Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. CRC scRNA–Seq and Bulk Data Acquisition and Pre–Procession
2.2. Identification of Gene Expression Signature from Primary and Metastatic Cells
2.3. Screening High–Contribution Immune–Related Genes
2.4. Construction of Metastasis–Based Immune Prognostic Model (MIPM)
2.5. Functional Enrichment Analysis
2.6. Evaluation of MIPM in Validation Cohorts
2.7. Analysis of Clinical Features
2.8. Drug Sensitivity Analysis
2.9. Comprehensive Immune-Related Analysis
2.10. Statistical Analysis
3. Results
3.1. Single–Cell RNA Sequencing (scRNA–Seq) Data Acquisition and Processing
3.2. Establishment of Metastasis–Based Immune Prognostic Model (MIPM)
3.3. Associations of MIPM and Clinical Characteristics in Internal Validation Datasets
3.4. MIPM’s Prognostic Power Across Multiple External Validation Datasets
3.5. MIPM Predicts Chemotherapy Benefits
3.6. Independent Prognostic Factor Evaluation and Nomogram Construction
3.7. MIPM’s Influence on Drug Sensitivity and Resistance in CRC
3.8. Immune Characteristics Between the High– and Low–Risk Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
MIPM | Metastasis–based immune prognostic model |
scRNA–seq | Single–cell RNA sequencing |
OS | Overall survival |
IRGPI | Immune–related gene prognostic index |
TIME | Tumor immune microenvironment |
ICIs | Immune checkpoint inhibitors |
GEO | Gene Expression Omnibus |
UMI | Unique molecular identifier |
ssGSEA | Single-sample gene set enrichment analysis |
HIRG | High–contribution immune-related genes |
K-M | Kaplan–Meier |
DCA | Decision curve analysis |
ROC | Receiver operating characteristic |
DFS | Disease–free survival |
IC50 | Half maximal inhibitory concentration |
GDSC | Genomics of Drug Sensitivity in Cancer |
TIDE | Tumor immune dysfunction and exclusion |
IPS | Immunophenoscore |
QC | Quality control |
t-SNE | T–distributed stochastic neighbor embedding |
AUC | Area under the ROC |
CMS | Consensus molecular subtypes |
GSVA | Gene set variation analysis |
PDOX | Patient-derived organoid–based xenograft |
PARP | Poly (ADP–ribose) polymerase |
TME | Tumor microenvironment |
MSI | Microsatellite instability |
MHC | MHC molecules |
EC | Effector cells |
SC | Suppressor cells |
CP | Immune checkpoints |
NSCLC | Non-small-cell lung cancer |
References
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, D.S.; Barriuso, J.; Mullamitha, S.; Saunders, M.P.; O’Dwyer, S.T.; Aziz, O. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine 2019, 40, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Ma, N.; Shi, Q.; Liu, Q.C.; Zhang, W.; Cao, H.J.; Wang, Y.K.; Zheng, Q.W.; Ni, Q.Z.; Xu, S.; et al. XAF1 promotes colorectal cancer metastasis via VCP-RNF114-JUP axis. J. Cell Biol. 2024, 223, e202303015. [Google Scholar] [CrossRef]
- Cañellas-Socias, A.; Cortina, C.; Hernando-Momblona, X.; Palomo-Ponce, S.; Mulholland, E.J.; Turon, G.; Mateo, L.; Conti, S.; Roman, O.; Sevillano, M.; et al. Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature 2022, 611, 603–613. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, X.; Yu, Y.; Zhu, W.; Jin, L.; Zhang, X.; Li, S.; Zou, P.; Xie, C.; Cui, R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett. 2021, 501, 66–82. [Google Scholar] [CrossRef]
- Shin, A.E.; Giancotti, F.G.; Rustgi, A.K. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol. Sci. 2023, 44, 222–236. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, Q.; Cao, Q.; Kong, R.; Xiang, X.; Liu, H.; Feng, M.; Wang, F.; Cheng, J.; Li, Z.; et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022, 612, 141–147. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Hu, H.; Qin, G.; Wu, X.; Bai, F.; Zhang, J.; Cai, Y.; Huang, Y.; Wang, C.; et al. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell 2023, 41, 1152–1169.e7. [Google Scholar] [CrossRef]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef]
- Ganesh, K.; Stadler, Z.K.; Cercek, A.; Mendelsohn, R.B.; Shia, J.; Segal, N.H.; Diaz, L.A., Jr. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 361–375. [Google Scholar] [CrossRef]
- Li, C.; Wirth, U.; Schardey, J.; Ehrlich-Treuenstätt, V.V.; Bazhin, A.V.; Werner, J.; Kühn, F. An immune-related gene prognostic index for predicting prognosis in patients with colorectal cancer. Front. Immunol. 2023, 14, 1156488. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Kim, S.K.; Kwon, H.Y.; Kim, C.S.; Bang, H.J.; Do, H.; Kim, B.; Kim, K.; Kim, Y. Expression of Immune-Related and Inflammatory Markers and Their Prognostic Impact in Colorectal Cancer Patients. Int. J. Mol. Sci. 2023, 24, 11579. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Huang, X.; Feng, Y.; Wei, C.; Liu, H.; Ru, H.; Qin, H.; Lai, H.; Wu, G.; Xie, W.; et al. Immune infiltration and immune gene signature predict the response to fluoropyrimidine-based chemotherapy in colorectal cancer patients. Oncoimmunology 2020, 9, 1832347. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Deng, Y.; Huang, Z.; Huang, H.; Wu, Y.; He, B.; Hu, F. Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic and prognostic biomarkers for CRC. J. Cancer Res. Clin. Oncol. 2023, 149, 9805–9821. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Luo, X.; Zhang, Z.; Chen, Y.; Dai, Y.; Deng, J.; Yang, C.; Liu, H. Construction of an immune predictive model and identification of TRIP6 as a prognostic marker and therapeutic target of CRC by integration of single-cell and bulk RNA-seq data. Cancer Immunol. Immunother. 2024, 73, 69. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.F.; Li, C.L.; Wang, Y.; Wu, L.; Wang, X.R.; Huang, T.; Liu, G.L.; Chen, X.; Yu, Q.; et al. Integrating scRNA-seq and bulk RNA-seq to characterize infiltrating cells in the colorectal cancer tumor microenvironment and construct molecular risk models. Aging 2023, 15, 13799–13821. [Google Scholar] [CrossRef]
- Che, L.H.; Liu, J.W.; Huo, J.P.; Luo, R.; Xu, R.M.; He, C.; Li, Y.Q.; Zhou, A.J.; Huang, P.; Chen, Y.Y.; et al. A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 2021, 7, 80. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef]
- Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; et al. Gene expression classification of colon cancer into molecular subtypes: Characterization, validation, and prognostic value. PLoS Med. 2013, 10, e1001453. [Google Scholar] [CrossRef]
- Eide, P.W.; Moosavi, S.H.; Eilertsen, I.A.; Brunsell, T.H.; Langerud, J.; Berg, K.C.G.; Røsok, B.I.; Bjørnbeth, B.A.; Nesbakken, A.; Lothe, R.A.; et al. Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer. NPJ Genom. Med. 2021, 6, 59. [Google Scholar] [CrossRef]
- Hu, Y.; Gaedcke, J.; Emons, G.; Beissbarth, T.; Grade, M.; Jo, P.; Yeager, M.; Chanock, S.J.; Wolff, H.; Camps, J.; et al. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes. Chromosomes Cancer 2018, 57, 140–149. [Google Scholar] [CrossRef]
- Chen, D.T.; Hernandez, J.M.; Shibata, D.; McCarthy, S.M.; Humphries, L.A.; Clark, W.; Elahi, A.; Gruidl, M.; Coppola, D.; Yeatman, T. Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J. Gastrointest. Surg. 2012, 16, 905–912, discussion 912–903. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, M.; Mollevi, C.; Bibeau, F.; Vie, N.; Selves, J.; Emile, J.F.; Roger, P.; Gongora, C.; Robert, J.; Tubiana-Mathieu, N.; et al. Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies. Eur. J. Cancer 2017, 76, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Cherradi, S.; Ayrolles-Torro, A.; Vezzo-Vi, N.; Gueguinou, N.; Denis, V.; Combes, E.; Boissière, F.; Busson, M.; Canterel-Thouennon, L.; Mollevi, C.; et al. Antibody targeting of claudin-1 as a potential colorectal cancer therapy. J. Exp. Clin. Cancer Res. 2017, 36, 89. [Google Scholar] [CrossRef]
- Staub, E.; Groene, J.; Heinze, M.; Mennerich, D.; Roepcke, S.; Klaman, I.; Hinzmann, B.; Castanos-Velez, E.; Pilarsky, C.; Mann, B.; et al. An expression module of WIPF1-coexpressed genes identifies patients with favorable prognosis in three tumor types. J Mol Med. 2009, 87, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Deane, N.G.; Wu, F.; Merchant, N.B.; Zhang, B.; Jiang, A.; Lu, P.; Johnson, J.C.; Schmidt, C.; Bailey, C.E.; et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 2010, 138, 958–968. [Google Scholar] [CrossRef]
- Laibe, S.; Lagarde, A.; Ferrari, A.; Monges, G.; Birnbaum, D.; Olschwang, S. A seven-gene signature aggregates a subgroup of stage II colon cancers with stage III. Omics 2012, 16, 560–565. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Ross, K.N.; Lander, E.S.; Golub, T.R. A molecular signature of metastasis in primary solid tumors. Nat. Genet. 2003, 33, 49–54. [Google Scholar] [CrossRef]
- Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999, 286, 531–537. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Andorf, S.; Gomes, L.; Dunn, P.; Schaefer, H.; Pontius, J.; Berger, P.; Desborough, V.; Smith, T.; Campbell, J.; et al. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res. 2014, 58, 234–239. [Google Scholar] [CrossRef]
- Shen, M.; Xie, Q.; Zhang, R.; Yu, C.; Xiao, P. Metabolite-assisted models improve risk prediction of coronary heart disease in patients with diabetes. Front. Pharmacol. 2023, 14, 1175021. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Sun, Z.; Dang, Q.; Liu, Z.; Shao, B.; Chen, C.; Guo, Y.; Chen, Z.; Zhou, Q.; Hu, S.; Liu, J.; et al. LINC01272/miR-876/ITGB2 axis facilitates the metastasis of colorectal cancer via epithelial-mesenchymal transition. J. Cancer 2021, 12, 3909–3919. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Q.; Zhou, X.; Liang, R.; Yang, S.; Xu, M.; Zhao, H.; Li, C.; Chen, Y.; Cai, X. Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in lung adenocarcinoma. Comput. Biol. Med. 2023, 158, 106831. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xiao, Y.; Wei, D.; Wang, Q.; Zhang, J.K.; Yuan, L.; Bai, G.Q. Development and validation of a nomogram for predicting suicide risk and prognostic factors in bladder cancer patients following diagnosis: A population-based retrospective study. J. Affect. Disord. 2024, 347, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, G.; Wang, L.; Liang, M. Exploration and validation of a combined immune and metabolism gene signature for prognosis prediction of colorectal cancer. Front. Endocrinol 2022, 13, 1069528. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xu, Z.; Zhang, W.; Lin, H.; Zhang, Y.; Zhou, S.; Liu, Z.; Gu, X. Identification and validation of a prognostic signature based on six immune-related genes for colorectal cancer. Discov. Oncol. 2024, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Li, W.; Peng, Y.; Xu, F.; Shang, J.; Dong, S.; Bu, L.; Wang, H.; Wei, W.; et al. Identification and validation of an immune prognostic signature in colorectal cancer. Int. Immunopharmacol. 2020, 88, 106868. [Google Scholar] [CrossRef]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013, 41, D955–D961. [Google Scholar] [CrossRef]
- Maeser, D.; Gruener, R.F.; Huang, R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021, 22, bbab260. [Google Scholar] [CrossRef]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef]
- Gui, C.P.; Wei, J.H.; Chen, Y.H.; Fu, L.M.; Tang, Y.M.; Cao, J.Z.; Chen, W.; Luo, J.H. A new thinking: Extended application of genomic selection to screen multiomics data for development of novel hypoxia-immune biomarkers and target therapy of clear cell renal cell carcinoma. Brief. Bioinform. 2021, 22, bbab173. [Google Scholar] [CrossRef]
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018, 24, 1550–1558. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, Y.; Qian, C.; Shen, Q.; Wu, M.; Zhu, B.; Feng, Y. CHSY3 promotes proliferation and migration in gastric cancer and is associated with immune infiltration. J. Transl. Med. 2023, 21, 474. [Google Scholar] [CrossRef] [PubMed]
- Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep. 2017, 18, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Li, L.; Li, L.; Lv, X.; Zhou, D.; Wang, Q.; Chen, J.; Yang, C.; Xu, E.; Dai, W.; et al. C5aR1 is a master regulator in Colorectal Tumorigenesis via Immune modulation. Theranostics 2020, 10, 8619–8632. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Qin, S.L.; Mu, Y.F.; Qi, Y.; Yu, M.H.; Zhong, M. The clinical impact of ICOS signal in colorectal cancer patients. Oncoimmunology 2016, 5, e1141857. [Google Scholar] [CrossRef]
- Alderdice, M.; Craig, S.G.; Humphries, M.P.; Gilmore, A.; Johnston, N.; Bingham, V.; Coyle, V.; Senevirathne, S.; Longley, D.B.; Loughrey, M.B.; et al. Evolutionary genetic algorithm identifies IL2RB as a potential predictive biomarker for immune-checkpoint therapy in colorectal cancer. NAR Genom. Bioinform. 2021, 3, lqab016. [Google Scholar] [CrossRef]
- Liu, X.; Meng, X.; Peng, X.; Yao, Q.; Zhu, F.; Ding, Z.; Sun, H.; Liu, X.; Li, D.; Lu, Y.; et al. Impaired AGO2/miR-185-3p/NRP1 axis promotes colorectal cancer metastasis. Cell Death Dis. 2021, 12, 390. [Google Scholar] [CrossRef] [PubMed]
- Petit, J.Y.; Cavana, P.; Thoumire, S.; Guillot, J.; Perrot, S. Use of a modified hair strand test to assess the antifungal activity kinetics of dog hair after a 2% climbazole shampoo application. Vet. Dermatol. 2016, 27, 148-e38. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Wang, X.; Long, T.; Wang, X.; Zhong, Y.; Ma, Y.; Hu, Z.; Li, Z. FSTL1 interacts with VIM and promotes colorectal cancer metastasis via activating the focal adhesion signalling pathway. Cell Death Dis. 2018, 9, 654. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Ohishi, T.; Kaneko, M.K.; Yoshida, Y.; Takashima, A.; Kato, Y.; Kawada, M. Current Targeted Therapy for Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 1702. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Budinger, G.R.; Wu, M.; Lam, A.P.; Zirk, A.; Rivera, S.; Urich, D.; Chiarella, S.E.; Go, L.H.; Ghosh, A.K.; et al. Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β(1) signalling. Thorax 2012, 67, 139–146. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef]
- King, A.J.; Arnone, M.R.; Bleam, M.R.; Moss, K.G.; Yang, J.; Fedorowicz, K.E.; Smitheman, K.N.; Erhardt, J.A.; Hughes-Earle, A.; Kane-Carson, L.S.; et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS ONE 2013, 8, e67583. [Google Scholar] [CrossRef]
- Lakomy, D.S.; Urbauer, D.L.; Westin, S.N.; Lin, L.L. Phase I study of the PARP inhibitor talazoparib with radiation therapy for locally recurrent gynecologic cancers. Clin. Transl. Radiat. Oncol. 2020, 21, 56–61. [Google Scholar] [CrossRef]
- Clark, P.I.; Slevin, M.L. The clinical pharmacology of etoposide and teniposide. Clin. Pharmacokinet. 1987, 12, 223–252. [Google Scholar] [CrossRef]
- de Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Hou, S.; Zhao, Y.; Chen, J.; Lin, Y.; Qi, X. Tumor-associated macrophages in colorectal cancer metastasis: Molecular insights and translational perspectives. J. Transl. Med. 2024, 22, 62. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, X.; Zheng, L.; Zhang, Y.; Li, Y.; Fang, Q.; Gao, R.; Kang, B.; Zhang, Q.; Huang, J.Y.; et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018, 564, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015, 5, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Z.; Li, F. Survival prediction and response to immune checkpoint inhibitors: A prognostic immune signature for hepatocellular carcinoma. Transl. Oncol. 2021, 14, 100957. [Google Scholar] [CrossRef]
- Shi, W.; Zou, R.; Yang, M.; Mai, L.; Ren, J.; Wen, J.; Liu, Z.; Lai, R. Analysis of Genes Involved in Ulcerative Colitis Activity and Tumorigenesis Through Systematic Mining of Gene Co-expression Networks. Front. Physiol. 2019, 10, 662. [Google Scholar] [CrossRef]
- McNamee, E.N.; Masterson, J.C.; Veny, M.; Collins, C.B.; Jedlicka, P.; Byrne, F.R.; Ng, G.Y.; Rivera-Nieves, J. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn’s-like murine ileitis. J. Leukoc. Biol. 2015, 97, 1011–1022. [Google Scholar] [CrossRef]
- Wikenheiser, D.J.; Stumhofer, J.S. ICOS Co-Stimulation: Friend or Foe? Front. Immunol. 2016, 7, 304. [Google Scholar] [CrossRef]
- Amatore, F.; Gorvel, L.; Olive, D. Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert. Opin. Biol. Ther. 2020, 20, 141–150. [Google Scholar] [CrossRef]
- Li, S.; Xie, Q.; Zeng, Y.; Zou, C.; Liu, X.; Wu, S.; Deng, H.; Xu, Y.; Li, X.C.; Dai, Z. A naturally occurring CD8(+)CD122(+) T-cell subset as a memory-like Treg family. Cell Mol. Immunol. 2014, 11, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Chuckran, C.A.; Liu, C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A. Neuropilin-1: A checkpoint target with unique implications for cancer immunology and immunotherapy. J. Immunother. Cancer 2020, 8, e000967. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Somasundaram, A.; Manne, S.; Gocher, A.M.; Szymczak-Workman, A.L.; Vignali, K.M.; Scott, E.N.; Normolle, D.P.; John Wherry, E.; Lipson, E.J.; et al. Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nat. Immunol. 2020, 21, 1010–1021. [Google Scholar] [CrossRef] [PubMed]
- van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef]
- Sveen, A.; Kopetz, S.; Lothe, R.A. Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat. Rev. Clin. Oncol. 2020, 17, 11–32. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. Jama 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Lièvre, A.; Bachet, J.B.; Boige, V.; Cayre, A.; Le Corre, D.; Buc, E.; Ychou, M.; Bouché, O.; Landi, B.; Louvet, C.; et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 2008, 26, 374–379. [Google Scholar] [CrossRef]
- Lee, D.W.; Kim, K.J.; Han, S.W.; Lee, H.J.; Rhee, Y.Y.; Bae, J.M.; Cho, N.Y.; Lee, K.H.; Kim, T.Y.; Oh, D.Y.; et al. KRAS mutation is associated with worse prognosis in stage III or high-risk stage II colon cancer patients treated with adjuvant FOLFOX. Ann. Surg. Oncol. 2015, 22, 187–194. [Google Scholar] [CrossRef]
- Thind, A.S.; Monga, I.; Thakur, P.K.; Kumari, P.; Dindhoria, K.; Krzak, M.; Ranson, M.; Ashford, B. Demystifying emerging bulk RNA-Seq applications: The application and utility of bioinformatic methodology. Brief. Bioinform. 2021, 22, bbab259. [Google Scholar] [CrossRef]
- Khan, S.U.; Huang, Y.; Ali, H.; Ali, I.; Ahmad, S.; Khan, S.U.; Hussain, T.; Ullah, M.; Lu, K. Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs). Curr. Probl. Cardiol. 2024, 49, 102202. [Google Scholar] [CrossRef]
Series | Platform | Cells/Patients | Samples Treated with Chemo | |
---|---|---|---|---|
scRNA–seq | GSE178318 | GPL24676 | 113,331/6 | 3 |
Bulk | GSE39582 | GPL570 | 556 | 233 |
GSE159216 | GPL17586 | 171 | 156 | |
GSE87211 | GPL13497 | 196 | 196 | |
GSE29621 | GPL17586 | 65 | 38 | |
GSE72968 | GPL570 | 68 | 68 | |
GSE72970 | GPL570 | 124 | 124 | |
GSE12945 | GPL96 | 62 | – | |
GSE17536 | GPL570 | 177 | – | |
GSE17537 | GPL570 | 55 | – | |
GSE17538 | GPL570 | 213 | – | |
GSE37892 | GPL570 | 130 | – |
Series | Platform | Sample Size | N (OS Event) | N (DFS Event) | p Value | HR | 95% CI | AUC |
---|---|---|---|---|---|---|---|---|
GSE39582 | GPL570 | 556 | 187 | 177 | <0.001 | 2.153 | 1.603–2.891 | 0.655 |
GSE159216 | GPL17586 | 171 | 108 | - | <0.001 | 1.967 | 1.347–2.873 | 0.624 |
GSE87211 | GPL13497 | 196 | 28 | 28 | <0.001 | 3.578 | 1.460–8.770 | 0.653 |
GSE29621 | GPL17586 | 65 | 25 | 9 | <0.001 | 5.068 | 1.811–14.182 | 0.748 |
GSE72968 | GPL570 | 68 | 49 | - | 0.019 | 1.925 | 1.032–3.590 | 0.559 |
GSE72970 | GPL570 | 124 | 92 | - | 0.049 | 1.510 | 1.032–2.273 | 0.572 |
GSE12945 | GPL96 | 62 | 12 | 4 | 0.002 | 5.247 | 0.705–39.062 | 0.622 |
GSE17536 | GPL570 | 177 | 73 | 36 | <0.001 | 2.774 | 1.693–4.543 | 0.684 |
GSE17537 | GPL570 | 55 | 20 | 19 | 0.023 | 2.769 | 1.132–6.770 | 0.584 |
GSE17538 | GPL570 | 213 | 87 | 36 | <0.001 | 2.478 | 1.601–3.835 | 0.667 |
GSE37892 | GPL570 | 130 | 37 | - | <0.001 | 2.870 | 1.433–5.747 | 0.621 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | HR | 95% CI | p Value | HR | 95% CI | p Value |
GSE39582 | ||||||
Risk (high vs. low) | 2.160 | 1.615–2.888 | <0.001 *** | 1.873 | 1.393–2.518 | <0.001 *** |
Sex (male vs. female) | 1.328 | 0.990–1.780 | 0.058 . | 1.346 | 0.999–1.814 | 0.051 . |
Age | 1.023 | 1.011–1.036 | <0.001 *** | 1.023 | 1.011–1.036 | <0.001 *** |
Stage (III/IV vs. I/II) | 1.818 | 1.360–2.431 | <0.001 *** | 1.815 | 1.353–2.433 | <0.001 *** |
GSE17538 | ||||||
Risk (high vs. low) | 2.489 | 1.623–3.817 | <0.001 *** | 2.225 | 1.443–3.429 | <0.001 *** |
Sex (male vs. female) | 1.006 | 0.659–1.535 | 0.979 | 1.019 | 0.658–1.578 | 0.934 |
Age | 1.012 | 0.995–1.029 | 0.171 | 1.022 | 1.005–1.039 | 0.013 * |
Stage (III/IV vs. I/II) | 3.563 | 2.139–5.935 | <0.001 *** | 3.604 | 2.146–6.054 | <0.001 *** |
GSE17536 | ||||||
Risk (high vs. low) | 2.790 | 1.755–4.436 | <0.001 *** | 2.598 | 1.629–4.144 | <0.001 *** |
Sex (male vs. female) | 1.105 | 0.694–1.759 | 0.674 | 1.032 | 0.630–1.689 | 0.902 |
Age | 1.006 | 0.988–1.025 | 0.492 | 1.016 | 0.997–1.034 | 0.096 . |
Stage (III/IV vs. I/II) | 4.220 | 2.387–7.459 | <0.001 *** | 4.217 | 2.369–7.506 | <0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, K.; Li, L.; Ma, Y.; Zhu, J. Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer. Curr. Issues Mol. Biol. 2025, 47, 652. https://doi.org/10.3390/cimb47080652
Xing K, Li L, Ma Y, Zhu J. Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer. Current Issues in Molecular Biology. 2025; 47(8):652. https://doi.org/10.3390/cimb47080652
Chicago/Turabian StyleXing, Kaiyuan, Liangshuang Li, Yingnan Ma, and Jiang Zhu. 2025. "Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer" Current Issues in Molecular Biology 47, no. 8: 652. https://doi.org/10.3390/cimb47080652
APA StyleXing, K., Li, L., Ma, Y., & Zhu, J. (2025). Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer. Current Issues in Molecular Biology, 47(8), 652. https://doi.org/10.3390/cimb47080652