cimb-logo

Journal Browser

Journal Browser

Novel Drugs and Natural Products Discovery

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Biochemistry, Molecular and Cellular Biology".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 3046

Special Issue Editor


E-Mail Website
Guest Editor
Office of Research, The University of Western Australia, Perth, WA 6009, Australia
Interests: medicinal chemistry; pharmaceutical chemistry; physical chemistry; computational chemistry; anticancer drugs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The discovery of novel drugs and natural products remains a cornerstone of modern medicine. As the global health landscape evolves, there is an urgent need for innovative therapeutic solutions to address emerging diseases, antibiotic resistance, and unmet medical needs. This Special Issue invites researchers to contribute original research, reviews, and perspectives on the latest advancements in drug discovery and natural product research. Topics of interest include but are not limited to drug repurposing, computational drug design, synthetic biology, natural product isolation and characterization, and preclinical and clinical evaluation of novel therapeutics. By sharing your groundbreaking work, you will contribute to advancing medical science and improving patients' lives worldwide.

Dr. Muhammad Khattab
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • novel drugs
  • drug design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 954 KiB  
Article
Linoleic Fatty Acid from Rwandan Propolis: A Potential Antimicrobial Agent Against Cutibacterium acnes
by Florent Rouvier, Lydia Abou, Emmanuel Wafo and Jean Michel Brunel
Curr. Issues Mol. Biol. 2025, 47(3), 162; https://doi.org/10.3390/cimb47030162 - 27 Feb 2025
Viewed by 618
Abstract
Acne is a very common skin condition that causes pimples in 80% of adolescents despite the many effective treatments developed. Various compounds have been employed in the treatment of acne, including erythromycin ointments and antiseptics, yielding mixed results. The rise in erythromycin-resistant C. [...] Read more.
Acne is a very common skin condition that causes pimples in 80% of adolescents despite the many effective treatments developed. Various compounds have been employed in the treatment of acne, including erythromycin ointments and antiseptics, yielding mixed results. The rise in erythromycin-resistant C. acnes strains has driven the pursuit of new antimicrobial agents, especially those obtained from natural sources. Propolis that was collected in Rwanda was extracted, fractioned, and analyzed for its activity against C. acnes growth in accordance with NCLSI guidelines. Our work revealed that linoleic acid has a significant effect on C. acnes growth at a low concentration (16 µg/mL). A comparison of the antimicrobial activities of a broad panel of well-known fatty acids revealed a specific mode of action for linoleic acid, characterized by a significant membranotropic effect on Bacillus cereus established by measuring extracellular ATP levels as an indicator of membrane permeability. Our data suggest that linoleic acid is effective against C. acnes and could be a promising candidate for developing a propolis-based ointment for acne treatment. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1735 KiB  
Review
Perturbation-Theory Machine Learning for Multi-Target Drug Discovery in Modern Anticancer Research
by Valeria V. Kleandrova, M. Natália D. S. Cordeiro and Alejandro Speck-Planche
Curr. Issues Mol. Biol. 2025, 47(5), 301; https://doi.org/10.3390/cimb47050301 - 25 Apr 2025
Viewed by 165
Abstract
Cancers constitute a group of biological complex diseases, which are associated with great prevalence and mortality. These medical conditions are very difficult to tackle due to their multi-factorial nature, which includes their ability to evade the immune system and become resistant to current [...] Read more.
Cancers constitute a group of biological complex diseases, which are associated with great prevalence and mortality. These medical conditions are very difficult to tackle due to their multi-factorial nature, which includes their ability to evade the immune system and become resistant to current anticancer agents. There is a pressing need to search for novel anticancer agents with multi-target modes of action and/or multi-cell inhibition versatility, which can translate into more efficacious and safer chemotherapeutic treatments. Computational methods are of paramount importance to accelerate multi-target drug discovery in cancer research but most of them have several disadvantages such as the use of limited structural information through homogeneous datasets of chemicals, the prediction of activity against a single target, and/or lack of interpretability. This mini-review discusses the emergence, development, and application of perturbation-theory machine learning (PTML) as a cutting-edge approach capable of overcoming the aforementioned limitations in the context of multi-target small molecule anticancer discovery. Here, we analyze the most promising investigations on PTML modeling spanning over a decade to enable the discovery of versatile anticancer agents. We highlight the potential of the PTML approach for the modeling of multi-target anticancer activity while envisaging future applications of PTML modeling. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

24 pages, 3281 KiB  
Review
Cranberry: A Promising Natural Product for Animal Health and Performance
by Sahdeo Prasad, Bhaumik Patel, Prafulla Kumar, Pranabendu Mitra and Rajiv Lall
Curr. Issues Mol. Biol. 2025, 47(2), 80; https://doi.org/10.3390/cimb47020080 - 27 Jan 2025
Viewed by 1698
Abstract
Cranberries are a distinctive source of bioactive compounds, containing polyphenols such as flavonoids, anthocyanins, phenolic acids, and triterpenoids. Cranberries are often associated with potential health benefits for the urinary tract and digestive system due to their high antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. [...] Read more.
Cranberries are a distinctive source of bioactive compounds, containing polyphenols such as flavonoids, anthocyanins, phenolic acids, and triterpenoids. Cranberries are often associated with potential health benefits for the urinary tract and digestive system due to their high antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties. Cranberry induces the production of antioxidant enzymes, suppresses lipid peroxidation, reduces inflammatory cytokines, modulates immune cells, maintains gut microbiota, and inhibits bacterial adhesion and growth. Cranberry polyphenols also have metal-binding motifs that bind with metals, particularly zinc and iron. The combination of cranberry polyphenols and metals displays increased biological activity. In this review, an attempt is made to describe the physiological properties and health benefits of cranberries for livestock, including poultry, swine, canine, feline, and ruminant animals, as either feed/food or as supplements. Cranberry, and/or its components, has the capability to potentially control infectious diseases like diarrhea, urinary tract infection, gut integrity, and intestinal probiotic health. Moreover, cranberries show efficacy in suppressing the growth of pathogenic microorganisms such as Salmonella species, Campylobacter species, Streptococcus species, and Enterococcus species bacteria. Thus, cranberry could be considered as a potential natural feed additive or food supplement for animal health improvement. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

Back to TopTop