Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- For Web of Science: TS = ((colorectal cancer OR colon cancer OR rectal cancer) AND saliva AND (biomarkers OR markers)) and TS = ((oral OR saliva) AND (liquid biopsy))
- For Scopus: TITLE-ABS-KEY ((colorectal cancer OR colon cancer OR rectal cancer) AND saliva AND (biomarkers OR markers)) and TITLE-ABS-KEY ((oral OR saliva) AND (liquid biopsy))
- For PubMed: (colorectal cancer OR colon cancer OR rectal cancer) AND saliva AND (biomarkers OR markers) and (oral OR saliva) AND (liquid biopsy)
Quality Assessment and Critical Appraisal for the Systematic Review of Included Studies
3. Results
4. Discussion
4.1. Oral Microbiota
4.2. Salivary microRNA
4.3. Salivary Metabolites
4.4. Protein and Enzyme Salivary Biomarkers
4.5. Salivary and Serum Oxidative Stress Biomarkers
5. Conclusions
6. Future Directions
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRC | Colorectal Cancer |
FIT | Fecal Immunochemical Tests |
gFOBT | Guaiac-based Fecal Occult Blood Tests |
OBT | Occult Blood Tests |
F | Female |
M | Male |
GC | Gastric Cancer |
CR Adenoma | Colorectal Adenoma |
IBD | Inflammatory Bowel Diseases |
ND | No Data |
SOD | Superoxide Dismutase |
CAT | Catalase |
GPx | Glutathione Peroxidase |
GR | Glutathione Reductase |
UA | Uric Acid |
GSH | Reduced Glutathione |
TAC | Total Antioxidant Capacity |
TOS | Total Oxidant Status |
LPO | Lipid Peroxidation |
FRAP | Ferric Reducing Ability |
AGEP | Advanced Glycation End Products |
AOPP | Advanced Oxidation Protein Products |
MDA | Malondialdehyde |
OSI | Oxidative Stress Index |
VOCs | Volatile Organic Compounds |
References
- World Health Organization. Cancer. Available online: https://www.who.int/health-topics/cancer (accessed on 30 March 2025).
- Ghufran, S.; Soni, P.; Duddukuri, G.R. The global concern for cancer emergence and its prevention: A systematic unveiling of the present scenario. Bioprospecting Trop. Med. Plants 2023, 1429–1455. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, F.; Lin, R. Global burden of cancer and associated risk factors in 204 countries and territories, 1980-2021: A systematic analysis for the GBD 2021. J. Hematol. Oncol. 2024, 17, 119. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; et al. Global Burden of Disease Cancer Collaboration: Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2019, 5, 1749–1768. [Google Scholar] [PubMed]
- Barnes, J.L.; Zubair, M.; John, K.; Poirier, M.C.; Martin, F.L. Carcinogens and DNA damage. Biochem. Soc. Trans. 2018, 46, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Peltomäki, P. Mutations and epimutations in the origin of cancer. Exp. Cell Res. 2012, 318, 299–310. [Google Scholar] [CrossRef]
- Huxley, R.R.; Ansary-Moghaddam, A.; Clifton, P.; Czernichow, S.; Parr, C.L.; Woodward, M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: A quantitative overview of the epidemiological evidence. Int. J. Cancer 2009, 125, 171–180. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [CrossRef]
- Simon, K.; Balchen, V. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef]
- Sullivan, B.A.; Noujaim, M.; Roper, J. Cause, Epidemiology, and Histology of Polyps and Pathways to Colorectal Cancer. Gastrointest. Endosc. Clin. North. Am. 2022, 32, 177–194. [Google Scholar] [CrossRef]
- Vogelstein, B.; Fearon, E.R.; Kern, S.E.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Nakamura, Y.; White, R.; Smits, A.M.; et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988, 319, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.D.; Bertagnolli, M.M. Molecular basis of colorectal cancer. N. Engl. J. Med. 2009, 361, 2449–2460. [Google Scholar] [CrossRef] [PubMed]
- Grady, W.M.; Carethers, J.M. Genomic and Epigenetic Instability in Colorectal Cancer Pathogenesis. Gastroenterology 2008, 135, 1079–1099. [Google Scholar] [CrossRef]
- Kalluri, R. Basement membranes: Structure, assembly, and role in tumour angiogenesis. Nat. Rev. Cancer 2003, 3, 422–433. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- John, S.K.P.; George, S.; Primrose, J.N.; Fozard, J.B.J. Symptoms and signs in patients with colorectal cancer. Color. Dis. 2010, 13, 17–25. [Google Scholar] [CrossRef]
- Schult, A.L.; Botteri, E.; Hoff, G.; Randel, K.R.; Dalén, E.; Eskeland, S.L.; Holme, Ø.; de Lange, T. Detection of cancers and advanced adenomas in asymptomatic participants in colorectal cancer screening: A cross-sectional study. BMJ Open 2021, 11, e048183. [Google Scholar] [CrossRef]
- Esteva, M.; Leiva, A.; Ramos, M.; Pita-Fernández, S.; González-Luján, L.; Casamitjana, M.; Sánchez, M.A.; Pértega-Díaz, S.; Ruiz, A.; Gonzalez-Santamaría, P.; et al. Factors related with symptom dura-tion until diagnosis and treatment of symptomatic colorectal cancer. BMC Cancer 2013, 13, 87. [Google Scholar] [CrossRef]
- Vega, P.; Valentín, F.; Cubiella, J. Colorectal cancer diagnosis: Pitfalls and opportunities. World J. Gastrointest. Oncol. 2015, 7, 422–433. [Google Scholar] [CrossRef]
- Baxter, N.; Rabeneck, L. ICES Report: New Findings about the Risks and Limitations of Colonoscopy Used in the Early Detection of Colorectal Cancer. World Heal. Popul. 2009, 12, 24–25. [Google Scholar] [CrossRef]
- Peterse, E.F.P.; Meester, R.G.S.; de Jonge, L.; Omidvari, A.-H.; Alarid-Escudero, F.; Knudsen, A.B.; Zauber, A.G.; Lansdorp-Vogelaar, I. Comparing the Cost-Effectiveness of Innovative Colorectal Cancer Screening Tests. JNCI J. Natl. Cancer Inst. 2020, 113, 154–161. [Google Scholar] [CrossRef]
- Shaukat, A.; Levin, T.R. Current and future colorectal cancer screening strategies. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 521–531. [Google Scholar] [CrossRef]
- Neri, E.; Lefere, P.; Gryspeerdt, S.; Bemi, P.; Mantarro, A.; Bartolozzi, C. Bowel preparation for CT colonography. Eur. J. Radiol. 2013, 82, 1137–1143. [Google Scholar] [CrossRef]
- Bjoersum-Meyer, T.; Skonieczna-Zydecka, K.; Valdivia, P.C.; Stenfors, I.; Lyutakov, I.; Rondonotti, E.; Pennazio, M.; Marlicz, W.; Baatrup, G.; Koulaouzidis, A.; et al. Efficacy of bowel preparation regimens for colon capsule endoscopy: A systematic review and meta-analysis. Endosc. Int. Open 2021, 09, E1658–E1673. [Google Scholar] [CrossRef] [PubMed]
- Rosa, B.; Donato, H.; Gonçalves, T.C.; Sousa-Pinto, B.; Cotter, J. What Is the Optimal Bowel Preparation for Capsule Colonoscopy and Pan-intestinal Capsule Endoscopy? A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2023, 68, 4418–4431. [Google Scholar] [CrossRef]
- Mulhall, B.P.; Veerappan, G.R.; Jackson, J.L. Meta-Analysis: Computed Tomographic Colonography. Ann. Intern. Med. 2005, 142, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Iinuma, G.; Shiraishi, J.; Arai, Y.; Moriyama, N.; Beddoe, G.; Nakijima, Y. Computer-aided detection in computed tomography colonography: Current status and problems with detection of early colorectal cancer. Radiat. Med. 2008, 26, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Dachman, A.H. CAD techniques, challenges, and controversies in computed tomographic colon-ography. Abdominal Imaging 2004, 30, 26–41. [Google Scholar] [CrossRef]
- Sonnenberg, A.; Delco, F.; Bauerfeind, P. Is virtual colonoscopy a cost-effective option to screen for colorectal cancer? Am. J. Gastroenterol. 1999, 94, 2268–2274. [Google Scholar] [CrossRef]
- Van Gossum, A.; Munoz-Navas, M.; Fernandez-Urien, I.; Carretero, C.; Gay, G.; Delvaux, M.; Lapalus, M.G.; Ponchon, T.; Neuhaus, H.; Philipper, M.; et al. Capsule Endoscopy versus Colonoscopy for the Detection of Polyps and Cancer. New Engl. J. Med. 2009, 361, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S. Screening for Colorectal Cancer. Hematol. Oncol. Clin. North. Am. 2022, 36, 393–414. [Google Scholar] [CrossRef] [PubMed]
- Rockey, D.C.; Koch, J.; Cello, J.P.; Sanders, L.L.; McQuaid, K. Relative frequency of upper gastrointestinal and colonic lesions in patients with positive fecal occult-blood tests. N. Engl. J. Med. 1998, 339, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Chiu, H.M.; Chiang, T.H.; Yen, A.M.; Chiu, S.Y.; Chen, S.L.; Fann, J.C.; Yeh, Y.P.; Liao, C.S.; Hu, T.H.; et al. Accuracy of faecal occult blood test and Helicobacter pylori stool antigen test for detection of upper gastrointestinal lesions. BMJ Open 2013, 3, e003989. [Google Scholar] [CrossRef]
- Kok, L.; Elias, S.G.; Witteman, B.J.M.; Goedhard, J.G.; Muris, J.W.M.; Moons, K.G.M.; de Wit, N.J. Diagnostic Accuracy of Point-of-Care Fecal Calprotectin and Immunochemical Occult Blood Tests for Diagnosis of Organic Bowel Disease in Primary Care: The Cost-Effectiveness of a Decision Rule for Abdominal Complaints in Primary Care (CEDAR) Study. Clin. Chem. 2012, 58, 989–998. [Google Scholar] [CrossRef]
- Clarke, P.; Jack, F.; Carey, F.A.; Steele, R.J.C. Medications with anticoagulant properties increase the likelihood of a negative colonoscopy in faecal occult blood test population screening. Color. Dis. 2006, 8, 389–392. [Google Scholar] [CrossRef]
- Sawhney, M.S.; McDougall, H.; Nelson, D.B.; Bond, J.H. Fecal Occult Blood Test in Patients on Low-Dose Aspirin, Warfarin, Clopidogrel, or Non-steroidal Anti-inflammatory Drugs. Dig. Dis. Sci. 2010, 55, 1637–1642. [Google Scholar] [CrossRef]
- Tibble, J.; Sigthorsson, G.; Foster, R.; Sherwood, R.; Fagerhol, M.; Bjarnason, I. Faecal calprotectin and faecal occult blood tests in the diagnosis of colorectal carcinoma and adenoma. Gut 2001, 49, 402–408. [Google Scholar] [CrossRef]
- Graser, A.; Stieber, P.; Nagel, D.; Schafer, C.; Horst, D.; Becker, C.R.; Nikolaou, K.; Lottes, A.; Geisbusch, S.; Kramer, H.; et al. Comparison of CT colonography, colonoscopy, sigmoidoscopy and faecal occult blood tests for the detection of advanced adenoma in an average risk population. Gut 2008, 58, 241–248. [Google Scholar] [CrossRef]
- Kondoh, H. Cellular life span and the Warburg effect. Exp. Cell Res. 2008, 314, 1923–1928. [Google Scholar] [CrossRef]
- Pavlou, M.P.; Diamandis, E.P. The cancer cell secretome: A good source for discovering biomarkers? J. Proteomics. 2010, 73, 1896–1906. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; García Hernández, J.L.; García, A.C.; Córdova Martínez, A.; Mielgo-Ayuso, J.; Cruz-Hernández, J.J. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics 2020, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Zhang, R.; Li, Z.; Li, J. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 2017, 8, 55632–55645. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.J.A.; Causin, R.L.; Varuzza, M.B.; Calfa, S.; Hidalgo Filho, C.M.T.; Komoto, T.T.; Souza, C.P.; Marques, M.M.C. Liquid Biopsy as a Tool for the Diagnosis, Treatment, and Monitoring of Breast Cancer. Int. J. Mol. Sci. 2022, 23, 9952. [Google Scholar] [CrossRef] [PubMed]
- Kaczor-Urbanowicz, K.E.; Wei, F.; Rao, S.L.; Kim, J.; Shin, H.; Cheng, J.; Tu, M.; Wong, D.T.; Kim, Y. Clinical validity of saliva and novel technology for cancer detection. Biochim. Biophys. Acta (BBA) Rev. Cancer 2019, 1872, 49–59. [Google Scholar] [CrossRef]
- Buczko, P.; Zalewska, A.; Szarmach, I. Saliva and oxidative stress in oral cavity and in some systemic disorders. J. Physiol. Pharmacol. 2015, 66, 3–9. [Google Scholar]
- De Almeida, P.D.V.; Grégio, A.M.T.; Machado, M.Â.N.; de Lima, A.A.S.; Azevedo, L.R. Saliva Composition and Functions: A Comprehensive Review. J. Contemp. Dent. Pract. 2008, 9, 72–80. [Google Scholar] [CrossRef]
- Mandel, I.D. The role of saliva in maintaining oral homeostasis. J. Am. Dent. Assoc. 1989, 119, 298–304. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, S.; Das, B.C. Saliva as a potential non-invasive liquid biopsy for early and easy diagnosis/prognosis of head and neck cancer. Transl. Oncol. 2023, 40, 101827. [Google Scholar] [CrossRef]
- Bhattarai, K.R.; Kim, H.-R.; Chae, H.-J. Compliance with Saliva Collection Protocol in Healthy Volunteers: Strategies for Managing Risk and Errors. Int. J. Med. Sci. 2018, 15, 823–831. [Google Scholar] [CrossRef]
- Lee, Y.H.; Wong, D.T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. 2009, 22, 241. [Google Scholar]
- Wang, A.; Wang, C.P.; Tu, M.; Wong, D.T. Oral biofluid biomarker research: Current status and emerging frontiers. Diagnostics 2016, 6, 45. [Google Scholar] [CrossRef]
- Dayon, L.; Cominetti, O.; Affolter, M. Proteomics of human biological fluids for biomarker discoveries: Technical advances and recent applications. Expert. Rev. Proteom. 2022, 19, 131–151. [Google Scholar] [CrossRef]
- PRISMA. PRISMA 2020 Flow Diagram. Available online: https://www.prisma-statement.org/prisma-2020-flow-diagram (accessed on 26 February 2025).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 23 February 2022).
- Bel’SKaya, L.V.; Sarf, E.A.; Shalygin, S.P.; Postnova, T.V.; Kosenok, V.K. Identification of salivary volatile organic compounds as potential markers of stomach and colorectal cancer: A pilot study. J. Oral. Biosci. 2020, 62, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Bratei, A.A.; Stefan-van Staden, R.I. Differentiation between Gastric and Colorectal Adenocarcinomas Based on Maspin, MLH1, PMS2 and K-Ras Concentrations Determined Using Stochastic Sensors. Gastrointest. Disord. 2023, 5, 487–499. [Google Scholar] [CrossRef]
- Conde-Pérez, K.; Aja-Macaya, P.; Buetas, E.; Trigo-Tasende, N.; Nasser-Ali, M.; Rumbo-Feal, S.; Nión, P.; Arribas, E.M.; Estévez, L.S.; Otero-Alén, B.; et al. The multispecies microbial cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a precision biomarker for colorectal cancer diagnosis. Mol. Oncol. 2024, 18, 1093–1122. [Google Scholar] [CrossRef]
- Koopaie, M.; Manifar, S.; Talebi, M.M.; Kolahdooz, S.; Razavi, A.E.; Davoudi, M.; Pourshahidi, S. Assessment of salivary miRNA, clinical, and demographic characterization in colorectal cancer diagnosis. Transl. Oncol. 2024, 41, 101880. [Google Scholar] [CrossRef]
- Kuwabara, H.; Katsumata, K.; Iwabuchi, A.; Udo, R.; Tago, T.; Kasahara, K.; Mazaki, J.; Enomoto, M.; Ishizaki, T.; Soya, R.; et al. Salivary metabolomics with machine learning for colorectal cancer detection. Cancer Sci. 2022, 113, 3234–3243. [Google Scholar] [CrossRef]
- Lázaro-Sánchez, A.D.; Salces-Ortiz, P.; Velásquez, L.I.; Orozco-Beltrán, D.; Díaz-Fernández, N.; Juárez-Marroquí, A. HLA-G as a new tumor biomarker: Detection of soluble isoforms of HLA-G in the serum and saliva of patients with colorectal cancer. Clin. Transl. Oncol. 2019, 22, 1166–1171. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Majem, B.; Álvarez-Castro, A.; Díaz-Peña, R.; Abalo, A.; Suárez-Cabrera, L.; Gil-Moreno, A.; Santamaría, A.; López-López, R.; Muinelo-Romay, L.; et al. A Novel Saliva-Based miRNA Signature for Colorectal Cancer Diagnosis. J. Clin. Med. 2019, 8, 2029. [Google Scholar] [CrossRef]
- Rezasoltani, S.; Looha, M.A.; Aghdaei, H.A.; Jasemi, S.; Sechi, L.A.; Gazouli, M.; Sadeghi, A.; Torkashvand, S.; Baniali, R.; Schlüter, H.; et al. 16S rRNA sequencing analysis of the oral and fecal microbiota in colorectal cancer positives versus colorectal cancer negatives in Iranian population. Gut Pathog. 2024, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sazanov, A.A.; Kiselyova, E.V.; Zakharenko, A.A.; Romanov, M.N.; Zaraysky, M.I. Plasma and saliva miR-21 expression in colorectal cancer patients. J. Appl. Genet. 2017, 58, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Uchino, Y.; Goto, Y.; Konishi, Y.; Tanabe, K.; Toda, H.; Wada, M.; Kita, Y.; Beppu, M.; Mori, S.; Hijioka, H.; et al. Colorectal Cancer Patients Have Four Specific Bacterial Species in Oral and Gut Microbiota in Common—A Metagenomic Comparison with Healthy Subjects. Cancers 2021, 13, 3332. [Google Scholar] [CrossRef] [PubMed]
- Waniczek, D.; Świętochowska, E.; Śnietura, M.; Kiczmer, P.; Lorenc, Z.; Muc-Wierzgoń, M. Salivary Concentrations of Chemerin, α-Defensin 1, and TNF-α as Potential Biomarkers in the Early Diagnosis of Colorectal Cancer. Metabolites 2022, 12, 704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Gui, X.; Zhang, Y.; Zhang, Z.; Chen, W.; Zhang, X.; Wang, Y.; Zhang, M.; Shang, Z.; et al. Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer. iScience 2022, 25, 104203. [Google Scholar] [CrossRef]
- OCEBM. OCEBM Levels of Evidence. Available online: https://www.cebm.net/2016/05/ocebm-levels-of-evidence/ (accessed on 22 April 2020).
- Perry, E.K.; Tan, M.W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease. Front. Cell Infect. Microbiol. 2023, 13, 1237164. [Google Scholar] [CrossRef]
- Litzler, P.-Y.; Benard, L.; Barbier-Frebourg, N.; Vilain, S.; Jouenne, T.; Beucher, E.; Bunel, C.; Lemeland, J.-F.; Bessou, J.-P. Biofilm formation on pyrolytic carbon heart valves: Influence of surface free energy, roughness, and bacterial species. J. Thorac. Cardiovasc. Surg. 2007, 134, 1025–1032. [Google Scholar] [CrossRef]
- Berger, G.; Bitterman, R.; Azzam, Z.S. The Human Microbiota: The Rise of an “Empire”. Rambam Maimonides Med. J. 2015, 6, e0018. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, A.; Li, J.; Zhang, F.; Zhong, P.; Li, Y.; Li, Y. Combined Non-Invasive Prediction and New Biomarkers of Oral and Fecal Microbiota in Patients with Gastric and Colorectal Cancer. Front. Cell. Infect. Microbiol. 2022, 12, 830684. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Gao, X.; Zhu, L.; Gao, S.; Sun, R.; Feng, Z.; Wu, D.; Liu, Z.; Zhu, R.; Jiao, N. Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer. Gut Microbes 2023, 15, 2245562. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, P.; Eslami, H.; Kafil, H.S. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed. Pharmacother. 2017, 89, 918–925. [Google Scholar] [CrossRef]
- Abed, J.; Maalouf, N.; Manson, A.L.; Earl, A.M.; Parhi, L.; Emgård, J.E.M.; Klutstein, M.; Tayeb, S.; Almogy, G.; Atlan, K.A.; et al. Colon Cancer-Associated Fusobacterium nucleatum May Originate from the Oral Cavity and Reach Colon Tumors via the Circulatory System. Front. Cell. Infect. Microbiol. 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Komiya, Y.; Shimomura, Y.; Higurashi, T.; Sugi, Y.; Arimoto, J.; Umezawa, S.; Uchiyama, S.; Matsumoto, M.; Nakajima, A. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 2019, 68, 1335–1337. [Google Scholar] [CrossRef]
- Guven, D.C.; Dizdar, O.; Alp, A.; Kittana, F.N.A.; Karakoc, D.; Hamaloglu, E.; Lacin, S.; Karakas, Y.; Kilickap, S.; Hayran, M.; et al. Analysis of Fusobacterium nucleatum and Streptococcus Gallolyticus in Saliva of Colorectal Cancer Patients. Biomark. Med. 2019, 13, 725–735. [Google Scholar] [CrossRef]
- Yu, L.C.; Li, Y.P.; Xin, Y.M.; Mao, M.; Pan, Y.X.; Qu, Y.X.; Luo, Z.D.; Zhang, Y.; Zhang, X. Application of Fusobacterium nucleatum as a biomarker in gastrointestinal malignancies. World J. Gastrointest. Oncol. 2024, 16, 2271–2283. [Google Scholar] [CrossRef]
- Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 2016, 20, 215–225. [Google Scholar] [CrossRef]
- Mima, K.; Nishihara, R.; Qian, Z.R.; Cao, Y.; Sukawa, Y.; Nowak, J.A.; Yang, J.; Dou, R.; Masugi, Y.; Song, M.; et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016, 65, 1973–1980. [Google Scholar] [CrossRef]
- Rezasoltani, S.; Aghdaei, H.A.; Jasemi, S.; Gazouli, M.; Dovrolis, N.; Sadeghi, A.; Schlüter, H.; Zali, M.R.; Sechi, L.A.; Feizabadi, M.M. Oral Microbiota as Novel Biomarkers for Colorectal Cancer Screening. Cancers 2022, 15, 192. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Zheng, X.; Ren, L.; Yang, Y.; Li, W.; Fu, W.; Wang, J.; Du, G. Tumorigenic bacteria in colorectal cancer: Mechanisms and treatments. Cancer Biol. Med. 2021, 18, 116–162. [Google Scholar] [CrossRef]
- Conde-Pérez, K.; Buetas, E.; Aja-Macaya, P.; Arribas, E.M.; Iglesias-Corrás, I.; Trigo-Tasende, N.; Nasser-Ali, M.; Estévez, L.S.; Rumbo-Feal, S.; Otero-Alén, B.; et al. Parvimonas micra can translocate from the subgingival sulcus of the human oral cavity to colorectal adenocarcinoma. Mol. Oncol. 2024, 18, 1143–1173. [Google Scholar] [CrossRef]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 2004, 101, 2999–3004. [Google Scholar] [CrossRef] [PubMed]
- Pardini, B.; Ferrero, G.; Tarallo, S.; Gallo, G.; Francavilla, A.; Licheri, N.; Trompetto, M.; Clerico, G.; Senore, C.; Peyre, S.; et al. A Fecal MicroRNA Signature by Small RNA Sequencing Accurately Distinguishes Colorectal Cancers: Results from a Multicenter Study. Gastroenterology 2023, 165, 582–599.e8. [Google Scholar] [CrossRef] [PubMed]
- Shiosaki, J.; Tiirikainen, M.; Peplowska, K.; Shaeffer, D.; Machida, M.; Sakamoto, K.; Takahashi, M.; Kojima, K.; Machi, J.; Bryant-Greenwood, P.; et al. Serum micro-RNA Identifies Early Stage Colorectal Cancer in a Multi-Ethnic Population. Asian Pac. J. Cancer Prev. 2020, 21, 3019–3026. [Google Scholar] [CrossRef]
- Iwasaki, H.; Shimura, T.; Kitagawa, M.; Yamada, T.; Nishigaki, R.; Fukusada, S.; Okuda, Y.; Katano, T.; Horike, S.-I.; Kataoka, H. A Novel Urinary miRNA Biomarker for Early Detection of Colorectal Cancer. Cancers 2022, 14, 461. [Google Scholar] [CrossRef]
- Romani, C.; Baronchelli, M.; Assoni, C.; Mattavelli, D.; Calza, S.; Piazza, C.; Bossi, P. Stability of circulating miRNA in saliva: The influence of sample associated pre-analytical variables. Clin. Chim. Acta 2023, 553, 117702. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2016, 70, 11–25. [Google Scholar] [CrossRef]
- Ferrari, E.; Gallo, M.; Spisni, A.; Antonelli, R.; Meleti, M.; Pertinhez, T.A. Human Serum and Salivary Metabolomes: Diversity and Closeness. Int. J. Mol. Sci. 2023, 24, 16603. [Google Scholar] [CrossRef]
- Shah, S. Salivaomics: The current scenario. J. Oral. Maxillofac. Pathol. 2018, 22, 375–381. [Google Scholar] [CrossRef]
- Gardner, A.; Carpenter, G.; So, P.-W. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites 2020, 10, 47. [Google Scholar] [CrossRef]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Bratei, A.A.; Stefan-van Staden, R.I. Correlation between Maspin Levels in Different Biological Samples and Pathologic Features in Colorectal Adenocarcinomas. Life 2023, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
- Bratei, A.A.; Stefan-van Staden, R.I. Minimally Invasive and Fast Diagnosis of Gastric Cancer Based on Maspin Levels in Different Biological Samples. Diagnostics 2023, 13, 1857. [Google Scholar] [CrossRef] [PubMed]
- Rogler, G. Chronic ulcerative colitis and colorectal cancer. Cancer Lett. 2014, 345, 235–241. [Google Scholar] [CrossRef]
- Szczeklik, K.; Krzyściak, W.; Cibor, D.; Domagała-Rodacka, R.; Pytko-Polończyk, J.; Mach, T.; Owczarek, D. Indicators of lipid peroxidation and antioxidant status in the serum and saliva of patients with active Crohn′s disease. Pol. Arch. Intern. Med. 2018, 128, 362–370. [Google Scholar] [CrossRef]
- Rezaie, A.; Ghorbani, F.; Eshghtork, A.; Zamani, M.J.; Dehghan, G.; Taghavi, B.; Nikfar, S.; Mohammadirad, A.; Daryani, N.E.; Abdollahi, M. Alterations in salivary antioxidants, nitric oxide, and transforming growth factor-beta 1 in relation to disease activity in Crohn′s disease patients. Ann. N. Y Acad. Sci. 2006, 1091, 110–122. [Google Scholar] [CrossRef]
- Zińczuk, J.; Maciejczyk, M.; Zaręba, K.; Romaniuk, W.; Markowski, A.; Kędra, B.; Zalewska, A.; Pryczynicz, A.; Matowicka-Karna, J.; Guzińska-Ustymowicz, K. Antioxidant Barrier, Redox Status, and Oxidative Damage to Biomolecules in Patients with Colo-rectal Cancer. Can Malondialdehyde and Catalase Be Markers of Colorectal Cancer Advancement? Biomolecules 2019, 9, 637. [Google Scholar] [CrossRef]
- Cordero, O.J.; Mosquera-Ferreiro, L.; Gomez-Tourino, I. Improving colorectal cancer screening programs. World J. Gastroenterol. 2024, 30, 2849–2851. [Google Scholar] [CrossRef]
- SEER Cancer Stat Facts Colorecatal Cancer. Available online: https://seer.cancer.gov/statfacts/html/colorect.html (accessed on 5 August 2025).
- Lyubinets, O.; Hrzhybovskyy, Y.; Koval, A. Experience in implementing effective programs of colorectal cancer screening for the development of an appropriate model in Ukraine—A literature review. Wiad. Lek. 2025, 78, 425–434. [Google Scholar] [CrossRef]
- Jahn, B.; Sroczynski, G.; Bundo, M.; Mühlberger, N.; Puntscher, S.; Todorovic, J.; Rochau, U.; Oberaigner, W.; Koffijberg, H.; Fischer, T.; et al. Effectiveness, benefit harm and cost effectiveness of colorectal cancer screening in Austria. BMC Gastroenterol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Johansson, N.; Nystrand, C.; Blom, J. Costs of colorectal cancer screening in Sweden: An observational, longitudinal cost description. BMJ Open Gastroenterol. 2024, 11, e001574. [Google Scholar] [CrossRef]
- Lwin, M.W.; Cheng, C.-Y.; Calderazzo, S.; Schramm, C.; Schlander, M. Would initiating colorectal cancer screening from age of 45 be cost-effective in Germany? An individual-level simulation analysis. Front. Public. Heal. 2024, 12, 1307427. [Google Scholar] [CrossRef] [PubMed]
- Mar, J.; Errasti, J.; Soto-Gordoa, M.; Mar-Barrutia, G.; Martinez-Llorente, J.M.; Domínguez, S.; García-Albás, J.J.; Arrospide, A. The Cost of Colorectal Cancer According to the TNM Stage. Cir. Esp. 2017, 95, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Corral, J.; Castells, X.; Molins, E.; Chiarello, P.; Borras, J.M.; Cots, F. Long-term costs of colorectal cancer treatment in Spain. BMC Heal. Serv. Res. 2016, 16, 56. [Google Scholar] [CrossRef] [PubMed]
- Wynendaele, E.; Verbeke, F.; D’hOndt, M.; Hendrix, A.; Van De Wiele, C.; Burvenich, C.; Peremans, K.; De Wever, O.; Bracke, M.; De Spiegeleer, B. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides 2015, 64, 40–48. [Google Scholar] [CrossRef]
- Lam, H.Y.P.; Lai, M.J.; Wang, P.C.; Wu, W.J.; Chen, L.K.; Fan, H.W.; Tseng, C.-C.; Peng, S.Y.; Chang, K.C. A Novel Bacteriophage with the Potential to Inhibit Fusobacterium nucleatum-Induced Proliferation of Colorectal Cancer Cells. Antibiotics 2025, 14, 45. [Google Scholar] [CrossRef]
- Dong, X.; Pan, P.; Zheng, D.-W.; Bao, P.; Zeng, X.; Zhang, X.-Z. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci. Adv. 2020, 6, eaba1590. [Google Scholar] [CrossRef]
- Gao, Y.; Bi, D.; Xie, R.; Li, M.; Guo, J.; Liu, H.; Guo, X.; Fang, J.; Ding, T.; Zhu, H.; et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer. Signal Transduct. Target. Ther. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Dadgar-Zankbar, L.; Elahi, Z.; Shariati, A.; Khaledi, A.; Razavi, S.; Khoshbayan, A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: Implications for tumor proliferation and chemoresistance. Cell Commun. Signal. 2024, 22, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Jayathirtha, M.; Neagu, A.-N.; Whitham, D.; Alwine, S.; Darie, C.C. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am. J. Cancer Res. 2022, 12, 1784–1823. [Google Scholar]
- Chen, Y.; Gao, D.-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev. 2015, 81, 128–141. [Google Scholar] [CrossRef]
- Gallo, G.; Vescio, G.; De Paola, G.; Sammarco, G. Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer. J. Clin. Med. 2021, 10, 2295. [Google Scholar] [CrossRef]
- Yadav, D.K.; Bai, X.; Yadav, R.K.; Singh, A.; Li, G.; Ma, T.; Chen, W.; Liang, T. Liquid biopsy in pancreatic cancer: The beginning of a new era. Oncotarget 2018, 9, 26900–26933. [Google Scholar] [CrossRef]
- Fernandes, E.; Sores, J.; Cotton, S.; Peixoto, A.; Ferreira, D.; Freitas, R.; Reis, C.A.; Santos, L.L.; Ferreira, J.A. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Theranostics 2020, 10, 4903–4928. [Google Scholar] [CrossRef]
Blood Collection | Stool Collection | Saliva Collection (Spitting Method) | |
---|---|---|---|
Invasiveness | High | Low | Low |
Collection difficulty | Moderate (trained personnel) | Moderate (self-admin.) | Easy (self-admin.) |
Biomarker range | High | High GI-specific | Moderate |
Participant compliance | Moderate | Low–Moderate | High |
Diagnostic versatility | High | Moderate (GI-focused) | Moderate |
Sample stability | Stable | Variable | Variable |
Reference Values | No | Yes | Yes |
Parameter | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population (P) | Patients of any age and gender | - |
Exposure (E) | Colorectal cancer, colorectal adenoma | Other types of cancer |
Comparison (C) | Comparison of saliva biomarkers to blood and stool biomarkers | - |
Outcomes (O) | Salivary components as colorectal cancer biomarkers | - |
Study Design | RCTs, case–control, cohort and cross-sectional studies published after 2014 | Systematic reviews, case reports, conference reports, editorials, works not published in English, non-human studies |
Author, Year | Setting | Study Group (F/M) Age | Control Group (F/M); Age | Diagnosis | Cancer Stages | Inclusion Criteria | Exclusion Criteria |
---|---|---|---|---|---|---|---|
Bel’skaya et al., 2020 [58] | Russia | n = 18 (CRC) 11 (GC) ND | n = 16 ND ND | CRC, GC | ND | (1) CRC or GC (2) age 30–70 years (3) good oral hygiene | (1) Other diseases (2) active treatment |
Bratei et al., 2023 [59] | Romania | n = 31 ND ND | ND | CRC | ND | Randomly selected CRC patients | ND |
Conde-Pérez et al., 2024 [60] | Spain | n = 93 CRC (36/57) 65, 70 (median) | n = 30 (23/7) 63, 64 (median) | CRC | ND | ND | (1) Other diseases (2) active treatment (3) genomic predisposition to develop CRC |
Koopaie et al., 2024 [61] | Iran | n = 42 (19/23) 54.12 ± 13.98 | n = 33 (18/15) 42.33 ± 12.50 | CRC | I, II, III, IV | ND | (1) Other diseases (2) active treatment including blood transfusion in the last 3 years (3) pregnancy |
Kuwabara et al., 2022 [62] | Japan | n = 235 (CRC) (105/130) 69.63 ± 12 n = 50 (CR Adenoma) (9/41) 61.81 ± 10.40 | n = 2317 (1661/656) ND ND | CRC, CR adenoma | 0, I, II(N1)/II(N2), Iva | Randomly selected CRC patients | (1) Other diseases (2) active treatment |
Lázaro-Sánchez et al., 2019 [63] | Spain | n = 20 ND ND | n = 10 ND ND | CRC | I, II, III, IV | Patients with confirmed CRC | (1) Other diseases and 5 years prior (2) active treatment (3) pregnancy |
Rapado-González et al., 2019 [64] | Spain | n = 51 (CRC) ND ND n = 19 (Adenomas) ND ND | n = 37 ND ND | CRC, CR Adenoma | ND | ND | (1) Other active diseases and 5 years prior (2) genomic predisposition to develop CRC |
Rezasoltani et al., 2024 [65] | Iran | n = 40 (study group and control group) ND ND | CRC | 0, I, II | (1) Patients experiencing bowel movement changes, rectal bleeding or abdominal pain (4) anemia (5) asymptomatic individuals aged 50 or above undergoing screening colonoscopy | (1) Other diseases (2) active treatment and antibiotic use 3 months prior to the study (3) a vegetarian diet (4) an invasive medical intervention within the past 3 months | |
Sazanov et al., 2016 [66] | Russia | n = 31 ND ND | n = 34 ND ND | CRC | II, III, IV | Patients with confirmed CRC | ND |
Uchino et al., 2021 [67] | Japan | n = 52 ND 68.52 ± 10.6 years of age | n = 51 ND 54.49 ± 10.6 years of age | CRC | I, II, III, IV | Patients with confirmed CRC | (1) Other diseases (2) active treatment and antibiotic use 1 week prior to the study (3) constipation or diarrhea with Bristol Stool Form Scale scores ≤5 sampled (4) consumption of alcohol the previous day |
Waniczek et al., 2022 [68] | Poland | n = 39 (21/18) 67.8 ± 10.3 | n = 40 (21/19) 64.8 ± 9.4 | CRC | I, II, III, IV | Patients with confirmed CRC | (1) Other diseases and 5 years prior (2) active treatment (3) substance abuse |
Zhang et al., 2022 [69] | China | n = 207 (96/111) age < 63–102; > 63–105 | n = 41 ND ND | CRC | I, II, III, IV | ND | (1) Incomplete medical records (2) no follow-up |
Author, Year | Diagnosis | Type of Saliva and Method of Collection | Centrifugation (Time, RCF, Temperature) Storing | Analysis | Biomarkers |
---|---|---|---|---|---|
Bel’skaya et al., 2020 [58] | CRC, GC | (1) Unstimulated whole saliva (2 mL) (2) collection between 8 and 10 AM (3) fasting saliva collection (4) patients rinsed their mouth with water 10 min prior to sampling. | (1) 10 min, 10,000× g, ND (2) analysis immediately, no freezing | Chromatec-Crystal 5000 (Chromatec; Yoshkar-Ola, Russia) | Acetaldehyde, Acetone, Ethyl acetate, Methanol, 2-Propanol, 2-Buthanol, 1-Propanol, Ethanol, Catalase, Diene conjugates, Triene conjugates, Schiff bases, MDA |
Bratei et al., 2023 [59] | CRC | ND | ND | PGSTAT 302 (Metrohm Autolab; Utrecht, Netherlands) | Maspin, MLH1, PMS2, and KRAS |
Conde-Pérez et al., 2024 [60] | CRC | Unstimulated whole saliva ND | (1) 2 min, 4500× g, 4 °C (2) immediate resuspension in nuclease-free water and incubation for 1 h at 37 °C and 400 rpm in the presence of a specific enzymatic cocktail | MasterPureTM Complete DNA (LGC; Hoddesdon, UK) and RNA Purification Kit, AllPrepÒ DNA/RNA Mini kit (QIAGEN N.V.; Venlo, Netherlands), 1600 MiniG system (SPEX SamplePrep, LLC; Metuchen, NJ, USA) | Oral Microbiota |
Koopaie et al., 2024 [61] | CRC | (1) Unstimulated whole saliva (2) collection between 8 and 10 AM (3) fasting saliva collection (4) dental and periodontal examinations | (1) ND (2) −80 °C | TRIzol reagent (Thermo Fisher Scientific; Waltham, MA, USA) | miR-92a and miR-29a levels |
Kuwabara et al., 2022 [62] | CRC | (1) Unstimulated whole saliva (400 μL) (2) collection between 9 and 11 AM (3) fasting saliva collection | (1) no centrifugation, cloudy saliva was eliminated (2) −80 °C. | CE-MS (MasterHands; Keio University), LC–MS (Agilent MassHunter Qualitative Analysis and Quantitative Analysis software; Agilent Technologies, Inc.; Santa Clara, CA, USA) | N-acetylputrescine, 4-methyl-2-oxopentanoate, and 5-oxoproline, lactate, pyruvate |
Lázaro-Sánchez et al., 2019 [63] | CRC | ND | (1) 3 min, 500×g, ND (2) −20 °C | ELISA kit sHLA-G (BioVendor; Brno, Czech Republic) | sHLA-G1 and HLA-G5 |
Rapado-González et al., 2019 [64] | CRC, CR adenoma | (1) Unstimulated whole saliva (5 mL) (2) collection between 9 and 10 AM (3) fasting saliva collection | (1) 15 min, 600× g, 4 °C (2) −80 °C | Nextera XT Index Kit (Illumina, Inc.; San Diego, CA, USA) | miR-186-5p, miR-29a-3p, miR-29c-3p, miR-766-5p, miR-491-5p |
Rezasoltani et al., 2024 [65] | CRC | (1) Unstimulated whole saliva (400 μL) (2) collection between 8 and 12 AM (3) fasting saliva collection | (1) ND (2) −80 °C | QIAamp DNA Microbiome Kit (QIAGEN N.V.; Hilden, Germany) | Oral microbiota |
Sazanov et al., 2016 [66] | CRC | (1) Unstimulated whole saliva (2 mL) (2) collection in the morning (3) fasting saliva collection (4) patients rinsed their mouth with water 10 min prior to sampling. | (1) 2 min, 12,000× g, ND (2) ND | TriReagent (MRC; Cincinnati, Ohio, USA) OT-1 (Synthol, Russia) | miR-21 |
Uchino et al., 2021 [67] | CRC | (1) Unstimulated whole saliva (2) collection upon waking up (3) fasting saliva collection (4) OMNIgene-ORAL OM-501 Saliva Microbiome DNA Collection Kit | (1) ND (2) analysis immediately, no freezing | GENE STAR PI-480 automated DNA (Kurabo Industries Ltd.; Neyagawa, Japan), QubitTM dsDNA HS (Thermo Fisher Scientific; Waltham, Massachusetts, USA), PCR (16S-27Fmod, 16S-338R) | Oral microbiota |
Waniczek et al., 2022 [68] | CRC | (1) Stimulated whole saliva (2) no eating or drinking 20 min prior to saliva collection | (1) ND (2) −80 °C | LLC test (BioVendor; Brno, Czech Republic), Universal Microplate Spectrophotometer | Chemerin, α-defensin 1, and TNF-α |
Zhang et al., 2022 [69] | CRC | (1) Stimulated whole saliva (2) mouth rinsing with water prior to the collection | (1) 2 min, 1000× g, ND (2) −80 °C | QIAamp DNA Mini Kit (QIAGEN N.V.; Hilden, Germany), TRIzol reagent (Thermo Fisher Scientific; Waltham, MA, USA), Qubit fluorometer (Thermo Fisher Scientific; Waltham, MA, USA), Bioanalyzer 2100 (Agilent Technologies, Inc., Santa Clara, CA, USA), AceQ qPCR Probe Master Mix (Vazyme Biotech Co., Ltd.; Nanjing, China), Bio-Rad CFX96 (Hercules, CA, USA), Roche Cobas e601 (Rotkreuz, Switzerland), Ribo-off rRNA Depletion Kit (Vazyme Biotech Co., Ltd.; Nanjing, China), VAHTS Universal V8 RNA-seq Library Prep Kit (Vazyme Biotech Co., Ltd.; Nanjing, China) | Oral microbiota |
Method | Estimated Cost per Patient (€) | What’s Included |
---|---|---|
Saliva—Oral microbiota (16S or Fn DNA) | 150–250 € | Saliva kit, DNA extraction, qPCR or NGS sequencing, analysis report |
Saliva—microRNA panel | 100–200 € | Saliva kit, RNA extraction, qRT-PCR, report |
Saliva—Proteins/enzymes | 200–350 € | Saliva collection, multiplex ELISA or MS profiling, report |
Saliva—Metabolites (LC-MS/SCFAs) | 300–400 € | Saliva collection, metabolomics via GC-MS or LC-MS, bioinformatics, report |
Colonoscopy (screening with possible biopsy/polypectomy) | ~350–450 € | Procedure, sedation, biopsy/polyp removal, pathology |
CT colonography (virtual colonoscopy) | 400–600 € | CT imaging, radiologist interpretation, possible follow-up colonoscopy if positive |
Capsule colonoscopy | 600–900 € | Ingestible camera capsule, data retrieval, physician interpretation |
Fecal immunochemical test (FIT) or gFOBT | ~15–25 € | Sampling kit, lab analysis, result reporting |
Stage | Estimated Total Cost per Patient (€) | What is Included |
---|---|---|
Stage I | ~8600 € | Initial hospitalization/surgery, follow-up care |
Stage II | ~12,700 € | Surgery, possible adjuvant chemotherapy, outpatient visits |
Stage III | ~13,000 € | Surgery with chemotherapy (adjuvant), follow-up |
Stage IV | ~23,000 € | Advanced care: hospitalisations, systemic therapy, palliative care |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krokosz, S.; Obrycka, M.; Zalewska, A. Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review. Curr. Issues Mol. Biol. 2025, 47, 647. https://doi.org/10.3390/cimb47080647
Krokosz S, Obrycka M, Zalewska A. Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review. Current Issues in Molecular Biology. 2025; 47(8):647. https://doi.org/10.3390/cimb47080647
Chicago/Turabian StyleKrokosz, Stanisław, Maria Obrycka, and Anna Zalewska. 2025. "Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review" Current Issues in Molecular Biology 47, no. 8: 647. https://doi.org/10.3390/cimb47080647
APA StyleKrokosz, S., Obrycka, M., & Zalewska, A. (2025). Can Salivary Biomarkers Serve as Diagnostic and Prognostic Tools for Early Detection in Patients with Colorectal Cancer? A Systematic Review. Current Issues in Molecular Biology, 47(8), 647. https://doi.org/10.3390/cimb47080647