Previous Issue
Volume 24, March-1
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 24, Issue 6 (March-2 2023) – 907 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Case Report
Germline Variants in MLH1 and ATM Genes in a Young Patient with MSI-H in a Precancerous Colonic Lesion
Int. J. Mol. Sci. 2023, 24(6), 5970; https://doi.org/10.3390/ijms24065970 (registering DOI) - 22 Mar 2023
Abstract
Lynch syndrome (LS) is an autosomal dominant inherited disorder that primarily predisposes individuals to colorectal and endometrial cancer. It is associated with pathogenic variants in DNA mismatch repair (MMR) genes. In this study, we report the case of a 16-year-old boy who developed [...] Read more.
Lynch syndrome (LS) is an autosomal dominant inherited disorder that primarily predisposes individuals to colorectal and endometrial cancer. It is associated with pathogenic variants in DNA mismatch repair (MMR) genes. In this study, we report the case of a 16-year-old boy who developed a precancerous colonic lesion and had a clinical suspicion of LS. The proband was found to have a somatic MSI-H status. Analysis of the coding sequences and flanking introns of the MLH1 and MSH2 genes by Sanger sequencing led to the identification of the variant of uncertain significance, namely, c.589-9_589-6delGTTT in the MLH1 gene. Further investigation revealed that this variant was likely pathogenetic. Subsequent next-generation sequencing panel analysis revealed the presence of two variants of uncertain significance in the ATM gene. We conclude that the phenotype of our index case is likely the result of a synergistic effect of these identified variants. Future studies will allow us to understand how risk alleles in different colorectal-cancer-prone genes interact with each other to increase an individual’s risk of developing cancer. Full article
(This article belongs to the Special Issue Cancer Biomarker: Current Status and Future Perspectives)
Show Figures

Figure 1

Article
Elevations of Extracellular Vesicles and Inflammatory Biomarkers in Closed Circuit SCUBA Divers
Int. J. Mol. Sci. 2023, 24(6), 5969; https://doi.org/10.3390/ijms24065969 (registering DOI) - 22 Mar 2023
Abstract
Blood-borne extracellular vesicles and inflammatory mediators were evaluated in divers using a closed circuit rebreathing apparatus and custom-mixed gases to diminish some diving risks. “Deep” divers (n = 8) dove once to mean (±SD) 102.5 ± 1.2 m of sea water (msw) [...] Read more.
Blood-borne extracellular vesicles and inflammatory mediators were evaluated in divers using a closed circuit rebreathing apparatus and custom-mixed gases to diminish some diving risks. “Deep” divers (n = 8) dove once to mean (±SD) 102.5 ± 1.2 m of sea water (msw) for 167.3 ± 11.5 min. “Shallow” divers (n = 6) dove 3 times on day 1, and then repetitively over 7 days to 16.4 ± 3.7 msw, for 49.9 ± 11.9 min. There were statistically significant elevations of microparticles (MPs) in deep divers (day 1) and shallow divers at day 7 that expressed proteins specific to microglia, neutrophils, platelets, and endothelial cells, as well as thrombospondin (TSP)-1 and filamentous (F-) actin. Intra-MP IL-1β increased by 7.5-fold (p < 0.001) after day 1 and 41-fold (p = 0.003) at day 7. Intra-MP nitric oxide synthase-2 (NOS2) increased 17-fold (p < 0.001) after day 1 and 19-fold (p = 0.002) at day 7. Plasma gelsolin (pGSN) levels decreased by 73% (p < 0.001) in deep divers (day 1) and 37% in shallow divers by day 7. Plasma samples containing exosomes and other lipophilic particles increased from 186% to 490% among the divers but contained no IL-1β or NOS2. We conclude that diving triggers inflammatory events, even when controlling for hyperoxia, and many are not proportional to the depth of diving. Full article
(This article belongs to the Special Issue Oxygen Variations)
Show Figures

Figure 1

Article
mTORC1 Deficiency Prevents the Development of MC903-Induced Atopic Dermatitis through the Downregulation of Type 2 Inflammation
Int. J. Mol. Sci. 2023, 24(6), 5968; https://doi.org/10.3390/ijms24065968 (registering DOI) - 22 Mar 2023
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema and itching. Recently, mTORC, a central regulator of cellular metabolism, has been reported to play a critical role in immune responses, and manipulation of mTORC pathways has emerged as an effective [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema and itching. Recently, mTORC, a central regulator of cellular metabolism, has been reported to play a critical role in immune responses, and manipulation of mTORC pathways has emerged as an effective immunomodulatory drug. In this study, we assessed whether mTORC signaling could contribute to the development of AD in mice. AD-like skin inflammation was induced by a 7-day treatment of MC903 (calcipotriol), and ribosomal protein S6 was highly phosphorylated in inflamed tissues. MC903-induced skin inflammation was ameliorated significantly in Raptor-deficient mice and exacerbated in Pten-deficient mice. Eosinophil recruitment and IL-4 production were also decreased in Raptor deficient mice. In contrast to the pro-inflammatory roles of mTORC1 in immune cells, we observed an anti-inflammatory effect on keratinocytes. TSLP was upregulated in Raptor deficient mice or by rapamycin treatment, which was mediated by hypoxia-inducible factor (HIF) signaling. Taken together, these results from our study indicate the dual roles of mTORC1 in the development of AD, and further studies on the role of HIF in AD are warranted. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Article
Novel Biomarkers for Inflammatory Bowel Disease and Colorectal Cancer: An Interplay between Metabolic Dysregulation and Excessive Inflammation
Int. J. Mol. Sci. 2023, 24(6), 5967; https://doi.org/10.3390/ijms24065967 (registering DOI) - 22 Mar 2023
Abstract
Persistent inflammation can trigger altered epigenetic, inflammatory, and bioenergetic states. Inflammatory bowel disease (IBD) is an idiopathic disease characterized by chronic inflammation of the gastrointestinal tract, with evidence of subsequent metabolic syndrome disorder. Studies have demonstrated that as many as 42% of patients [...] Read more.
Persistent inflammation can trigger altered epigenetic, inflammatory, and bioenergetic states. Inflammatory bowel disease (IBD) is an idiopathic disease characterized by chronic inflammation of the gastrointestinal tract, with evidence of subsequent metabolic syndrome disorder. Studies have demonstrated that as many as 42% of patients with ulcerative colitis (UC) who are found to have high-grade dysplasia, either already had colorectal cancer (CRC) or develop it within a short time. The presence of low-grade dysplasia is also predictive of CRC: Many signaling pathways are shared among IBD and CRC, including cell survival, cell proliferation, angiogenesis, and inflammatory signaling pathways. Current IBD therapeutics target a small subset of molecular drivers of IBD, with many focused on the inflammatory aspect of the pathways. Thus, there is a great need to identify biomarkers of both IBD and CRC, that can be predictive of therapeutic efficacy, disease severity, and predisposition to CRC. In this study, we explored the changes in biomarkers specific for inflammatory, metabolic, and proliferative pathways, to help determine the relevance to both IBD and CRC. Our analysis demonstrated, for the first time, the loss of the tumor suppressor protein Ras associated family protein 1A (RASSF1A), via epigenetic changes, the hyperactivation of the obligate kinase of the NOD2 pathogen recognition receptor (receptor interacting protein kinase 2 [RIPK2]), the loss of activation of the metabolic kinase, AMP activated protein kinase (AMPKα1), and, lastly, the activation of the transcription factor and kinase Yes associated protein (YAP) kinase, that is involved in proliferation of cells. The expression and activation status of these four elements are mirrored in IBD, CRC, and IBD-CRC patients and, importantly, in matched blood and biopsy samples. The latter would suggest that biomarker analysis can be performed non-invasively, to understand IBD and CRC, without the need for invasive and costly endoscopic analysis. This study, for the first time, illustrates the need to understand IBD or CRC beyond an inflammatory perspective and the value of therapeutics directed to reset altered proliferative and metabolic states within the colon. The use of such therapeutics may truly drive patients into remission. Full article
(This article belongs to the Special Issue New Insights into Molecular Innate Immunity)
Show Figures

Figure 1

Review
Clinical and Mechanistic Implications of R-Loops in Human Leukemias
Int. J. Mol. Sci. 2023, 24(6), 5966; https://doi.org/10.3390/ijms24065966 (registering DOI) - 22 Mar 2023
Abstract
Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA–DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB [...] Read more.
Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA–DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment. Full article
(This article belongs to the Special Issue DNA Damage, Repair, and Cancer Metabolism)
Show Figures

Figure 1

Article
Long Non-Coding RNA Malat1 Increases the Rescuing Effect of Quercetin on TNFα-Impaired Bone Marrow Stem Cell Osteogenesis and Ovariectomy-Induced Osteoporosis
Int. J. Mol. Sci. 2023, 24(6), 5965; https://doi.org/10.3390/ijms24065965 (registering DOI) - 22 Mar 2023
Abstract
Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds [...] Read more.
Osteoporosis, a common systematic bone homeostasis disorder related disease, still urgently needs innovative treatment methods. Several natural small molecules were found to be effective therapeutics in osteoporosis. In the present study, quercetin was screened out from a library of natural small molecular compounds by a dual luciferase reporter system. Quercetin was found to upregulate Wnt/β-catenin while inhibiting NF-κB signaling activities, and thereby rescuing osteoporosis-induced tumor necrosis factor alpha (TNFα) impaired BMSCs osteogenesis. Furthermore, a putative functional lncRNA, Malat1, was shown to be a key mediator in quercetin regulated signaling activities and TNFα-impaired BMSCs osteogenesis, as mentioned above. In an ovariectomy (OVX)-induced osteoporosis mouse model, quercetin administration could significantly rescue OVX-induced bone loss and structure deterioration. Serum levels of Malat1 were also obviously rescued in the OVX model after quercetin treatment. In conclusion, our study demonstrated that quercetin could rescue TNFα-impaired BMSCs osteogenesis in vitro and osteoporosis-induced bone loss in vivo, in a Malat1-dependent manner, suggesting that quercetin may serve as a therapeutic candidate for osteoporosis treatment. Full article
(This article belongs to the Special Issue Osteoporosis 2.0)
Show Figures

Figure 1

Review
Chalcones and Gastrointestinal Cancers: Experimental Evidence
Int. J. Mol. Sci. 2023, 24(6), 5964; https://doi.org/10.3390/ijms24065964 (registering DOI) - 22 Mar 2023
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is [...] Read more.
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Oncology 2023)
Show Figures

Figure 1

Article
Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells?
Int. J. Mol. Sci. 2023, 24(6), 5963; https://doi.org/10.3390/ijms24065963 (registering DOI) - 22 Mar 2023
Abstract
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs [...] Read more.
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal–epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells. However, no studies have investigated the miRNA biogenesis pathway in endometriotic MenSCs. In this study, we profiled the expression of eight central genes for the miRNA biosynthesis pathway under experimental conditions involving a two-dimensional culture of MenSCs obtained from healthy women (n = 10) and women with endometriosis (n = 10) using RT-qPCR and reported a two-fold decrease in DROSHA expression in the disease. In addition, miR-128-3p, miR-27a-3p, miR-27b-3p, miR-181a-5p, miR-181b-5p, miR-452-3p, miR-216a-5p, miR-216b-5p, and miR-93-5p, which have been associated with endometriosis, were identified through in silico analyses as negative regulators of DROSHA. Because DROSHA is essential for miRNA maturation, our findings may justify the identification of different profiles of miRNAs with DROSHA-dependent biogenesis in endometriosis. Full article
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)
Show Figures

Figure 1

Article
The Regulation of ZIP8 by Dietary Manganese in Mice
Int. J. Mol. Sci. 2023, 24(6), 5962; https://doi.org/10.3390/ijms24065962 (registering DOI) - 22 Mar 2023
Abstract
ZIP8 is a newly identified manganese transporter. A lack of functional ZIP8 results in severe manganese deficiency in both humans and mice, indicating that ZIP8 plays a crucial role in maintaining body manganese homeostasis. Despite a well-acknowledged connection between ZIP8 and manganese metabolism, [...] Read more.
ZIP8 is a newly identified manganese transporter. A lack of functional ZIP8 results in severe manganese deficiency in both humans and mice, indicating that ZIP8 plays a crucial role in maintaining body manganese homeostasis. Despite a well-acknowledged connection between ZIP8 and manganese metabolism, how ZIP8 is regulated under high-manganese conditions remains unclear. The primary goal of this study was to examine the regulation of ZIP8 by high-manganese intake. We used both neonatal and adult mouse models in which mice were supplied with dietary sources containing either a normal or a high level of manganese. We discovered that high-manganese intake caused a reduction in liver ZIP8 protein in young mice. Since a decrease in hepatic ZIP8 leads to reduced manganese reabsorption from the bile, our study identified a novel mechanism for the regulation of manganese homeostasis under high-manganese conditions: high dietary manganese intake results in a decrease in ZIP8 in the liver, which in turn decreases the reabsorption of manganese from the bile to prevent manganese overload in the liver. Interestingly, we found that a high-manganese diet did not cause a decrease in hepatic ZIP8 in adult animals. To determine the potential reason for this age-dependent variation, we compared the expressions of liver ZIP8 in 3-week-old and 12-week-old mice. We found that liver ZIP8 protein content in 12-week-old mice decreases when compared with that of 3-week-old mice under normal conditions. Overall, results from this study provide novel insights to facilitate the understanding of ZIP8’s function in regulating manganese metabolism. Full article
(This article belongs to the Special Issue Zinc and Manganese in Human Health and Disease)
Show Figures

Figure 1

Article
The Influence of Bacteriophages on the Metabolic Condition of Human Fibroblasts in Light of the Safety of Phage Therapy in Staphylococcal Skin Infections
Int. J. Mol. Sci. 2023, 24(6), 5961; https://doi.org/10.3390/ijms24065961 (registering DOI) - 22 Mar 2023
Abstract
Phage therapy has been successfully used as an experimental therapy in the treatment of multidrug-resistant strains of Staphylococcus aureus (MDRSA)-caused skin infections and is seen as the most promising alternative to antibiotics. However, in recent years a number of reports indicating that phages [...] Read more.
Phage therapy has been successfully used as an experimental therapy in the treatment of multidrug-resistant strains of Staphylococcus aureus (MDRSA)-caused skin infections and is seen as the most promising alternative to antibiotics. However, in recent years a number of reports indicating that phages can interact with eukaryotic cells emerged. Therefore, there is a need to re-evaluate phage therapy in light of safety. It is important to analyze not only the cytotoxicity of phages alone but also the impact their lytic activity against bacteria may have on human cells. As progeny virions rupture the cell wall, lipoteichoic acids are released in high quantities. It has been shown that they act as inflammatory agents and their presence could lead to the worsening of the patient’s condition and influence their recovery. In our work, we have tested if the treatment of normal human fibroblasts with staphylococcal phages will influence the metabolic state of the cell and the integrity of cell membranes. We have also analyzed the effectiveness of bacteriophages in reducing the number of MDRSA attached to human fibroblasts and the influence of the lytic activity of phages on cell viability. We observed that, out of three tested anti-Staphylococcal phages—vB_SauM-A, vB_SauM-C and vB_SauM-D—high concentrations (109 PFU/mL) of two, vB_SauM-A and vB_SauM-D, showed a negative impact on the viability of human fibroblasts. However, a dose of 107 PFU/mL had no effect on the metabolic activity or membrane integrity of the cells. We also observed that the addition of phages alleviated the negative effect of the MDRSA infection on fibroblasts’ viability, as phages were able to effectively reduce the number of bacteria in the co-culture. We believe that these results will contribute to a better understanding of the influence of phage therapy on human cells and encourage even more studies on this topic. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 5.0)
Show Figures

Figure 1

Communication
HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines
Int. J. Mol. Sci. 2023, 24(6), 5960; https://doi.org/10.3390/ijms24065960 (registering DOI) - 22 Mar 2023
Abstract
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines [...] Read more.
The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines are equally reactive or accessible. Hence, to identify targetable cysteines, we propose a novel ensemble stacked machine learning (ML) model to predict hyper-reactive druggable cysteines, named HyperCys. First, the pocket, conservation, structural and energy profiles, and physicochemical properties of (non)covalently bound cysteines were collected from both protein sequences and 3D structures of protein–ligand complexes. Then, we established the HyperCys ensemble stacked model by integrating six different ML models, including K-nearest neighbors, support vector machine, light gradient boost machine, multi-layer perceptron classifier, random forest, and the meta-classifier model logistic regression. Finally, based on the hyper-reactive cysteines’ classification accuracy and other metrics, the results for different feature group combinations were compared. The results show that the accuracy, F1 score, recall score, and ROC AUC values of HyperCys are 0.784, 0.754, 0.742, and 0.824, respectively, after performing 10-fold CV with the best window size. Compared to traditional ML models with only sequenced-based features or only 3D structural features, HyperCys is more accurate at predicting hyper-reactive druggable cysteines. It is anticipated that HyperCys will be an effective tool for discovering new potential reactive cysteines in a wide range of nucleophilic proteins and will provide an important contribution to the design of targeted covalent inhibitors with high potency and selectivity. Full article
(This article belongs to the Special Issue Early-Stage Drug Discovery: Advances and Challenges)
Show Figures

Figure 1

Editorial
Recent Approaches for Wound Treatment
Int. J. Mol. Sci. 2023, 24(6), 5959; https://doi.org/10.3390/ijms24065959 (registering DOI) - 22 Mar 2023
Abstract
Wounds are a serious global health problem [...] Full article
(This article belongs to the Special Issue Recent Approaches for Wound Treatment)
Editorial
Impact of Endogenic and Exogenic Oxidative Stress Triggers on Pregnant Woman, Fetus, and Child
Int. J. Mol. Sci. 2023, 24(6), 5958; https://doi.org/10.3390/ijms24065958 (registering DOI) - 22 Mar 2023
Abstract
In all living organisms, there is a delicate balance between oxidation caused by reactive species (RS, also called free radicals) and antioxidant defence [...] Full article
Article
Two Single Nucleotide Deletions in the ABCD1 Gene Causing Distinct Phenotypes of X-Linked Adrenoleukodystrophy
Int. J. Mol. Sci. 2023, 24(6), 5957; https://doi.org/10.3390/ijms24065957 (registering DOI) - 22 Mar 2023
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for [...] Read more.
X-linked adrenoleukodystrophy (X-ALD) is a rare inborn error of the peroxisomal metabolism caused by pathologic variants in the ATP-binding cassette transporter type D, member 1 (ABCD1) gene located on the X-chromosome. ABCD1 protein, also known as adrenoleukodystrophy protein, is responsible for transport of the very long chain fatty acids (VLCFA) from cytoplasm into the peroxisomes. Therefore, altered function or lack of the ABCD1 protein leads to accumulation of VLCFA in various tissues and blood plasma leading to either rapidly progressive leukodystrophy (cerebral ALD), progressive adrenomyeloneuropathy (AMN), or isolated primary adrenal insufficiency (Addison’s disease). We report two distinct single nucleotide deletions in the ABCD1 gene, c.253delC [p.Arg85Glyfs*18] in exon 1, leading to both cerebral ALD and to AMN phenotype in one family, and c.1275delA [p.Phe426Leufs*15] in exon 4, leading to AMN and primary adrenal insufficiency in a second family. For the latter variant, we demonstrate reduced mRNA expression and a complete absence of the ABCD1 protein in PBMC. Distinct mRNA and protein expression in the index patient and heterozygous carriers does not associate with VLCFA concentration in plasma, which is in line with the absence of genotype–phenotype correlation in X-ALD. Full article
(This article belongs to the Special Issue Neurological Diseases: A Molecular Genetic Perspective)
Show Figures

Figure 1

Communication
Treatment with the Glycosphingolipid Modulator THI Rescues Myelin Integrity in the Striatum of R6/2 HD Mice
Int. J. Mol. Sci. 2023, 24(6), 5956; https://doi.org/10.3390/ijms24065956 (registering DOI) - 22 Mar 2023
Abstract
Huntington’s disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as [...] Read more.
Huntington’s disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2′, 3′ Cyclic Nucleotide 3′-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease. Full article
(This article belongs to the Special Issue Huntington’s Disease: New Frontier in Therapeutics)
Show Figures

Figure 1

Editorial
Cellular and Molecular Signaling Meet the Space Environment
Int. J. Mol. Sci. 2023, 24(6), 5955; https://doi.org/10.3390/ijms24065955 (registering DOI) - 22 Mar 2023
Abstract
During space missions that travel beyond the cocoon of the Earth’s magnetosphere, astronauts are subjected to the microgravity and radiation stressors of outer space [...] Full article
(This article belongs to the Special Issue Cellular and Molecular Signaling Meet the Space Environment)
Communication
Frequencies of an Immunogenic HER-2/neu Epitope of CD8+ T Lymphocytes Predict Favorable Clinical Outcomes in Prostate Cancer
Int. J. Mol. Sci. 2023, 24(6), 5954; https://doi.org/10.3390/ijms24065954 (registering DOI) - 22 Mar 2023
Abstract
HER-2/neu is the human epidermal growth factor receptor 2, which is associated with the progression of prostate cancer (PCa). HER-2/neu-specific T cell immunity has been shown to predict immunologic and clinical responses in PCa patients treated with HER-2/neu peptide [...] Read more.
HER-2/neu is the human epidermal growth factor receptor 2, which is associated with the progression of prostate cancer (PCa). HER-2/neu-specific T cell immunity has been shown to predict immunologic and clinical responses in PCa patients treated with HER-2/neu peptide vaccines. However, its prognostic role in PCa patients receiving conventional treatment is unknown, and this was addressed in this study. The densities of CD8+ T cells specific for the HER-2/neu(780–788) peptide in the peripheral blood of PCa patients under standard treatments were correlated with TGF-β/IL-8 levels and clinical outcomes. We demonstrated that PCa patients with high frequencies of HER-2/neu(780–788)-specific CD8+ T lymphocytes had better progression-free survival (PFS) as compared with PCa patients with low frequencies. Increased frequencies of HER-2/neu(780–788)-specific CD8+ T lymphocytes were also associated with lower levels of TGF-β and IL-8. Our data provide the first evidence of the predictive role of HER-2/neu-specific T cell immunity in PCa. Full article
(This article belongs to the Special Issue Research Progress in Molecular and Cellular Therapy of Cancer)
Show Figures

Figure 1

Review
Preventive Effect of Pharmaceutical Phytochemicals Targeting the Src Family of Protein Tyrosine Kinases and Aryl Hydrocarbon Receptor on Environmental Stress-Induced Skin Disease
Int. J. Mol. Sci. 2023, 24(6), 5953; https://doi.org/10.3390/ijms24065953 (registering DOI) - 21 Mar 2023
Abstract
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most [...] Read more.
The skin protects our body; however, it is directly exposed to the environment and is stimulated by various external factors. Among the various environmental factors that can threaten skin health, the effects of ultraviolet (UV) and particulate matter (PM) are considered the most notable. Repetitive exposure to ultraviolet and particulate matter can cause chronic skin diseases such as skin inflammation, photoaging, and skin cancer. The abnormal activation of the Src family of protein tyrosine kinases (SFKs) and the aryl hydrocarbon receptor (AhR) in response to UV and/or PM exposure are involved in the development and aggravation of skin diseases. Phytochemicals, chemical compounds of natural plants, exert preventive effects on skin diseases through the regulation of various signaling pathways. Therefore, this review aims to highlight the efficacy of phytochemicals as potential nutraceuticals and pharmaceutical materials for the treatment of skin diseases, primarily by targeting SFK and AhR, and to explore the underlying mechanisms of action. Future studies are essential to validate the clinical potential for the prevention and treatment of skin diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Anti-inflammatory Phytochemicals 2.0)
Show Figures

Figure 1

Article
Mechanochemical Synergism of Reactive Oxygen Species Influences on RBC Membrane
Int. J. Mol. Sci. 2023, 24(6), 5952; https://doi.org/10.3390/ijms24065952 (registering DOI) - 21 Mar 2023
Abstract
The influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of OH [...] Read more.
The influences of various factors on blood lead to the formation of extra reactive oxygen species (ROS), resulting in the disruption of morphology and functions of red blood cells (RBCs). This study considers the mechanisms of the mechanochemical synergism of OH free radicals, which are most active in the initiation of lipid peroxidation (LPO) in RBC membranes, and H2O2 molecules, the largest typical diffusion path. Using kinetic models of differential equations describing CH2O2t  and COHt, we discuss two levels of mechanochemical synergism that occur simultaneously: (1) synergism that ensures the delivery of highly active free radicals OH to RBC membranes and (2) a positive feedback system between H2O2 and OH, resulting in the partial restoration of spent molecules. As a result of these ROS synergisms, the efficiency of LPO in RBC membranes sharply increases. In blood, the appearance of OH free radicals is due to the interaction of H2O2 molecules with free iron ions (Fe2+) which arise as a result of heme degradation. We experimentally established the quantitative dependences of COH CH2O2 using the methods of spectrophotometry and nonlinear curve fitting. This study extends the analysis of the influence of ROS mechanisms in RBC suspensions. Full article
(This article belongs to the Special Issue Roles of Erythrocytes in Human Health and Disease 2.0)
Show Figures

Figure 1

Review
Inherited Disorders of Coenzyme A Biosynthesis: Models, Mechanisms, and Treatments
Int. J. Mol. Sci. 2023, 24(6), 5951; https://doi.org/10.3390/ijms24065951 (registering DOI) - 21 Mar 2023
Abstract
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants [...] Read more.
Coenzyme A (CoA) is a vital and ubiquitous cofactor required in a vast number of enzymatic reactions and cellular processes. To date, four rare human inborn errors of CoA biosynthesis have been described. These disorders have distinct symptoms, although all stem from variants in genes that encode enzymes involved in the same metabolic process. The first and last enzymes catalyzing the CoA biosynthetic pathway are associated with two neurological conditions, namely pantothenate kinase-associated neurodegeneration (PKAN) and COASY protein-associated neurodegeneration (CoPAN), which belong to the heterogeneous group of neurodegenerations with brain iron accumulation (NBIA), while the second and third enzymes are linked to a rapidly fatal dilated cardiomyopathy. There is still limited information about the pathogenesis of these diseases, and the knowledge gaps need to be resolved in order to develop potential therapeutic approaches. This review aims to provide a summary of CoA metabolism and functions, and a comprehensive overview of what is currently known about disorders associated with its biosynthesis, including available preclinical models, proposed pathomechanisms, and potential therapeutic approaches. Full article
(This article belongs to the Special Issue CoA in Health and Disease 2.0)
Communication
Investigating Vitamin D Receptor Genetic Markers in a Cluster Headache Meta-Analysis
Int. J. Mol. Sci. 2023, 24(6), 5950; https://doi.org/10.3390/ijms24065950 (registering DOI) - 21 Mar 2023
Abstract
Patients diagnosed with the primary headache disorder known as cluster headache (CH) commonly report that their headache attacks occur in patterns of both circadian and seasonal rhythmicity. Vitamin D is essential for a variety of bodily functions and vitamin D levels are largely [...] Read more.
Patients diagnosed with the primary headache disorder known as cluster headache (CH) commonly report that their headache attacks occur in patterns of both circadian and seasonal rhythmicity. Vitamin D is essential for a variety of bodily functions and vitamin D levels are largely regulated by daylight exposure in connection with seasonal variation. For this Sweden-based study, the association between CH and three single-nucleotide polymorphisms in the vitamin D receptor gene, rs2228570, rs1544410, and rs731236, were investigated, as well as CH bouts and trigger factors in relation to seasonal and weather changes. Over 600 study participants with CH and 600 controls were genotyped for rs2228570, and genotyping results for rs1544410 and rs731236 were obtained from a previous genome-wide association study. The genotyping results were combined in a meta-analysis, with data from a Greek study. No significant association was found between rs2228570 and CH or the CH subtype in Sweden, nor did the meta-analysis show significant results for any of the three markers. The most common period of the year to experience CH bouts in Sweden was autumn, and conditions linked to weather or weather changes were also identified as potential triggers for CH bouts for a quarter of the responders who reported bout triggers. Though we cannot rule out vitamin D involvement in CH, this study does not indicate any connection between CH and the three vitamin D receptor gene markers. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms in Primary Headache and Treatment)
Show Figures

Figure 1

Article
dCas9-Based PDGFR–β Activation ADSCs Accelerate Wound Healing in Diabetic Mice through Angiogenesis and ECM Remodeling
Int. J. Mol. Sci. 2023, 24(6), 5949; https://doi.org/10.3390/ijms24065949 (registering DOI) - 21 Mar 2023
Viewed by 4
Abstract
The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic [...] Read more.
The chronic wound represents a serious disease characterized by a failure to heal damaged skin and surrounding soft tissue. Mesenchymal stem cells (MSCs) derived from adipose tissue (ADSCs) are a promising therapeutic strategy, but their heterogeneity may result in varying or insufficient therapeutic capabilities. In this study, we discovered that all ADSCs populations expressed platelet–derived growth factor receptor β (PDGFR–β), while the expression level decreased dynamically with passages. Thus, using a CRISPRa–based system, we endogenously overexpressed PDGFR–β in ADSCs. Moreover, a series of in vivo and in vitro experiments were conducted to determine the functional changes in PDGFR–β activation ADSCs (AC–ADSCs) and to investigate the underlying mechanisms. With the activation of PDGFR–β, AC–ADSCs exhibited enhanced migration, survival, and paracrine capacity relative to control ADSCs (CON–ADSCs). In addition, the secretion components of AC–ADSCs contained more pro–angiogenic factors and extracellular matrix–associated molecules, which promoted the function of endothelial cells (ECs) in vitro. Additionally, in in vivo transplantation experiments, the AC–ADSCs transplantation group demonstrated improved wound healing rates, stronger collagen deposition, and angiogenesis. Consequently, our findings revealed that PDGFR–β overexpression enhanced the migration, survival, and paracrine capacity of ADSCs and improved therapeutic effects after transplantation to diabetic mice. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

Article
Expression of Gal-9 on Dendritic Cells and Soluble Forms of TIM-3/Gal-9 in Patients Suffering from Endometriosis
Int. J. Mol. Sci. 2023, 24(6), 5948; https://doi.org/10.3390/ijms24065948 (registering DOI) - 21 Mar 2023
Viewed by 33
Abstract
Immune system dysregulation is clinically evident in the pathogenesis of endometriosis (EMS). Changes in the dendritic cells (DCs) activity or phenotype may be involved in the implantation and growth of endometrial tissue outside the uterus in the disease. The TIM-3/Gal-9 axis is implicated [...] Read more.
Immune system dysregulation is clinically evident in the pathogenesis of endometriosis (EMS). Changes in the dendritic cells (DCs) activity or phenotype may be involved in the implantation and growth of endometrial tissue outside the uterus in the disease. The TIM-3/Gal-9 axis is implicated in the development of immune tolerance. However, the knowledge about the exact role of this pathway in the EMS is extremely poor. In the present study, we evaluated the expression of Gal-9 on myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in the peripheral blood (PB) and peritoneal fluid (PF) of both EMS patients (n = 82) and healthy subjects (n = 10) via flow cytometry. We also investigated the concentrations of soluble Gal-9 and TIM-3 in the plasma and PF of EMS patients and the control group using ELISA. We showed significantly elevated percentages of mDCs-Gal-9+ and pDCs-Gal-9+, and significantly higher concentrations of the soluble form of Gal-9 and TIM-3 in the PF of EMS patients than in circulation. Our results led us to conclude that the accumulation of Gal-9 expressing mDCs and pDCs in the PF and high sTIM-3/Gal-9 production in the peritoneal cavity could represent the hallmark of immune regulation in EMS patients, which may augment the inflammatory process and development/maintenance of local immunosuppression. Full article
(This article belongs to the Special Issue Molecular Biology of Human Fertility 2.0)
Show Figures

Figure 1

Article
Comparing Vaginal and Endometrial Microbiota Using Culturomics: Proof of Concept
Int. J. Mol. Sci. 2023, 24(6), 5947; https://doi.org/10.3390/ijms24065947 (registering DOI) - 21 Mar 2023
Viewed by 48
Abstract
It is generally accepted that microorganisms can colonize a non-pathological endometrium. However, in a clinical setting, endometrial samples are always collected by passing through the vaginal–cervical route. As such, the vaginal and cervical microbiomes can easily cross-contaminate endometrial samples, resulting in a biased [...] Read more.
It is generally accepted that microorganisms can colonize a non-pathological endometrium. However, in a clinical setting, endometrial samples are always collected by passing through the vaginal–cervical route. As such, the vaginal and cervical microbiomes can easily cross-contaminate endometrial samples, resulting in a biased representation of the endometrial microbiome. This makes it difficult to demonstrate that the endometrial microbiome is not merely a reflection of contamination originating from sampling. Therefore, we investigated to what extent the endometrial microbiome corresponds to that of the vagina, applying culturomics on paired vaginal and endometrial samples. Culturomics could give novel insights into the microbiome of the female genital tract, as it overcomes sequencing-related bias. Ten subfertile women undergoing diagnostic hysteroscopy and endometrial biopsy were included. An additional vaginal swab was taken from each participant right before hysteroscopy. Both endometrial biopsies and vaginal swabs were analyzed using our previously described WASPLab-assisted culturomics protocol. In total, 101 bacterial and two fungal species were identified among these 10 patients. Fifty-six species were found in endometrial biopsies and 90 were found in vaginal swabs. On average, 28 % of species were found in both the endometrial biopsy and vaginal swab of a given patient. Of the 56 species found in the endometrial biopsies, 13 were not found in the vaginal swabs. Of the 90 species found in vaginal swabs, 47 were not found in the endometrium. Our culturomics-based approach sheds a different light on the current understanding of the endometrial microbiome. The data suggest the potential existence of a unique endometrial microbiome that is not merely a presentation of cross-contamination derived from sampling. However, we cannot exclude cross-contamination completely. In addition, we observe that the microbiome of the vagina is richer in species than that of the endometrium, which contradicts the current sequence-based literature. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Uterine Receptivity for Embryo Implantation)
Show Figures

Figure 1

Article
Adaptation of the Porcine Pituitary Transcriptome, Spliceosome and Editome during Early Pregnancy
Int. J. Mol. Sci. 2023, 24(6), 5946; https://doi.org/10.3390/ijms24065946 (registering DOI) - 21 Mar 2023
Viewed by 39
Abstract
The physiological mechanisms of the porcine reproduction are relatively well-known. However, transcriptomic changes and the mechanisms accompanying transcription and translation processes in various reproductive organs, as well as their dependence on hormonal status, are still poorly understood. The aim of this study was [...] Read more.
The physiological mechanisms of the porcine reproduction are relatively well-known. However, transcriptomic changes and the mechanisms accompanying transcription and translation processes in various reproductive organs, as well as their dependence on hormonal status, are still poorly understood. The aim of this study was to gain a principal understanding of alterations within the transcriptome, spliceosome and editome occurring in the pituitary of the domestic pig (Sus scrofa domestica L.), which controls basic physiological processes in the reproductive system. In this investigation, we performed extensive analyses of data obtained by high-throughput sequencing of RNA from the gilts’ pituitary anterior lobes during embryo implantation and the mid-luteal phase of the estrous cycle. During analyses, we obtained detailed information on expression changes of 147 genes and 43 long noncoding RNAs, observed 784 alternative splicing events and also found the occurrence of 8729 allele-specific expression sites and 122 RNA editing events. The expression profiles of the selected 16 phenomena were confirmed by PCR or qPCR techniques. As a final result of functional meta-analysis, we acquired knowledge regarding intracellular pathways that induce changes in the processes accompanying transcription and translation regulation, which may induce modifications in the secretory activity of the porcine adenohypophyseal cells. Full article
Show Figures

Figure 1

Review
Canonical and Non-Canonical Antipsychotics’ Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia
Int. J. Mol. Sci. 2023, 24(6), 5945; https://doi.org/10.3390/ijms24065945 (registering DOI) - 21 Mar 2023
Viewed by 61
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold [...] Read more.
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics’ receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS. Full article
(This article belongs to the Collection State-of-the-Art Molecular Pharmacology in Italy)
Review
mRNA Vaccines against SARS-CoV-2: Advantages and Caveats
Int. J. Mol. Sci. 2023, 24(6), 5944; https://doi.org/10.3390/ijms24065944 (registering DOI) - 21 Mar 2023
Viewed by 101
Abstract
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies [...] Read more.
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer–BioNTech and Moderna developed updated bivalent vaccines—Comirnaty and Spikevax—to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications. Full article
(This article belongs to the Special Issue Molecular Advances of Viral Immunology and Vaccine against Viruses)
Show Figures

Figure 1

Communication
Acuminosylation of Tyrosol by a Commercial Diglycosidase
Int. J. Mol. Sci. 2023, 24(6), 5943; https://doi.org/10.3390/ijms24065943 (registering DOI) - 21 Mar 2023
Viewed by 110
Abstract
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was [...] Read more.
A commercial glycosidase mixture obtained from Penicillium multicolor (Aromase H2) was found to comprise a specific diglycosidase activity, β-acuminosidase, alongside undetectable levels of β-apiosidase. The enzyme was tested in the transglycosylation of tyrosol using 4-nitrophenyl β-acuminoside as the diglycosyl donor. The reaction was not chemoselective, providing a mixture of Osmanthuside H and its counterpart regioisomer 4-(2-hydroxyethyl)phenyl β-acuminoside in 58% yield. Aromase H2 is therefore the first commercial β-acuminosidase which is also able to glycosylate phenolic acceptors. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Figure 1

Article
Inflammatory Skin Disease Causes Anxiety Symptoms Leading to an Irreversible Course
Int. J. Mol. Sci. 2023, 24(6), 5942; https://doi.org/10.3390/ijms24065942 (registering DOI) - 21 Mar 2023
Viewed by 90
Abstract
Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly [...] Read more.
Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly understood. This study used a spontaneous dermatitis mouse model (KCASP1Tg) and evaluated the psychiatric symptoms. We also used Janus kinase (JAK) inhibitors to manage the behaviors. Gene expression analysis and RT-PCR of the cerebral cortex of KCASP1Tg and wild-type (WT) mice were performed to examine differences in mRNA expression. KCASP1Tg mice had lower activity, higher anxiety-like behavior, and abnormal behavior. The mRNA expression of S100a8 and Lipocalin 2 (Lcn2) in the brain regions was higher in KCASP1Tg mice. Furthermore, IL-1β stimulation increased Lcn2 mRNA expression in astrocyte cultures. KCASP1Tg mice had predominantly elevated plasma Lcn2 compared to WT mice, which improved with JAK inhibition, but behavioral abnormalities in KCASP1Tg mice did not improve, despite JAK inhibition. In summary, our data revealed that Lcn2 is closely associated with anxiety symptoms, but the anxiety and depression symptoms caused by chronic skin inflammation may be irreversible. This study demonstrated that active control of skin inflammation is essential for preventing anxiety. Full article
(This article belongs to the Special Issue Immune Response in Atopic Dermatitis)
Show Figures

Figure 1

Article
Altered Intracellular Signaling Associated with Dopamine D2 Receptor in the Prefrontal Cortex in Wistar Kyoto Rats
Int. J. Mol. Sci. 2023, 24(6), 5941; https://doi.org/10.3390/ijms24065941 (registering DOI) - 21 Mar 2023
Viewed by 96
Abstract
Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid [...] Read more.
Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3H] methylspiperone to the dopamine D2 receptor, specifically in that brain region—but not in the striatum, nor the nucleus accumbens—in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., βarrestin2, glycogen synthase kinase 3 beta—Gsk-3β, and β-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the βarrestin2/AKT/Gsk-3β/β-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors in Cell Signaling Transduction)
Show Figures

Figure 1

Previous Issue
Back to TopTop