTTGTCACTCTCGGTGAGCC |
PAK1 | TTGTGAAATGCTCTCGGCTATG | TCACCATTTTCCCCGACTTC |
mRNA Expression Levels | Prostate Cancer (n = 60) x ± sd m (min, max) | Control (n = 20) x ± sd m (min, max) | p-Value |
---|---|---|---|
Plasma FMNL1 | 1.33 ± 1.96 0.66 (0.07–13.44) | 1.64 ± 1.61 1.44 (0.09–5.78) | 0.182 |
Urine FMNL1 | 1.93 ± 6.58 0.42 (0.01–48.44) | 1.06 ± 0.85 0.83 (0.15–3.55) | 0.126 |
Plasma PAK1 | 0.70 ± 1.37 0.15 (0.02–5.43) | 0.96 ± 1.52 0.25 (0.03–4.85) | 0.191 |
Urine PAK1 | 1.07 ± 2.16 0.39 (0.01–11.48) | 0.93 ± 0.66 0.83 (0.03–2.09) | 0.071 |
Protein Levels (ng/L) | Prostate Cancer (n = 60) x ± sd m (min, max) | Control (n = 20) x ± sd m (min, max) | p-Value |
---|---|---|---|
Plasma FMNL1 | 425.9 ± 460.2 357.5 (219.0–3505.0) | 389.7 ± 68.4 379.8 (266.5–553.5) | 0.077 |
Urine FMNL1 | 509.5 ± 47.8 508.5 (421.0–637.0) | 520.7 ± 80.3 544.8 (330.0–592.0) | 0.068 |
Plasma PAK1 | 682.5 ± 504.4 631.8 (242.5–4175.0) | 683.3 ± 101.7 658.5 (514.5–846) | 0.089 |
Urine PAK1 | 614.3 ± 201.1 669.5 (197.5–950.5) | 868.8 ± 117.2 893.5 (457.0–1005.0) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilgin Doğru, E.; Erdem, S.; Oğuz Soydinç, H.; İribaş, A.; Duranyıldız, D. Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine. Curr. Issues Mol. Biol. 2025, 47, 648. https://doi.org/10.3390/cimb47080648
Bilgin Doğru E, Erdem S, Oğuz Soydinç H, İribaş A, Duranyıldız D. Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine. Current Issues in Molecular Biology. 2025; 47(8):648. https://doi.org/10.3390/cimb47080648
Chicago/Turabian StyleBilgin Doğru, Elif, Selçuk Erdem, Hilal Oğuz Soydinç, Ayça İribaş, and Derya Duranyıldız. 2025. "Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine" Current Issues in Molecular Biology 47, no. 8: 648. https://doi.org/10.3390/cimb47080648
APA StyleBilgin Doğru, E., Erdem, S., Oğuz Soydinç, H., İribaş, A., & Duranyıldız, D. (2025). Biochemical Changes in Prostate Cancer: FMNL1 and PAK1 in Plasma and Urine. Current Issues in Molecular Biology, 47(8), 648. https://doi.org/10.3390/cimb47080648