Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1887 KiB  
Article
Graph Learning and Deep Neural Network Ensemble for Supporting Cognitive Decline Assessment
by Gabriel Antonesi, Alexandru Rancea, Tudor Cioara and Ionut Anghel
Technologies 2024, 12(1), 3; https://doi.org/10.3390/technologies12010003 - 24 Dec 2023
Viewed by 3096
Abstract
Cognitive decline represents a significant public health concern due to its severe implications on memory and general health. Early detection is crucial to initiate timely interventions and improve patient outcomes. However, traditional diagnosis methods often rely on personal interpretations or biases, may not [...] Read more.
Cognitive decline represents a significant public health concern due to its severe implications on memory and general health. Early detection is crucial to initiate timely interventions and improve patient outcomes. However, traditional diagnosis methods often rely on personal interpretations or biases, may not detect the early stages of cognitive decline, or involve invasive screening procedures; thus, there is a growing interest in developing non-invasive methods benefiting also from the technological advances. Wearable devices and Internet of Things sensors can monitor various aspects of daily life together with health parameters and can provide valuable data regarding people’s behavior. In this paper, we propose a technical solution that can be useful for potentially supporting cognitive decline assessment in early stages, by employing advanced machine learning techniques for detecting higher activity fragmentation based on daily activity monitoring using wearable devices. Our approach also considers data coming from wellbeing assessment questionnaires that can offer other important insights about a monitored person. We use deep neural network models to capture complex, non-linear relationships in the daily activities data and graph learning for the structural wellbeing information in the questionnaire answers. The proposed solution is evaluated in a simulated environment on a large synthetic dataset, the results showing that our approach can offer an alternative as a support for early detection of cognitive decline during patient-assessment processes. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Graphical abstract

18 pages, 3118 KiB  
Article
Transformative Approach for Heart Rate Prediction from Face Videos Using Local and Global Multi-Head Self-Attention
by Smera Premkumar, J. Anitha, Daniela Danciulescu and D. Jude Hemanth
Technologies 2024, 12(1), 2; https://doi.org/10.3390/technologies12010002 - 22 Dec 2023
Viewed by 1986
Abstract
Heart rate estimation from face videos is an emerging technology that offers numerous potential applications in healthcare and human–computer interaction. However, most of the existing approaches often overlook the importance of long-range spatiotemporal dependencies, which is essential for robust measurement of heart rate [...] Read more.
Heart rate estimation from face videos is an emerging technology that offers numerous potential applications in healthcare and human–computer interaction. However, most of the existing approaches often overlook the importance of long-range spatiotemporal dependencies, which is essential for robust measurement of heart rate prediction. Additionally, they involve extensive pre-processing steps to enhance the prediction accuracy, resulting in high computational complexity. In this paper, we propose an innovative solution called LGTransPPG. This end-to-end transformer-based framework eliminates the need for pre-processing steps while achieving improved efficiency and accuracy. LGTransPPG incorporates local and global aggregation techniques to capture fine-grained facial features and contextual information. By leveraging the power of transformers, our framework can effectively model long-range dependencies and temporal dynamics, enhancing the heart rate prediction process. The proposed approach is evaluated on three publicly available datasets, demonstrating its robustness and generalizability. Furthermore, we achieved a high Pearson correlation coefficient (PCC) value of 0.88, indicating its superior efficiency and accuracy between the predicted and actual heart rate values. Full article
Show Figures

Figure 1

14 pages, 809 KiB  
Article
AI-Enabled Compressive Spectrum Classification for Wideband Radios
by Tassadaq Nawaz and Ramasamy Srinivasaga Naidu
Technologies 2023, 11(6), 182; https://doi.org/10.3390/technologies11060182 - 13 Dec 2023
Viewed by 2041
Abstract
Cognitive radio is a promising technology that emerged as a potential solution to the spectrum shortage problem by enabling opportunistic spectrum access. In many cases, cognitive radios are required to sense a wide range of frequencies to locate the spectrum white spaces; hence, [...] Read more.
Cognitive radio is a promising technology that emerged as a potential solution to the spectrum shortage problem by enabling opportunistic spectrum access. In many cases, cognitive radios are required to sense a wide range of frequencies to locate the spectrum white spaces; hence, wideband spectrum comes into play, which is also an essential step in future wireless systems to boost the throughput. Cognitive radios are intelligent devices and therefore can be opted for the development of modern jamming and anti-jamming solutions. To this end, our article introduces a novel AI-enabled energy-efficient and robust technique for wideband radio spectrum characterization. Our work considers a wideband radio spectrum made up of numerous narrowband signals, which could be normal communications or signals disrupted by a stealthy jammer. First, the receiver recovers the wideband from significantly low sub-Nyquist rate samples by exploiting compressive sensing technique to decrease the overhead caused by the high complexity analog-to-digital conversion process. Once the wideband is recovered, each available narrowband signal is given to a cyclostationary feature detector that computes the corresponding spectral correlation function and extracts the feature vectors in the form of cycle and frequency profiles. Then profiles are concatenated and given as input features set to an artificial neural network which in turn classifies each NB signal as legitimate communication with a specific modulation or disrupted by a stealthy jammer. The results show a classification accuracy of about 0.99 is achieved. Moreover, the algorithm highlights significantly high performances in comparison to recently reported spectrum classification techniques. The proposed technique can be used to design anti-jamming systems for military communication systems. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

15 pages, 3226 KiB  
Review
Door-Opening Technologies: Search for Affordable Assistive Technology
by Javeed Shaikh-Mohammed, Yousef Alharbi and Abdulrahman Alqahtani
Technologies 2023, 11(6), 177; https://doi.org/10.3390/technologies11060177 - 11 Dec 2023
Viewed by 2320
Abstract
To the authors’ knowledge, currently, there is no review covering the different technologies applied to opening manual doors. Therefore, this review presents a summary of the various technologies available on the market as well as those under research and development for opening manual [...] Read more.
To the authors’ knowledge, currently, there is no review covering the different technologies applied to opening manual doors. Therefore, this review presents a summary of the various technologies available on the market as well as those under research and development for opening manual doors. Four subtopics—doorknob accessories, wheelchair-mounted door-opening accessories, door-opening robots, and door-opening drones—were used to group the various technologies for manually opening doors. It is evident that opening doors is a difficult process, and there are different ways to solve this problem in terms of the technology used and the cost of the end product. The search for an affordable assistive technology for opening manual doors is ongoing. This work is an attempt to provide wheelchair users and their healthcare providers with a one-stop source for door-opening technologies. At least one of these door-opening solutions could prove beneficial to the elderly and some wheelchair users for increased independence. The ideal option would depend on an individual’s needs and capabilities, and occupational therapists could assess and recommend the right solutions. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

24 pages, 4277 KiB  
Article
An Advanced Solution Based on Machine Learning for Remote EMDR Therapy
by Francesca Fiani, Samuele Russo and Christian Napoli
Technologies 2023, 11(6), 172; https://doi.org/10.3390/technologies11060172 - 6 Dec 2023
Cited by 5 | Viewed by 2193
Abstract
For this work, a preliminary study proposed virtual interfaces for remote psychotherapy and psychology practices. This study aimed to verify the efficacy of such approaches in obtaining results comparable to in-presence psychotherapy, when the therapist is physically present in the room. In particular, [...] Read more.
For this work, a preliminary study proposed virtual interfaces for remote psychotherapy and psychology practices. This study aimed to verify the efficacy of such approaches in obtaining results comparable to in-presence psychotherapy, when the therapist is physically present in the room. In particular, we implemented several joint machine-learning techniques for distance detection, camera calibration and eye tracking, assembled to create a full virtual environment for the execution of a psychological protocol for a self-induced mindfulness meditative state. Notably, such a protocol is also applicable for the desensitization phase of EMDR therapy. This preliminary study has proven that, compared to a simple control task, such as filling in a questionnaire, the application of the mindfulness protocol in a fully virtual setting greatly improves concentration and lowers stress for the subjects it has been tested on, therefore proving the efficacy of a remote approach when compared to an in-presence one. This opens up the possibility of deepening the study, to create a fully working interface which will be applicable in various on-field applications of psychotherapy where the presence of the therapist cannot be always guaranteed. Full article
(This article belongs to the Topic Smart Healthcare: Technologies and Applications)
Show Figures

Figure 1

30 pages, 22313 KiB  
Article
Laplace Transform-Based Modelling, Surge Energy Distribution, and Experimental Validation of a Supercapacitor Transient Suppressor
by Sadeeshvara Silva Thotabaddadurage
Technologies 2023, 11(6), 173; https://doi.org/10.3390/technologies11060173 - 6 Dec 2023
Viewed by 2601
Abstract
The discovery of the transient-surge-withstanding capability of electrochemical dual-layer capacitors (EDLCs) led to the development of a unique, commercially beneficial circuit topology known as a supercapacitor transient suppressor (STS). Despite its low component count, the new design consists of a transient-absorbing magnetic core [...] Read more.
The discovery of the transient-surge-withstanding capability of electrochemical dual-layer capacitors (EDLCs) led to the development of a unique, commercially beneficial circuit topology known as a supercapacitor transient suppressor (STS). Despite its low component count, the new design consists of a transient-absorbing magnetic core which takes the form of a coupled inductor placed between the AC-main- and load-side varistors. With an introduction to the structural features of metal oxide varistors (MOVs), gas tubes, thyristors, and EDLCs, this research presents a frequency (S)-domain analysis of an STS circuit to accurately model the surge propagation through its coupled inductor. Transient energy distribution trends among STS components are estimated in this paper, with an emphasis on peak energies absorbed and dissipated by the various inductive, capacitive, and resistive circuit elements. Moreover, this study reveals STS transient-mode test waveforms validated by a standard lightning surge simulator with supporting simulation plots based on LTSpice numerical techniques. Both experimental and simulation results are consistent, with the analytical findings showing 90% of the peak transient propagating through the primary coil, whereas only 10% is shared into the secondary coil of the coupled inductor. In addition, it is proven that the two STS MOVs dissipate over 50% of the transient energy for a standard 6 kV/3 kA combinational surge, while the magnetic core absorbs over 20% of the energy. All test procedures conducted during this research adhere to IEEE C62.41/IEC 61000-4-5 standards. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

11 pages, 881 KiB  
Article
Maze Solving Mobile Robot Based on Image Processing and Graph Theory
by Luis A. Avila-Sánchez, Carlos Sánchez-López, Rocío Ochoa-Montiel, Fredy Montalvo-Galicia, Luis A. Sánchez-Gaspariano, Carlos Hernández-Mejía and Hugo G. González-Hernández
Technologies 2023, 11(6), 171; https://doi.org/10.3390/technologies11060171 - 5 Dec 2023
Cited by 1 | Viewed by 3118
Abstract
Advances in the development of collision-free path planning algorithms are the main need not only to solve mazes with robotic systems, but also for their use in modern product transportation or green logistics systems and planning merchandise deliveries inside or outside a factory. [...] Read more.
Advances in the development of collision-free path planning algorithms are the main need not only to solve mazes with robotic systems, but also for their use in modern product transportation or green logistics systems and planning merchandise deliveries inside or outside a factory. This challenge increases as the complexity of the task in its structure also increases. This paper deals with the development of a novel methodology for solving mazes with a mobile robot, using image processing techniques and graph theory. The novelty is that the mobile robot can find the shortest path from a start-point to the end-point into irregular mazes with abundant irregular obstacles, a situation that is not far from reality. Maze information is acquired from an image and depending on the size of the mobile robot, a grid of nodes with the same dimensions of the maze is built. Another contribution of this paper is that the size of the maze can be scaled from 1 m × 1 m to 66 m × 66 m, maintaining the essence of the proposed collision-free path planning methodology. Afterwards, graph theory is used to find the shortest path within the grid of reduced nodes due to the elimination of those nodes absorbed by the irregular obstacles. To avoid the mobile robot to travel through those nodes very close to obstacles and borders, resulting in a collision, each image of the obstacle and border is dilated taking into account the size of the mobile robot. The methodology was validated with two case studies with a mobile robot in different mazes. We emphasize that the maze solution is found in a single computational step, from the maze image as input until the generation of the Path vector. Experimental results show the usefulness of the proposed methodology, which can be used in applications such as intelligent traffic control, military, agriculture and so on. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

21 pages, 3566 KiB  
Article
Towards Robust Obstacle Avoidance for the Visually Impaired Person Using Stereo Cameras
by Bismark Kweku Asiedu Asante and Hiroki Imamura
Technologies 2023, 11(6), 168; https://doi.org/10.3390/technologies11060168 - 28 Nov 2023
Cited by 2 | Viewed by 2909
Abstract
We propose a novel obstacle avoidance strategy implemented in a wearable assistive device, which serves as an electronic travel aid (ETA), designed to enhance the safety of visually impaired persons (VIPs) during navigation to their desired destinations. This method is grounded in the [...] Read more.
We propose a novel obstacle avoidance strategy implemented in a wearable assistive device, which serves as an electronic travel aid (ETA), designed to enhance the safety of visually impaired persons (VIPs) during navigation to their desired destinations. This method is grounded in the assumption that objects in close proximity and within a short distance from VIPs pose potential obstacles and hazards. Furthermore, objects that are farther away appear smaller in the camera’s field of view. To adapt this method for accurate obstacle selection, we employ an adaptable grid generated based on the apparent size of objects. These objects are detected using a custom lightweight YOLOv5 model. The grid helps select and prioritize the most immediate and dangerous obstacle within the user’s proximity. We also incorporate an audio feedback mechanism with an innovative neural perception system to alert the user. Experimental results demonstrate that our proposed system can detect obstacles within a range of 20 m and effectively prioritize obstacles within 2 m of the user. The system achieves an accuracy rate of 95% for both obstacle detection and prioritization of critical obstacles. Moreover, the ETA device provides real-time alerts, with a response time of just 5 s, preventing collisions with nearby objects. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

19 pages, 328 KiB  
Review
A Survey of the Diagnosis of Peripheral Neuropathy Using Intelligent and Wearable Systems
by Muhammad Talha, Maria Kyrarini and Ehsan Ali Buriro
Technologies 2023, 11(6), 163; https://doi.org/10.3390/technologies11060163 - 17 Nov 2023
Cited by 1 | Viewed by 2658
Abstract
In recent years, the usage of wearable systems in healthcare has gained much attention, as they can be easily worn by the subject and provide a continuous source of data required for the tracking and diagnosis of multiple kinds of abnormalities or diseases [...] Read more.
In recent years, the usage of wearable systems in healthcare has gained much attention, as they can be easily worn by the subject and provide a continuous source of data required for the tracking and diagnosis of multiple kinds of abnormalities or diseases in the human body. Wearable systems can be made useful in improving a patient’s quality of life and at the same time reducing the overall cost of caring for individuals including the elderly. In this survey paper, the recent research in the development of intelligent wearable systems for the diagnosis of peripheral neuropathy is discussed. The paper provides detailed information about recent techniques based on different wearable sensors for the diagnosis of peripheral neuropathy including experimental protocols, biomarkers, and other specifications and parameters such as the type of signals and data processing methods, locations of sensors, the scales and tests used in the study, and the scope of the study. It also highlights challenges that are still present in order to make wearable devices more effective in the diagnosis of peripheral neuropathy in clinical settings. Full article
(This article belongs to the Collection Selected Papers from the PETRA Conference Series)
13 pages, 5279 KiB  
Article
Immersive VR (Virtual Reality) Simulator for Vein Blood Sampling
by Jun-Seong Kim, Kun-Woo Kim, Seong-Won Yang, Joong-Wha Chung and Seong-Yong Moon
Technologies 2023, 11(6), 158; https://doi.org/10.3390/technologies11060158 - 8 Nov 2023
Cited by 1 | Viewed by 2550
Abstract
Vein blood sampling is a method of mass blood sampling that involves drawing blood from a vein for blood type discrimination, confirmation of various physiological indicators, disease diagnosis, etc.; it is the most commonly used blood sampling method. An important aspect of vein [...] Read more.
Vein blood sampling is a method of mass blood sampling that involves drawing blood from a vein for blood type discrimination, confirmation of various physiological indicators, disease diagnosis, etc.; it is the most commonly used blood sampling method. An important aspect of vein blood sampling is the search for the exact location of the vein for insertion of the syringe to draw blood. This is influenced by obesity as well as skin and blood vessel conditions in the patient and the experience of the clinical technologist, nurse, and resident who performs the blood sampling. Frequent practice is required to effectively perform blood sampling techniques. However, due to the many limitations of the practice room or laboratory, there is a problem of using only a limited environment and model for clinical practice. As a result, many medical educational institutions have situations in which only fragmentary clinical practices are performed, and it is difficult to practice many blood sampling skills, so they do not provide enough experience to understand the actual skill field. In this paper, we propose a virtual-reality-based vein blood sampling simulator that allows the practice of blood sampling techniques without limitation. The proposed vein blood sampling simulator can operate a 3D model related to vein blood sampling using an HMD controller and a haptic device in a virtual space for vein blood sampling practice by wearing an HMD (head-mounted display). Vein blood sampling can also be practiced through interaction with the patient 3D model. In addition, the effectiveness of a simulator developed for dental students was verified, and as a result of the verification, the potential of the proposed vein blood sampling simulator was confirmed. Full article
(This article belongs to the Topic Smart Healthcare: Technologies and Applications)
Show Figures

Figure 1

27 pages, 77222 KiB  
Tutorial
How Activated Carbon Can Help You—Processes, Properties and Technological Applications
by Miklas Scholz
Technologies 2023, 11(6), 153; https://doi.org/10.3390/technologies11060153 - 1 Nov 2023
Viewed by 3758
Abstract
Activated carbon has many potential applications in both the liquid and gas phases. How activated carbon can help practitioners in industry is explained. This practical teaching article introduces the first part of the special issue on Recent Advances in Applied Activated Carbon Research [...] Read more.
Activated carbon has many potential applications in both the liquid and gas phases. How activated carbon can help practitioners in industry is explained. This practical teaching article introduces the first part of the special issue on Recent Advances in Applied Activated Carbon Research by providing a handbook explaining the basic applications, technologies, processes, methods and material characteristics to readers from different backgrounds. The aim is to improve the knowledge and understanding of the subject of activated carbon for non-adsorption experts such as professionals in industry. Therefore, it is written in a comprehensible manner and dispenses with detailed explanations to complex processes and many background references. This handbook does not claim to be complete and concentrates only on the areas that are of practical relevance for most activated carbon applications. Activated carbon and its activation and reactivation are initially explained. Adsorption and relevant processes are outlined. The mechanical, chemical and adsorption properties of activated carbon are explained. The heart of the handbook outlines key application technologies. Other carbonaceous adsorbents are only introduced briefly. The content of the second part of the special issue is highlighted at the end. Full article
(This article belongs to the Special Issue Recent Advances in Applied Activated Carbon Research)
Show Figures

Figure 1

52 pages, 10354 KiB  
Review
Application of Modeling and Control Approaches of Piezoelectric Actuators: A Review
by Mithun Kanchan, Mohith Santhya, Ritesh Bhat and Nithesh Naik
Technologies 2023, 11(6), 155; https://doi.org/10.3390/technologies11060155 - 1 Nov 2023
Cited by 8 | Viewed by 3618
Abstract
Piezoelectric actuators find extensive application in delivering precision motion in the micrometer to nanometer range. The advantages of a broader range of motion, rapid response, higher stiffness, and large actuation force from piezoelectric actuators make them suitable for precision positioning applications. However, the [...] Read more.
Piezoelectric actuators find extensive application in delivering precision motion in the micrometer to nanometer range. The advantages of a broader range of motion, rapid response, higher stiffness, and large actuation force from piezoelectric actuators make them suitable for precision positioning applications. However, the inherent nonlinearity in the piezoelectric actuators under dynamic working conditions severely affects the accuracy of the generated motion. The nonlinearity in the piezoelectric actuators arises from hysteresis, creep, and vibration, which affect the performance of the piezoelectric actuator. Thus, there is a need for appropriate modeling and control approaches for piezoelectric actuators, which can model the nonlinearity phenomenon and provide adequate compensation to achieve higher motion accuracy. The present review covers different methods adopted for overcoming the nonlinearity issues in piezoelectric actuators. This review highlights the charge-based and voltage-based control methods that drive the piezoelectric actuators. The survey also includes different modeling approaches for the creep and hysteresis phenomenon of the piezoelectric actuators. In addition, the present review also highlights different control strategies and their applications in various types of piezoelectric actuators. An attempt is also made to compare the piezoelectric actuator’s different modeling and control approaches and highlight prospects. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

18 pages, 2838 KiB  
Article
Neonatal Hypoxic-Ischemic Encephalopathy Grading from Multi-Channel EEG Time-Series Data Using a Fully Convolutional Neural Network
by Shuwen Yu, William P. Marnane, Geraldine B. Boylan and Gordon Lightbody
Technologies 2023, 11(6), 151; https://doi.org/10.3390/technologies11060151 - 25 Oct 2023
Cited by 1 | Viewed by 2892
Abstract
A deep learning classifier is proposed for grading hypoxic-ischemic encephalopathy (HIE) in neonates. Rather than using handcrafted features, this architecture can be fed with raw EEG. Fully convolutional layers were adopted both in the feature extraction and classification blocks, which makes this architecture [...] Read more.
A deep learning classifier is proposed for grading hypoxic-ischemic encephalopathy (HIE) in neonates. Rather than using handcrafted features, this architecture can be fed with raw EEG. Fully convolutional layers were adopted both in the feature extraction and classification blocks, which makes this architecture simpler, and deeper, but with fewer parameters. Here, two large (335 h and 338 h, respectively) multi-center neonatal continuous EEG datasets were used for training and testing. The model was trained based on weak labels and channel independence. A majority vote method was used for the post-processing of the classifier results (across time and channels) to increase the robustness of the prediction. A dimension reduction tool, UMAP, was used to visualize the model classification effect. The proposed system achieved an accuracy of 86.09% (95% confidence interval: 82.41–89.78%), an MCC of 0.7691, and an AUC of 86.23% on the large unseen test set. Two convolutional neural network architectures which utilized time-frequency distribution features were selected as the baseline as they had been developed or tested on the same datasets. A relative improvement of 23.65% in test accuracy was obtained as compared with the best baseline. In addition, if only one channel was available, the test accuracy was only reduced by 2.63–5.91% compared with making decisions based on the eight channels. Full article
(This article belongs to the Special Issue Selected Papers from ICNC-FSKD 2023 Conference)
Show Figures

Figure 1

28 pages, 2632 KiB  
Review
Green Electrospun Nanofibers for Biomedicine and Biotechnology
by Elyor Berdimurodov, Omar Dagdag, Khasan Berdimuradov, Wan Mohd Norsani Wan Nik, Ilyos Eliboev, Mansur Ashirov, Sherzod Niyozkulov, Muslum Demir, Chinmurot Yodgorov and Nizomiddin Aliev
Technologies 2023, 11(5), 150; https://doi.org/10.3390/technologies11050150 - 23 Oct 2023
Cited by 3 | Viewed by 3161
Abstract
Green electrospinning harnesses the potential of renewable biomaterials to craft biodegradable nanofiber structures, expanding their utility across a spectrum of applications. In this comprehensive review, we summarize the production, characterization and application of electrospun cellulose, collagen, gelatin and other biopolymer nanofibers in tissue [...] Read more.
Green electrospinning harnesses the potential of renewable biomaterials to craft biodegradable nanofiber structures, expanding their utility across a spectrum of applications. In this comprehensive review, we summarize the production, characterization and application of electrospun cellulose, collagen, gelatin and other biopolymer nanofibers in tissue engineering, drug delivery, biosensing, environmental remediation, agriculture and synthetic biology. These applications span diverse fields, including tissue engineering, drug delivery, biosensing, environmental remediation, agriculture, and synthetic biology. In the realm of tissue engineering, nanofibers emerge as key players, adept at mimicking the intricacies of the extracellular matrix. These fibers serve as scaffolds and vascular grafts, showcasing their potential to regenerate and repair tissues. Moreover, they facilitate controlled drug and gene delivery, ensuring sustained therapeutic levels essential for optimized wound healing and cancer treatment. Biosensing platforms, another prominent arena, leverage nanofibers by immobilizing enzymes and antibodies onto their surfaces. This enables precise glucose monitoring, pathogen detection, and immunodiagnostics. In the environmental sector, these fibers prove invaluable, purifying water through efficient adsorption and filtration, while also serving as potent air filtration agents against pollutants and pathogens. Agricultural applications see the deployment of nanofibers in controlled release fertilizers and pesticides, enhancing crop management, and extending antimicrobial food packaging coatings to prolong shelf life. In the realm of synthetic biology, these fibers play a pivotal role by encapsulating cells and facilitating bacteria-mediated prodrug activation strategies. Across this multifaceted landscape, nanofibers offer tunable topographies and surface functionalities that tightly regulate cellular behavior and molecular interactions. Importantly, their biodegradable nature aligns with sustainability goals, positioning them as promising alternatives to synthetic polymer-based technologies. As research and development continue to refine and expand the capabilities of green electrospun nanofibers, their versatility promises to advance numerous applications in the realms of biomedicine and biotechnology, contributing to a more sustainable and environmentally conscious future. Full article
Show Figures

Figure 1

16 pages, 1564 KiB  
Article
Exploring the Digital Atmosphere of Museums: Perspectives and Potential
by Sofia Paschou and Georgios Papaioannou
Technologies 2023, 11(5), 149; https://doi.org/10.3390/technologies11050149 - 22 Oct 2023
Viewed by 2920
Abstract
This paper contributes to the field of museum and visitor experience in terms of atmosphere by discussing the “museum digital atmosphere” or MDA, a notion that has been introduced and found across museums in Greece. Research on museum atmospherics has tended to focus [...] Read more.
This paper contributes to the field of museum and visitor experience in terms of atmosphere by discussing the “museum digital atmosphere” or MDA, a notion that has been introduced and found across museums in Greece. Research on museum atmospherics has tended to focus on physical museum spaces and exhibits. By “atmosphere”, we mean the emotional state that is a result of public response adding to the overall museum experience. The MDA is therefore studied as the specific emotional state caused by the use of digital applications and technologies. The stimulus–organism–response or SOR model is used to define the MDA, so as to confirm and reinforce the concept. To that end, a qualitative methodological approach is used; we conduct semi-structured interviews and evaluate findings via content analysis. The sample consists of 17 specialists and professionals from the field, namely museologists, museographers, museum managers, and digital application developers working in Greek museums. Ultimately, this research uses the SOR model to reveal the effect of digital tools on the digital atmosphere in Greek museums. It also enriches the SOR model with additional concepts and emotions taken from real-life situations, adding new categories of variables. This research provides the initial data and knowledge regarding the concept of the MDA, along with its importance. Full article
(This article belongs to the Special Issue Immersive Technologies and Applications on Arts, Culture and Tourism)
Show Figures

Figure 1

18 pages, 6018 KiB  
Article
Preparation and Characterization of Thermoresponsive Polymer Scaffolds Based on Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) for Cell Culture
by Gilyana K. Kazakova, Victoria S. Presniakova, Yuri M. Efremov, Svetlana L. Kotova, Anastasia A. Frolova, Sergei V. Kostjuk, Yury A. Rochev and Peter S. Timashev
Technologies 2023, 11(5), 145; https://doi.org/10.3390/technologies11050145 - 18 Oct 2023
Cited by 2 | Viewed by 2133
Abstract
In the realm of scaffold-free cell therapies, there is a questto develop organotypic three-dimensional (3D) tissue surrogates in vitro, capitalizing on the inherent ability of cells to create tissues with an efficiency and sophistication that still remains unmatched by human-made devices. In this [...] Read more.
In the realm of scaffold-free cell therapies, there is a questto develop organotypic three-dimensional (3D) tissue surrogates in vitro, capitalizing on the inherent ability of cells to create tissues with an efficiency and sophistication that still remains unmatched by human-made devices. In this study, we explored the properties of scaffolds obtained by the electrospinning of a thermosensitive copolymer, poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) (P(NIPAM-co-NtBA)), intended for use in such therapies. Two copolymers with molecular weights of 123 and 137 kDa and a content of N-tert-butylacrylamide of ca. 15 mol% were utilized to generate 3D scaffolds via electrospinning. We examined the morphology, solution viscosity, porosity, and thickness of the spun matrices as well as the mechanical properties and hydrophobic–hydrophilic characteristics of the scaffolds. Particular attention was paid to studying the influence of the thermosensitive polymer’s molecular weight and dispersity on the resultant scaffolds’ properties and the role of electroforming parameters on the morphology and mechanical characteristics of the scaffolds. The cytotoxicity of the copolymers and interaction of cells with the scaffolds were also studied. Our findings provide significant insight into approaches to optimizing scaffolds for specific cell cultures, thereby offering new opportunities for scaffold-free cell therapies. Full article
Show Figures

Figure 1

39 pages, 25112 KiB  
Review
Recent Advances in the 3D Printing of Pure Copper Functional Structures for Thermal Management Devices
by Yue Hao Choong, Manickavasagam Krishnan and Manoj Gupta
Technologies 2023, 11(5), 141; https://doi.org/10.3390/technologies11050141 - 15 Oct 2023
Cited by 2 | Viewed by 3330
Abstract
Thermal management devices such as heat exchangers and heat pipes are integral to safe and efficient performance in multiple engineering applications, including lithium-ion batteries, electric vehicles, electronics, and renewable energy. However, the functional designs of these devices have until now been created around [...] Read more.
Thermal management devices such as heat exchangers and heat pipes are integral to safe and efficient performance in multiple engineering applications, including lithium-ion batteries, electric vehicles, electronics, and renewable energy. However, the functional designs of these devices have until now been created around conventional manufacturing constraints, and thermal performance has plateaued as a result. While 3D printing offers the design freedom to address these limitations, there has been a notable lack in high thermal conductivity materials beyond aluminium alloys. Recently, the 3D printing of pure copper to sufficiently high densities has finally taken off, due to the emergence of commercial-grade printers which are now equipped with 1 kW high-power lasers or short-wavelength lasers. Although the capabilities of these new systems appear ideal for processing pure copper as a bulk material, the performance of advanced thermal management devices are strongly dependent on topology-optimised filigree structures, which can require a very different processing window. Hence, this article presents a broad overview of the state-of-the-art in various additive manufacturing technologies used to fabricate pure copper functional filigree geometries comprising thin walls, lattice structures, and porous foams, and identifies opportunities for future developments in the 3D printing of pure copper for advanced thermal management devices. Full article
(This article belongs to the Collection Review Papers Collection for Advanced Technologies)
Show Figures

Figure 1

13 pages, 3366 KiB  
Article
Detecting Airborne Pathogens: A Computational Approach Utilizing Surface Acoustic Wave Sensors for Microorganism Detection
by Sharon P. Varughese, S. Merlin Gilbert Raj, T. Jesse Joel and Sneha Gautam
Technologies 2023, 11(5), 135; https://doi.org/10.3390/technologies11050135 - 2 Oct 2023
Cited by 2 | Viewed by 2024
Abstract
The persistent threat posed by infectious pathogens remains a formidable challenge for humanity. Rapidly spreading infectious diseases caused by airborne microorganisms have far-reaching global consequences, imposing substantial costs on society. While various detection technologies have emerged, including biochemical, immunological, and molecular approaches, these [...] Read more.
The persistent threat posed by infectious pathogens remains a formidable challenge for humanity. Rapidly spreading infectious diseases caused by airborne microorganisms have far-reaching global consequences, imposing substantial costs on society. While various detection technologies have emerged, including biochemical, immunological, and molecular approaches, these methods still exhibit significant limitations such as time-intensive procedures, instability, and the need for specialized operators. This study presents an innovative solution that harnesses the potential of surface acoustic wave (SAW) sensors for the detection of airborne microorganisms. The research involves the establishment of a sensor model within the framework of COMSOL Multiphysics, utilizing a predefined piezoelectric multi-physics interface and employing a 2D modeling approach. Chitosan, selected as the sensing film for the model, interfaces with lithium niobate (LiNbO3), the chosen piezoelectric material responsible for detecting airborne pathogens. The analysis of microbe presence centers on solid displacement and electric potential frequencies, operating within the 850–900 MHz range. Notably, the first and second resonant frequencies are identified at 856 and 859 MHz, respectively. To enhance understanding, this study proposes a novel mathematical model grounded in Stokes’ Law and mass balance equations. This model serves to analyze microbe concentration, offering a fresh perspective on quantifying the presence of airborne pathogens. Through these endeavors, this research contributes to advancing the field of airborne microorganism detection, offering a promising avenue for addressing the challenges posed by infectious diseases. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

42 pages, 13997 KiB  
Article
Multi-Scale CNN: An Explainable AI-Integrated Unique Deep Learning Framework for Lung-Affected Disease Classification
by Ovi Sarkar, Md. Robiul Islam, Md. Khalid Syfullah, Md. Tohidul Islam, Md. Faysal Ahamed, Mominul Ahsan and Julfikar Haider
Technologies 2023, 11(5), 134; https://doi.org/10.3390/technologies11050134 - 30 Sep 2023
Cited by 5 | Viewed by 3312
Abstract
Lung-related diseases continue to be a leading cause of global mortality. Timely and precise diagnosis is crucial to save lives, but the availability of testing equipment remains a challenge, often coupled with issues of reliability. Recent research has highlighted the potential of Chest [...] Read more.
Lung-related diseases continue to be a leading cause of global mortality. Timely and precise diagnosis is crucial to save lives, but the availability of testing equipment remains a challenge, often coupled with issues of reliability. Recent research has highlighted the potential of Chest X-ray (CXR) images in identifying various lung diseases, including COVID-19, fibrosis, pneumonia, and more. In this comprehensive study, four publicly accessible datasets have been combined to create a robust dataset comprising 6650 CXR images, categorized into seven distinct disease groups. To effectively distinguish between normal and six different lung-related diseases (namely, bacterial pneumonia, COVID-19, fibrosis, lung opacity, tuberculosis, and viral pneumonia), a Deep Learning (DL) architecture called a Multi-Scale Convolutional Neural Network (MS-CNN) is introduced. The model is adapted to classify multiple numbers of lung disease classes, which is considered to be a persistent challenge in the field. While prior studies have demonstrated high accuracy in binary and limited-class scenarios, the proposed framework maintains this accuracy across a diverse range of lung conditions. The innovative model harnesses the power of combining predictions from multiple feature maps at different resolution scales, significantly enhancing disease classification accuracy. The approach aims to shorten testing duration compared to the state-of-the-art models, offering a potential solution toward expediting medical interventions for patients with lung-related diseases and integrating explainable AI (XAI) for enhancing prediction capability. The results demonstrated an impressive accuracy of 96.05%, with average values for precision, recall, F1-score, and AUC at 0.97, 0.95, 0.95, and 0.94, respectively, for the seven-class classification. The model exhibited exceptional performance across multi-class classifications, achieving accuracy rates of 100%, 99.65%, 99.21%, 98.67%, and 97.47% for two, three, four, five, and six-class scenarios, respectively. The novel approach not only surpasses many pre-existing state-of-the-art (SOTA) methodologies but also sets a new standard for the diagnosis of lung-affected diseases using multi-class CXR data. Furthermore, the integration of XAI techniques such as SHAP and Grad-CAM enhanced the transparency and interpretability of the model’s predictions. The findings hold immense promise for accelerating and improving the accuracy and confidence of diagnostic decisions in the field of lung disease identification. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

17 pages, 6492 KiB  
Article
Multi-Classification of Lung Infections Using Improved Stacking Convolution Neural Network
by Usharani Bhimavarapu, Nalini Chintalapudi and Gopi Battineni
Technologies 2023, 11(5), 128; https://doi.org/10.3390/technologies11050128 - 17 Sep 2023
Cited by 1 | Viewed by 1909
Abstract
Lung disease is a respiratory disease that poses a high risk to people worldwide and includes pneumonia and COVID-19. As such, quick and precise identification of lung disease is vital in medical treatment. Early detection and diagnosis can significantly reduce the life-threatening nature [...] Read more.
Lung disease is a respiratory disease that poses a high risk to people worldwide and includes pneumonia and COVID-19. As such, quick and precise identification of lung disease is vital in medical treatment. Early detection and diagnosis can significantly reduce the life-threatening nature of lung diseases and improve the quality of life of human beings. Chest X-ray and computed tomography (CT) scan images are currently the best techniques to detect and diagnose lung infection. The increase in the chest X-ray or CT scan images at the time of training addresses the overfitting dilemma, and multi-class classification of lung diseases will deal with meaningful information and overfitting. Overfitting deteriorates the performance of the model and gives inaccurate results. This study reduces the overfitting issue and computational complexity by proposing a new enhanced kernel convolution function. Alongside an enhanced kernel convolution function, this study used convolution neural network (CNN) models to determine pneumonia and COVID-19. Each CNN model was applied to the collected dataset to extract the features and later applied these features as input to the classification models. This study shows that extracting deep features from the common layers of the CNN models increased the performance of the classification procedure. The multi-class classification improves the diagnostic performance, and the evaluation metrics improved significantly with the improved support vector machine (SVM). The best results were obtained using the improved SVM classifier fed with the features provided by CNN, and the success rate of the improved SVM was 99.8%. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

13 pages, 766 KiB  
Article
Using Simple Interactive Technology to Help People with Intellectual and Visual Disabilities Exercise Functional Physical Responses: A Case Series Study
by Giulio E. Lancioni, Gloria Alberti, Chiara Filippini, Valeria Chiariello, Nirbhay N. Singh, Mark F. O’Reilly and Jeff Sigafoos
Technologies 2023, 11(5), 120; https://doi.org/10.3390/technologies11050120 - 7 Sep 2023
Cited by 1 | Viewed by 1498
Abstract
The study assessed a new interactive technology system for helping six people with intellectual and visual disabilities exercise relevant physical responses embedded within a fairly straightforward activity (i.e., placing objects in containers). Activity responses consisted of the participants taking objects from the floor [...] Read more.
The study assessed a new interactive technology system for helping six people with intellectual and visual disabilities exercise relevant physical responses embedded within a fairly straightforward activity (i.e., placing objects in containers). Activity responses consisted of the participants taking objects from the floor or a low shelf and placing those objects in a container high up in front of them (thus bending their body and legs and stretching their arms and hands). The technology involved a portable computer, a webcam, and three mini speakers whose basic functions included monitoring the participants’ responses, delivering preferred stimulation contingent on the responses and verbal encouragements/prompts for lack of responses, and assisting in data recording. The study was conducted following a non-concurrent multiple baseline design across participants. During baseline (i.e., when the system was used only for data recording), the participants’ mean frequency of responses per session varied between zero and nearly 12. During intervention (i.e., when the system was fully working), the participants’ mean frequency of responses per session increased to between about 34 and 59. Mean session duration varied between nearly 10 and over 14 min. The new system may be a valuable tool for supporting relevant physical activity engagement in people with intellectual and multiple disabilities. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

63 pages, 2451 KiB  
Review
Connected and Automated Vehicles: Infrastructure, Applications, Security, Critical Challenges, and Future Aspects
by Memoona Sadaf, Zafar Iqbal, Abdul Rehman Javed, Irum Saba, Moez Krichen, Sajid Majeed and Arooj Raza
Technologies 2023, 11(5), 117; https://doi.org/10.3390/technologies11050117 - 4 Sep 2023
Cited by 25 | Viewed by 25764
Abstract
Autonomous vehicles (AV) are game-changing innovations that promise a safer, more convenient, and environmentally friendly mode of transportation than traditional vehicles. Therefore, understanding AV technologies and their impact on society is critical as we continue this revolutionary journey. Generally, there needs to be [...] Read more.
Autonomous vehicles (AV) are game-changing innovations that promise a safer, more convenient, and environmentally friendly mode of transportation than traditional vehicles. Therefore, understanding AV technologies and their impact on society is critical as we continue this revolutionary journey. Generally, there needs to be a detailed study available to assist a researcher in understanding AV and its challenges. This research presents a comprehensive survey encompassing various aspects of AVs, such as public adoption, driverless city planning, traffic management, environmental impact, public health, social implications, international standards, safety, and security. Furthermore, it presents emerging technologies such as artificial intelligence (AI), integration of cloud computing, and solar power usage in automated vehicles. It also presents forensics approaches, tools used, standards involved, and challenges associated with conducting digital forensics in the context of autonomous vehicles. Moreover, this research provides an overview of cyber attacks affecting autonomous vehicles, attack management, traditional security devices, threat modeling, authentication schemes, over-the-air updates, zero-trust architectures, data privacy, and the corresponding defensive strategies to mitigate such risks. It also presents international standards, guidelines, and best practices for AVs. Finally, it outlines the future directions of AVs and the challenges that must be addressed to achieve widespread adoption. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

22 pages, 5470 KiB  
Article
An Intelligent System-Based Coffee Plant Leaf Disease Recognition Using Deep Learning Techniques on Rwandan Arabica Dataset
by Eric Hitimana, Omar Janvier Sinayobye, J. Chrisostome Ufitinema, Jane Mukamugema, Peter Rwibasira, Theoneste Murangira, Emmanuel Masabo, Lucy Cherono Chepkwony, Marie Cynthia Abijuru Kamikazi, Jeanne Aline Ukundiwabo Uwera, Simon Martin Mvuyekure, Gaurav Bajpai and Jackson Ngabonziza
Technologies 2023, 11(5), 116; https://doi.org/10.3390/technologies11050116 - 1 Sep 2023
Cited by 3 | Viewed by 3725
Abstract
Rwandan coffee holds significant importance and immense value within the realm of agriculture, serving as a vital and valuable commodity. Additionally, coffee plays a pivotal role in generating foreign exchange for numerous developing nations. However, the coffee plant is vulnerable to pests and [...] Read more.
Rwandan coffee holds significant importance and immense value within the realm of agriculture, serving as a vital and valuable commodity. Additionally, coffee plays a pivotal role in generating foreign exchange for numerous developing nations. However, the coffee plant is vulnerable to pests and diseases weakening production. Farmers in cooperation with experts use manual methods to detect diseases resulting in human errors. With the rapid improvements in deep learning methods, it is possible to detect and recognize plan diseases to support crop yield improvement. Therefore, it is an essential task to develop an efficient method for intelligently detecting, identifying, and predicting coffee leaf diseases. This study aims to build the Rwandan coffee plant dataset, with the occurrence of coffee rust, miner, and red spider mites identified to be the most popular due to their geographical situations. From the collected coffee leaves dataset of 37,939 images, the preprocessing, along with modeling used five deep learning models such as InceptionV3, ResNet50, Xception, VGG16, and DenseNet. The training, validation, and testing ratio is 80%, 10%, and 10%, respectively, with a maximum of 10 epochs. The comparative analysis of the models’ performances was investigated to select the best for future portable use. The experiment proved the DenseNet model to be the best with an accuracy of 99.57%. The efficiency of the suggested method is validated through an unbiased evaluation when compared to existing approaches with different metrics. Full article
(This article belongs to the Special Issue Image and Signal Processing)
Show Figures

Figure 1

27 pages, 27415 KiB  
Article
Efficient Deep Learning-Based Data-Centric Approach for Autism Spectrum Disorder Diagnosis from Facial Images Using Explainable AI
by Mohammad Shafiul Alam, Muhammad Mahbubur Rashid, Ahmed Rimaz Faizabadi, Hasan Firdaus Mohd Zaki, Tasfiq E. Alam, Md Shahin Ali, Kishor Datta Gupta and Md Manjurul Ahsan
Technologies 2023, 11(5), 115; https://doi.org/10.3390/technologies11050115 - 29 Aug 2023
Cited by 4 | Viewed by 4452
Abstract
The research describes an effective deep learning-based, data-centric approach for diagnosing autism spectrum disorder from facial images. To classify ASD and non-ASD subjects, this method requires training a convolutional neural network using the facial image dataset. As a part of the data-centric approach, [...] Read more.
The research describes an effective deep learning-based, data-centric approach for diagnosing autism spectrum disorder from facial images. To classify ASD and non-ASD subjects, this method requires training a convolutional neural network using the facial image dataset. As a part of the data-centric approach, this research applies pre-processing and synthesizing of the training dataset. The trained model is subsequently evaluated on an independent test set in order to assess the performance matrices of various data-centric approaches. The results reveal that the proposed method that simultaneously applies the pre-processing and augmentation approach on the training dataset outperforms the recent works, achieving excellent 98.9% prediction accuracy, sensitivity, and specificity while having 99.9% AUC. This work enhances the clarity and comprehensibility of the algorithm by integrating explainable AI techniques, providing clinicians with valuable and interpretable insights into the decision-making process of the ASD diagnosis model. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

22 pages, 2712 KiB  
Article
An Exposimetric Electromagnetic Comparison of Mobile Phone Emissions: 5G versus 4G Signals Analyses by Means of Statistics and Convolutional Neural Networks Classification
by Simona Miclaus, Delia B. Deaconescu, David Vatamanu and Andreea M. Buda
Technologies 2023, 11(5), 113; https://doi.org/10.3390/technologies11050113 - 24 Aug 2023
Cited by 2 | Viewed by 4638
Abstract
To gain a deeper understanding of the hotly contested topic of the non-thermal biological effects of microwaves, new metrics and methodologies need to be adopted. The direction proposed in the current work, which includes peak exposure analysis and not just time-averaged analysis, aligns [...] Read more.
To gain a deeper understanding of the hotly contested topic of the non-thermal biological effects of microwaves, new metrics and methodologies need to be adopted. The direction proposed in the current work, which includes peak exposure analysis and not just time-averaged analysis, aligns well with this objective. The proposed methodology is not intended to facilitate a comparison of the general characteristics between 4G and 5G mobile communication signals. Instead, its purpose is to provide a means for analyzing specific real-life exposure conditions that may vary based on multiple parameters. A differentiation based on amplitude-time features of the 4G versus 5G signals is followed, with the aim of describing the peculiarities of a user’s exposure when he runs four types of mobile applications on his mobile phone on either of the two mobile networks. To achieve the goals, we used signal and spectrum analyzers with adequate real-time analysis bandwidths and statistical descriptions provided by the amplitude probability density (APD) function, the complementary cumulative distribution function (CCDF), channel power measurements, and recorded spectrogram databases. We compared the exposimetric descriptors of emissions specific to file download, file upload, Internet video streaming, and video call usage in both 4G and 5G networks based on the specific modulation and coding schemes. The highest and lowest electric field strengths measured in the air at a 10 cm distance from the phone during emissions are indicated. The power distribution functions with the highest prevalence are highlighted and commented on. Afterwards, the capability of a convolutional neural network that belongs to the family of single-shot detectors is proven to recognize and classify the emissions with a very high degree of accuracy, enabling traceability of the dynamics of human exposure. Full article
(This article belongs to the Special Issue Intelligent Reflecting Surfaces for 5G and Beyond)
Show Figures

Figure 1

18 pages, 13150 KiB  
Article
Challenges of Using the L-Band and S-Band for Direct-to-Cellular Satellite 5G-6G NTN Systems
by Alexander Pastukh, Valery Tikhvinskiy, Svetlana Dymkova and Oleg Varlamov
Technologies 2023, 11(4), 110; https://doi.org/10.3390/technologies11040110 - 10 Aug 2023
Cited by 29 | Viewed by 7341
Abstract
This article presents a comprehensive study of the potential utilization of the L-band and S-band frequency ranges for satellite non-terrestrial network (NTN) technologies. This study encompasses an interference analysis in the S-band, investigating the coexistence of NTN satellite systems with mobile satellite networks [...] Read more.
This article presents a comprehensive study of the potential utilization of the L-band and S-band frequency ranges for satellite non-terrestrial network (NTN) technologies. This study encompasses an interference analysis in the S-band, investigating the coexistence of NTN satellite systems with mobile satellite networks such as Omnispace and Lyra, and an interference analysis in the L-band between NTN satellites and the mobile satellite network Inmarsat. This study simulates an NTN satellite network with typical characteristics defined by 3GPP and ITU-R for the n255 and n256 bands. Furthermore, it provides calculations illustrating the signal-to-noise ratio degradation of low-Earth-orbit (LEO), medium-Earth-orbit (MEO), and geostationary-Earth-orbit (GEO) satellite networks operating in the L-band and S-band when exposed to interference from NTN satellites. Full article
(This article belongs to the Special Issue Intelligent Reflecting Surfaces for 5G and Beyond)
Show Figures

Figure 1

20 pages, 747 KiB  
Article
Fuzzy Logic System for Classifying Multiple Sclerosis Patients as High, Medium, or Low Responders to Interferon-Beta
by Edgar Rafael Ponce de Leon-Sanchez, Jorge Domingo Mendiola-Santibañez, Omar Arturo Dominguez-Ramirez, Ana Marcela Herrera-Navarro, Alberto Vazquez-Cervantes, Hugo Jimenez-Hernandez and Horacio Senties-Madrid
Technologies 2023, 11(4), 109; https://doi.org/10.3390/technologies11040109 - 9 Aug 2023
Viewed by 1926
Abstract
Interferon-beta is one of the most widely prescribed disease-modifying therapies for multiple sclerosis patients. However, this treatment is only partially effective, and a significant proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic system, based on [...] Read more.
Interferon-beta is one of the most widely prescribed disease-modifying therapies for multiple sclerosis patients. However, this treatment is only partially effective, and a significant proportion of patients do not respond to this drug. This paper proposes an alternative fuzzy logic system, based on the opinion of a neurology expert, to classify relapsing–remitting multiple sclerosis patients as high, medium, or low responders to interferon-beta. Also, a pipeline prediction model trained with biomarkers associated with interferon-beta responses is proposed, for predicting whether patients are potential candidates to be treated with this drug, in order to avoid ineffective therapies. The classification results showed that the fuzzy system presented 100% efficiency, compared to an unsupervised hierarchical clustering method (52%). So, the performance of the prediction model was evaluated, and 0.8 testing accuracy was achieved. Hence, a pipeline model, including data standardization, data compression, and a learning algorithm, could be a useful tool for getting reliable predictions about responses to interferon-beta. Full article
Show Figures

Figure 1

18 pages, 2301 KiB  
Article
The U-Net Family for Epicardial Adipose Tissue Segmentation and Quantification in Low-Dose CT
by Lu Liu, Runlei Ma, Peter M. A. van Ooijen, Matthijs Oudkerk, Rozemarijn Vliegenthart, Raymond N. J. Veldhuis and Christoph Brune
Technologies 2023, 11(4), 104; https://doi.org/10.3390/technologies11040104 - 5 Aug 2023
Viewed by 2042
Abstract
Epicardial adipose tissue (EAT) is located between the visceral pericardium and myocardium, and EAT volume is correlated with cardiovascular risk. Nowadays, many deep learning-based automated EAT segmentation and quantification methods in the U-net family have been developed to reduce the workload for radiologists. [...] Read more.
Epicardial adipose tissue (EAT) is located between the visceral pericardium and myocardium, and EAT volume is correlated with cardiovascular risk. Nowadays, many deep learning-based automated EAT segmentation and quantification methods in the U-net family have been developed to reduce the workload for radiologists. The automatic assessment of EAT on non-contrast low-dose CT calcium score images poses a greater challenge compared to the automatic assessment on coronary CT angiography, which requires a higher radiation dose to capture the intricate details of the coronary arteries. This study comprehensively examined and evaluated state-of-the-art segmentation methods while outlining future research directions. Our dataset consisted of 154 non-contrast low-dose CT scans from the ROBINSCA study, with two types of labels: (a) region inside the pericardium and (b) pixel-wise EAT labels. We selected four advanced methods from the U-net family: 3D U-net, 3D attention U-net, an extended 3D attention U-net, and U-net++. For evaluation, we performed both four-fold cross-validation and hold-out tests. Agreement between the automatic segmentation/quantification and the manual quantification was evaluated with the Pearson correlation and the Bland–Altman analysis. Generally, the models trained with label type (a) showed better performance compared to models trained with label type (b). The U-net++ model trained with label type (a) showed the best performance for segmentation and quantification. The U-net++ model trained with label type (a) efficiently provided better EAT segmentation results (hold-out test: DCS = 80.18±0.20%, mIoU = 67.13±0.39%, sensitivity = 81.47±0.43%, specificity = 99.64±0.00%, Pearson correlation = 0.9405) and EAT volume compared to the other U-net-based networks and the recent EAT segmentation method. Interestingly, our findings indicate that 3D convolutional neural networks do not consistently outperform 2D networks in EAT segmentation and quantification. Moreover, utilizing labels representing the region inside the pericardium proved advantageous in training more accurate EAT segmentation models. These insights highlight the potential of deep learning-based methods for achieving robust EAT segmentation and quantification outcomes. Full article
(This article belongs to the Special Issue Medical Imaging & Image Processing III)
Show Figures

Figure 1

14 pages, 6158 KiB  
Communication
Adapting the H.264 Standard to the Internet of Vehicles
by Yair Wiseman
Technologies 2023, 11(4), 103; https://doi.org/10.3390/technologies11040103 - 3 Aug 2023
Cited by 6 | Viewed by 1465
Abstract
We suggest two steps of reducing the amount of data transmitted on Internet of Vehicle networks. The first step shifts the image from a full-color resolution to only an 8-color resolution. The reduction of the color numbers is noticeable; however, the 8-color images [...] Read more.
We suggest two steps of reducing the amount of data transmitted on Internet of Vehicle networks. The first step shifts the image from a full-color resolution to only an 8-color resolution. The reduction of the color numbers is noticeable; however, the 8-color images are enough for the requirements of common vehicles’ applications. The second step suggests modifying the quantization tables employed by H.264 to different tables that will be more suitable to an image with only 8 colors. The first step usually reduces the size of the image by more than 30%, and when continuing and performing the second step, the size of the image decreases by more than 40%. That is to say, the combination of the two steps can provide a significant reduction in the amount of data required to be transferred on vehicular networks. Full article
(This article belongs to the Special Issue Image and Signal Processing)
Show Figures

Figure 1

27 pages, 5171 KiB  
Review
Modern DC–DC Power Converter Topologies and Hybrid Control Strategies for Maximum Power Output in Sustainable Nanogrids and Picogrids—A Comprehensive Survey
by Anupama Ganguly, Pabitra Kumar Biswas, Chiranjit Sain and Taha Selim Ustun
Technologies 2023, 11(4), 102; https://doi.org/10.3390/technologies11040102 - 1 Aug 2023
Cited by 13 | Viewed by 3167
Abstract
Sustainable energy exhibited immense growth in the last few years. As compared to other sustainable sources, solar power is proved to be the most feasible source due to some unanticipated characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar [...] Read more.
Sustainable energy exhibited immense growth in the last few years. As compared to other sustainable sources, solar power is proved to be the most feasible source due to some unanticipated characteristics, such as being clean, noiseless, ecofriendly, etc. The output from the solar power is entirely unpredictable since solar power generation is dependent on the intensity of solar irradiation and solar panel temperature. Further, these parameters are weather dependent and thus intermittent in nature. To conquer intermittency, power converters play an important role in solar power generation. Generally, photovoltaic systems will eventually suffer from a decrease in energy conversion efficiency along with improper stability and intermittent properties. As a result, the maximum power point tracking (MPPT) algorithm must be incorporated to cultivate maximum power from solar power. To make solar power generation reliable, a proper control technique must be added to the DC–DC power converter topologies. Furthermore, this study reviewed the progress of the maximum power point tracking algorithm and included an in-depth discussion on modern and both unidirectional and bidirectional DC–DC power converter topologies for harvesting electric power. Lastly, for the reliability and continuity of the power demand and to allow for distributed generation, this article also established the possibility of integrating solar PV systems into nanogrids and picogrids in a sustainable environment. The outcome of this comprehensive survey would be of strong interest to the researchers, technologists, and the industry in the relevant field to carry out future research. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

20 pages, 349 KiB  
Article
Quantum Effects in General Relativity: Investigating Repulsive Gravity of Black Holes at Large Distances
by Piero Chiarelli
Technologies 2023, 11(4), 98; https://doi.org/10.3390/technologies11040098 - 14 Jul 2023
Cited by 2 | Viewed by 1462
Abstract
This paper proposes a theoretical study that investigates quantum effects on the gravity of black holes. This study utilizes a gravitational model that incorporates quantum mechanics derived from the classical-like quantum hydrodynamic representation. This research calculates the mass density distribution of quantum black [...] Read more.
This paper proposes a theoretical study that investigates quantum effects on the gravity of black holes. This study utilizes a gravitational model that incorporates quantum mechanics derived from the classical-like quantum hydrodynamic representation. This research calculates the mass density distribution of quantum black holes, specifically in the case of central symmetry. The gravity of a quantum black hole shows contributions coming from quantum potential energy, which is also sensitive to the presence of a background of gravitational noise. The additional energy, stored in quantum potential fluctuations and constituting a form of dark energy, leads to a repulsive gravity in the weak gravity limit. This repulsive gravity overcomes the attractive classical Newtonian force at large distances of order of the intergalactic length. Full article
(This article belongs to the Section Quantum Technologies)
24 pages, 7842 KiB  
Article
Field Performance Monitoring of Energy-Generating High-Transparency Agrivoltaic Glass Windows
by Mikhail Vasiliev, Victor Rosenberg, Jamie Lyford and David Goodfield
Technologies 2023, 11(4), 95; https://doi.org/10.3390/technologies11040095 - 12 Jul 2023
Cited by 3 | Viewed by 3573
Abstract
Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy [...] Read more.
Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy savings and solar energy harvesting, enabled by either patterned-semiconductor thin-film energy converters on glass substrates, or by using luminescent concentrator-type approaches to achieve high transparency. Significant progress has been demonstrated recently in building integrated solar windows featuring visible light transmission of up to 70%, with electric power outputs of up to Pmax ~ 30–33 Wp/m2. Several slightly different designs were tested during 2021–2023 in a greenhouse installation at Murdoch University in Perth, Western Australia; their long-term energy harvesting performance differences were found to be on the scale of ~10% in wall-mounted locations. Solar greenhouse generated electricity at rates of up to 19 kWh/day, offsetting nearly 40% of energy costs. The objective of this paper is to report on the field performance of these PV windows in the context of agrivoltaics and to provide some detail of the performance differences measured in several solar window designs related to their glazing structure materials. Methods for the identification and quantification of long-term field performance differences and energy generation trends in solar windows of marginally different design types are reported. The paper also aims to outline the practical application potential of these transparent construction materials in built environments, focusing on the measured renewable energy figures and seasonal trends observed during the long-term study. Full article
Show Figures

Figure 1

15 pages, 3248 KiB  
Article
Regenerating Iron-Based Adsorptive Media Used for Removing Arsenic from Water
by Ilaria Ceccarelli, Luca Filoni, Massimiliano Poli, Ciro Apollonio and Andrea Petroselli
Technologies 2023, 11(4), 94; https://doi.org/10.3390/technologies11040094 - 12 Jul 2023
Viewed by 1460
Abstract
Of all the substances that can be present in water intended for human consumption, arsenic (As) is one of the most toxic. Many treatment technologies can be used for removing As from water, for instance, adsorption onto iron media, where commercially available adsorbents [...] Read more.
Of all the substances that can be present in water intended for human consumption, arsenic (As) is one of the most toxic. Many treatment technologies can be used for removing As from water, for instance, adsorption onto iron media, where commercially available adsorbents are removed and replaced with new media when they are exhausted. Since this is an expensive operation, in this work, a novel and portable plant for regenerating iron media has been developed and tested in four real case studies in Central Italy. The obtained results highlight the good efficiency of the system, which was able, from 2019 to 2023, to regenerate the iron media and to restore its capability to adsorb the As from water almost entirely. Indeed, when the legal threshold value of 10 μg/L is exceeded, the regeneration process is performed and, after that, the As concentration in the water effluent is at the minimum level in all the investigated case studies. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

26 pages, 7475 KiB  
Article
A Deep Reinforcement Learning Method for Economic Power Dispatch of Microgrid in OPAL-RT Environment
by Faa-Jeng Lin, Chao-Fu Chang, Yu-Cheng Huang and Tzu-Ming Su
Technologies 2023, 11(4), 96; https://doi.org/10.3390/technologies11040096 - 12 Jul 2023
Cited by 4 | Viewed by 2314
Abstract
This paper focuses on the economic power dispatch (EPD) operation of a microgrid in an OPAL-RT environment. First, a long short-term memory (LSTM) network is proposed to forecast the load information of a microgrid to determine the output of a power generator and [...] Read more.
This paper focuses on the economic power dispatch (EPD) operation of a microgrid in an OPAL-RT environment. First, a long short-term memory (LSTM) network is proposed to forecast the load information of a microgrid to determine the output of a power generator and the charging/discharging control strategy of a battery energy storage system (BESS). Then, a deep reinforcement learning method, the deep deterministic policy gradient (DDPG), is utilized to develop the power dispatch of a microgrid to minimize the total energy expense while considering power constraints, load uncertainties and electricity price. Moreover, a microgrid built in Cimei Island of Penghu Archipelago, Taiwan, is investigated to examine the compliance with the requirements of equality and inequality constraints and the performance of the deep reinforcement learning method. Furthermore, a comparison of the proposed method with the experience-based energy management system (EMS), Newton particle swarm optimization (Newton-PSO) and the deep Q-learning network (DQN) is provided to evaluate the obtained solutions. In this study, the average deviation of the LSTM forecast accuracy is less than 5%. In addition, the daily operating cost of the proposed method obtains a 3.8% to 7.4% lower electricity cost compared to that of the other methods. Finally, a detailed emulation in the OPAL-RT environment is carried out to validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

13 pages, 1160 KiB  
Article
Optical Properties of AgInS2 Quantum Dots Synthesized in a 3D-Printed Microfluidic Chip
by Konstantin Baranov, Ivan Reznik, Sofia Karamysheva, Jacobus W. Swart, Stanislav Moshkalev and Anna Orlova
Technologies 2023, 11(4), 93; https://doi.org/10.3390/technologies11040093 - 12 Jul 2023
Cited by 2 | Viewed by 2591
Abstract
Colloidal nanoparticles, and quantum dots in particular, are a new class of materials that can significantly improve the functionality of photonics, electronics, sensor devices, etc. The main challenge addressed in the article is modification of the syntheses of colloidal NP to launch them [...] Read more.
Colloidal nanoparticles, and quantum dots in particular, are a new class of materials that can significantly improve the functionality of photonics, electronics, sensor devices, etc. The main challenge addressed in the article is modification of the syntheses of colloidal NP to launch them into mass production. It is proposed to use an additive printing method of chips for microfluidic synthesis, and it is shown that our approach allows to offer a cheap, easily scalable and automated synthesis method which allows to increase the product yield up to 60% with improved optical properties of AgInS2 quantum dots. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

18 pages, 753 KiB  
Review
Digital Technologies to Provide Humanization in the Education of the Healthcare Workforce: A Systematic Review
by María Gonzalez-Moreno, Carlos Monfort-Vinuesa, Antonio Piñas-Mesa and Esther Rincon
Technologies 2023, 11(4), 88; https://doi.org/10.3390/technologies11040088 - 5 Jul 2023
Viewed by 2210
Abstract
Objectives: The need to incentivize the humanization of healthcare providers coincides with the development of a more technological approach to medicine, which gives rise to depersonalization when treating patients. Currently, there is a culture of humanization that reflects the awareness of health professionals, [...] Read more.
Objectives: The need to incentivize the humanization of healthcare providers coincides with the development of a more technological approach to medicine, which gives rise to depersonalization when treating patients. Currently, there is a culture of humanization that reflects the awareness of health professionals, patients, and policy makers, although it is unknown if there are university curricula incorporating specific skills in humanization, or what these may include. Therefore, the objectives of this study are as follows: (1) to identify what type of education in humanization is provided to university students of Health Sciences using digital technologies; and (2) determine the strengths and weaknesses of this education. The authors propose a curriculum focusing on undergraduate students to strengthen the humanization skills of future health professionals, including digital health strategies. Methods: A systematic review, based on the scientific literature published in EBSCO, Ovid, PubMed, Scopus, and Web of Science, over the last decade (2012–2022), was carried out in November 2022. The keywords used were “humanization of care” and “humanization of healthcare” combined both with and without “students”. Results: A total of 475 articles were retrieved, of which 6 met the inclusion criteria and were subsequently analyzed, involving a total of 295 students. Three of them (50%) were qualitative studies, while the other three (50%) involved mixed methods. Only one of the studies (16.7%) included digital health strategies to train humanization. Meanwhile, another study (16.7%) measured the level of humanization after training. Conclusions: There is a clear lack of empirically tested university curricula that combine education in humanization and digital technology for future health professionals. Greater focus on the training of future health professionals is needed, in order to guarantee that they begin their professional careers with the precept of medical humanities as a basis. Full article
Show Figures

Figure 1

22 pages, 597 KiB  
Article
Optimizing EMG Classification through Metaheuristic Algorithms
by Marcos Aviles, Juvenal Rodríguez-Reséndiz and Danjela Ibrahimi
Technologies 2023, 11(4), 87; https://doi.org/10.3390/technologies11040087 - 2 Jul 2023
Cited by 15 | Viewed by 2166
Abstract
This work proposes a metaheuristic-based approach to hyperparameter selection in a multilayer perceptron to classify EMG signals. The main goal of the study is to improve the performance of the model by optimizing four important hyperparameters: the number of neurons, the learning rate, [...] Read more.
This work proposes a metaheuristic-based approach to hyperparameter selection in a multilayer perceptron to classify EMG signals. The main goal of the study is to improve the performance of the model by optimizing four important hyperparameters: the number of neurons, the learning rate, the epochs, and the training batches. The approach proposed in this work shows that hyperparameter optimization using particle swarm optimization and the gray wolf optimizer significantly improves the performance of a multilayer perceptron in classifying EMG motion signals. The final model achieves an average classification rate of 93% for the validation phase. The results obtained are promising and suggest that the proposed approach may be helpful for the optimization of deep learning models in other signal processing applications. Full article
Show Figures

Figure 1

18 pages, 4056 KiB  
Article
Enhancement of Handshake Attraction through Tactile, Visual, and Auditory Multimodal Stimulation
by Taishu Kumagai and Yoshimune Nonomura
Technologies 2023, 11(4), 86; https://doi.org/10.3390/technologies11040086 - 1 Jul 2023
Cited by 3 | Viewed by 2100
Abstract
“Handshaking parties”, where pop idols shake hands with fans, can be exciting. The multimodal stimulation of tactile, visual, and auditory sensations can be captivating. In this study, we presented subjects with stimuli eliciting three sensory responses: tactile, visual, and auditory sensations. We found [...] Read more.
“Handshaking parties”, where pop idols shake hands with fans, can be exciting. The multimodal stimulation of tactile, visual, and auditory sensations can be captivating. In this study, we presented subjects with stimuli eliciting three sensory responses: tactile, visual, and auditory sensations. We found that the attraction scores of subjects increased because they felt the smoothness and obtained a human-like sensory experience grasping a grip handle covered with artificial skin, faux fur, and abrasive cloth with their dominant hand as they looked at a picture of a pop idol or listened to a song. When no pictures or songs were presented, a simple feeling of slight warmth was correlated with the attraction score. Results suggest that multimodal stimuli alter tactile sensations and the feelings evoked. This finding may be useful for designing materials that activate the human mind through tactile sensation and for developing humanoid robots and virtual reality systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

13 pages, 2828 KiB  
Article
Two Fe-Zr-B-Cu Nanocrystalline Magnetic Alloys Produced by Mechanical Alloying Technique
by Jason Daza, Wael Ben Mbarek, Lluisa Escoda, Joan Saurina and Joan-Josep Suñol
Technologies 2023, 11(3), 78; https://doi.org/10.3390/technologies11030078 - 16 Jun 2023
Viewed by 2836
Abstract
Fe-rich soft magnetic alloys are candidates for applications as magnetic sensors and actuators. Spring magnets can be obtained when these alloys are added to hard magnetic compounds. In this work, two nanocrystalline Fe-Zr-B-Cu alloys are produced by mechanical alloying, MA. The increase in [...] Read more.
Fe-rich soft magnetic alloys are candidates for applications as magnetic sensors and actuators. Spring magnets can be obtained when these alloys are added to hard magnetic compounds. In this work, two nanocrystalline Fe-Zr-B-Cu alloys are produced by mechanical alloying, MA. The increase in boron content favours the reduction of the crystalline size. Thermal analysis (by differential scanning calorimetry) shows that, in the temperature range compressed between 450 and 650 K, wide exothermic processes take place, which are associated with the relaxation of the tensions of the alloys produced by MA. At high temperatures, a main crystallisation peak is found. A Kissinger and an isoconversional method were used to determine the apparent activation of the exothermic processes. The values are compared with those found in the scientific literature. Likewise, adapted thermogravimetry allowed for the determination of the Curie temperature. The functional response has been analysed by hysteresis loop cycles. According to the composition, the decrease of the Fe/B ratio diminishes the soft magnetic behaviour. Full article
(This article belongs to the Special Issue Advanced Processing Technologies of Innovative Materials)
Show Figures

Figure 1

17 pages, 6271 KiB  
Article
Injectable Hydrated Calcium Phosphate Bone-like Paste: Synthesis, In Vitro, and In Vivo Biocompatibility Assessment
by Anastasia Yu. Teterina, Vladislav V. Minaychev, Polina V. Smirnova, Margarita I. Kobiakova, Igor V. Smirnov, Roman S. Fadeev, Alexey A. Egorov, Artem A. Ashmarin, Kira V. Pyatina, Anatoliy S. Senotov, Irina S. Fadeeva and Vladimir S. Komlev
Technologies 2023, 11(3), 77; https://doi.org/10.3390/technologies11030077 - 15 Jun 2023
Cited by 3 | Viewed by 2353
Abstract
The injectable hydrated calcium phosphate bone-like paste (hCPP) was developed with suitable rheological characteristics, enabling unhindered injection through standard 23G needles. In vitro assays showed the cytocompatibility of hCPP with mesenchymal embryonic C3H10T1/2 cell cultures. The hCPP was composed of aggregated micro-sized particles [...] Read more.
The injectable hydrated calcium phosphate bone-like paste (hCPP) was developed with suitable rheological characteristics, enabling unhindered injection through standard 23G needles. In vitro assays showed the cytocompatibility of hCPP with mesenchymal embryonic C3H10T1/2 cell cultures. The hCPP was composed of aggregated micro-sized particles with sphere-like shapes and low crystallinity. The ability of hCPP particles to adsorb serum proteins (FBS) was investigated. The hCPP demonstrated high protein adsorption capacity, indicating its potential in various biomedical applications. The results of the in vivo assay upon subcutaneous injection in Wistar rats indicated nontoxicity and biocompatibility of experimental hCPP, as well as gradual resorption of hCPP, comparable to the period of bone regeneration. The data obtained are of great interest for the development of commercial highly effective osteoplastic materials for bone tissue regeneration and augmentation. Full article
(This article belongs to the Special Issue Smart Systems (SmaSys2022))
Show Figures

Figure 1

13 pages, 1635 KiB  
Article
Cross-Tier Interference Mitigation for RIS-Assisted Heterogeneous Networks
by Abdel Nasser Soumana Hamadou, Ciira wa Maina and Moussa Moindze Soidridine
Technologies 2023, 11(3), 73; https://doi.org/10.3390/technologies11030073 - 9 Jun 2023
Cited by 2 | Viewed by 3140
Abstract
With the development of the next generation of mobile networks, new research challenges have emerged, and new technologies have been proposed to address them. On the other hand, reconfigurable intelligent surface (RIS) technology is being investigated for partially controlling wireless channels. RIS is [...] Read more.
With the development of the next generation of mobile networks, new research challenges have emerged, and new technologies have been proposed to address them. On the other hand, reconfigurable intelligent surface (RIS) technology is being investigated for partially controlling wireless channels. RIS is a promising technology for improving signal quality by controlling the scattering of electromagnetic waves in a nearly passive manner. Heterogeneous networks (HetNets) are another promising technology that is designed to meet the capacity requirements of the network. RIS technology can be used to improve system performance in the context of HetNets. This study investigates the applications of reconfigurable intelligent surfaces (RISs) in heterogeneous downlink networks (HetNets). Due to the network densification, the small cell base station (SBS) interferes with the macrocell users (MUEs). In this paper, we utilise RIS to mitigate cross-tier interference in a HetNet via directional beamforming by adjusting the phase shift of the RIS. We consider RIS-assisted heterogeneous networks consisting of multiple SBS nodes and MUEs that utilise both direct paths and reflected paths. Therefore, the aim of this study is to maximise the sum rate of all MUEs by jointly optimising the transmit beamforming of the macrocell base station (MBS) and the phase shift of the RIS. An efficient RIS reflecting coefficient-based optimisation (RCO) is proposed based on a successive convex approximation approach. Simulation results are provided to show the effectiveness of the proposed scheme in terms of its sum rate in comparison with the scheme HetNet without RIS and the scheme HetNet with RIS but with random phase shifts. Full article
(This article belongs to the Special Issue Intelligent Reflecting Surfaces for 5G and Beyond)
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Utilization of Artificial Neural Networks for Precise Electrical Load Prediction
by Christos Pavlatos, Evangelos Makris, Georgios Fotis, Vasiliki Vita and Valeri Mladenov
Technologies 2023, 11(3), 70; https://doi.org/10.3390/technologies11030070 - 26 May 2023
Cited by 22 | Viewed by 2326
Abstract
In the energy-planning sector, the precise prediction of electrical load is a critical matter for the functional operation of power systems and the efficient management of markets. Numerous forecasting platforms have been proposed in the literature to tackle this issue. This paper introduces [...] Read more.
In the energy-planning sector, the precise prediction of electrical load is a critical matter for the functional operation of power systems and the efficient management of markets. Numerous forecasting platforms have been proposed in the literature to tackle this issue. This paper introduces an effective framework, coded in Python, that can forecast future electrical load based on hourly or daily load inputs. The framework utilizes a recurrent neural network model, consisting of two simpleRNN layers and a dense layer, and adopts the Adam optimizer and tanh loss function during the training process. Depending on the size of the input dataset, the proposed system can handle both short-term and medium-term load-forecasting categories. The network was extensively tested using multiple datasets, and the results were found to be highly promising. All variations of the network were able to capture the underlying patterns and achieved a small test error in terms of root mean square error and mean absolute error. Notably, the proposed framework outperformed more complex neural networks, with a root mean square error of 0.033, indicating a high degree of accuracy in predicting future load, due to its ability to capture data patterns and trends. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

17 pages, 807 KiB  
Article
Preprocessing Selection for Deep Learning Classification of Arrhythmia Using ECG Time-Frequency Representations
by Rafael Holanda, Rodrigo Monteiro and Carmelo Bastos-Filho
Technologies 2023, 11(3), 68; https://doi.org/10.3390/technologies11030068 - 11 May 2023
Cited by 1 | Viewed by 3699
Abstract
The trend of using deep learning techniques to classify arbitrary tasks has grown significantly in the last decade. Such techniques in the background provide a stack of non-linear functions to solve tasks that cannot be solved in a linear manner. Naturally, deep learning [...] Read more.
The trend of using deep learning techniques to classify arbitrary tasks has grown significantly in the last decade. Such techniques in the background provide a stack of non-linear functions to solve tasks that cannot be solved in a linear manner. Naturally, deep learning models can always solve almost any problem with the right amount of functional parameters. However, with the right set of preprocessing techniques, these models might become much more accessible by negating the need for a large set of model parameters and the concomitant computational costs that accompany the need for many parameters. This paper studies the effects of such preprocessing techniques, and is focused, more specifically, on the resulting learning representations, so as to classify the arrhythmia task provided by the ECG MIT-BIH signal dataset. The types of noise we filter out from such signals are the Baseline Wander (BW) and the Powerline Interference (PLI). The learning representations we use as input to a Convolutional Neural Network (CNN) model are the spectrograms extracted by the Short-time Fourier Transform (STFT) and the scalograms extracted by the Continuous Wavelet Transform (CWT). These features are extracted using different parameter values, such as the window size of the Fourier Transform and the number of scales from the mother wavelet. We highlight that the noise with the most significant influence on a CNN’s classification performance is the BW noise. The most accurate classification performance was achieved using the 64 wavelet scales scalogram with the Mexican Hat and with only the BW noise suppressed. The deployed CNN has less than 90k parameters and achieved an average F1-Score of 90.11%. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

11 pages, 2334 KiB  
Communication
Identifying Growth Patterns in Arid-Zone Onion Crops (Allium Cepa) Using Digital Image Processing
by David Duarte-Correa, Juvenal Rodríguez-Reséndiz, Germán Díaz-Flórez, Carlos Alberto Olvera-Olvera and José M. Álvarez-Alvarado
Technologies 2023, 11(3), 67; https://doi.org/10.3390/technologies11030067 - 10 May 2023
Cited by 2 | Viewed by 1889
Abstract
The agricultural sector is undergoing a revolution that requires sustainable solutions to the challenges that arise from traditional farming methods. To address these challenges, technical and sustainable support is needed to develop projects that improve crop performance. This study focuses on onion crops [...] Read more.
The agricultural sector is undergoing a revolution that requires sustainable solutions to the challenges that arise from traditional farming methods. To address these challenges, technical and sustainable support is needed to develop projects that improve crop performance. This study focuses on onion crops and the challenges presented throughout its phenological cycle. Unmanned aerial vehicles (UAVs) and digital image processing were used to monitor the crop and identify patterns such as humid areas, weed growth, vegetation deficits, and decreased harvest performance. An algorithm was developed to identify the patterns that most affected crop growth, as the average local production reported was 40.166 tons/ha. However, only 25.00 tons/ha were reached due to blight caused by constant humidity and limited sunlight. This resulted in the death of leaves and poor development of bulbs, with 50% of the production being medium-sized. Approximately 20% of the production was lost due to blight and unfavorable weather conditions. Full article
(This article belongs to the Special Issue Image and Signal Processing)
Show Figures

Figure 1

7 pages, 460 KiB  
Brief Report
A Deeper Look into Exercise Intensity Tracking through Mobile Applications: A Brief Report
by Alexie Elder, Gabriel Guillen, Rebecca Isip, Ruben Zepeda and Zakkoyya H. Lewis
Technologies 2023, 11(3), 66; https://doi.org/10.3390/technologies11030066 - 1 May 2023
Cited by 1 | Viewed by 3213
Abstract
Mobile fitness applications (apps) allow for time-efficient opportunities for physical activity. Current research suggests that fitness apps do not accurately comply with the frequency, intensity, time, and type (FITT) principle. FITT is an important principle in exercise prescription as it applies scientific evidence [...] Read more.
Mobile fitness applications (apps) allow for time-efficient opportunities for physical activity. Current research suggests that fitness apps do not accurately comply with the frequency, intensity, time, and type (FITT) principle. FITT is an important principle in exercise prescription as it applies scientific evidence to improve the quality of exercise. Based on app assessment using the Fitness Apps Scoring Instrument, most fitness apps adequately address FITT in their exercise plans. In particular, fitness apps do not adequately adhere to the FITT intensity guidelines. Many apps allow the users to track their heart rate as a method of assessing their exercise intensity, but few use that information to provide real-time feedback on the intensity of the workout. For app users, awareness and education of intensity standards should be put forth in coordination with exercise professionals, rather than relying on apps alone. Full article
(This article belongs to the Special Issue Wearable Technologies III)
Show Figures

Figure 1

10 pages, 4236 KiB  
Communication
Towards Safe Visual Navigation of a Wheelchair Using Landmark Detection
by Christos Sevastopoulos, Mohammad Zaki Zadeh, Michail Theofanidis, Sneh Acharya, Nishi Patel and Fillia Makedon
Technologies 2023, 11(3), 64; https://doi.org/10.3390/technologies11030064 - 25 Apr 2023
Cited by 1 | Viewed by 1974
Abstract
This article presents a method for extracting high-level semantic information through successful landmark detection using 2D RGB images. In particular, the focus is placed on the presence of particular labels (open path, humans, staircase, doorways, obstacles) in the encountered scene, which can be [...] Read more.
This article presents a method for extracting high-level semantic information through successful landmark detection using 2D RGB images. In particular, the focus is placed on the presence of particular labels (open path, humans, staircase, doorways, obstacles) in the encountered scene, which can be a fundamental source of information enhancing scene understanding and paving the path towards the safe navigation of the mobile unit. Experiments are conducted using a manual wheelchair to gather image instances from four indoor academic environments consisting of multiple labels. Afterwards, the fine-tuning of a pretrained vision transformer (ViT) is conducted, and the performance is evaluated through an ablation study versus well-established state-of-the-art deep architectures for image classification such as ResNet. Results show that the fine-tuned ViT outperforms all other deep convolutional architectures while achieving satisfactory levels of generalization. Full article
(This article belongs to the Collection Selected Papers from the PETRA Conference Series)
Show Figures

Figure 1

11 pages, 1896 KiB  
Communication
Research on Outdoor Mobile Music Speaker Battery Management Algorithm Based on Dynamic Redundancy
by Xiaofei Yu, Yanke Li, Xiaonan Li, Licheng Wang and Kai Wang
Technologies 2023, 11(2), 60; https://doi.org/10.3390/technologies11020060 - 18 Apr 2023
Cited by 24 | Viewed by 2006
Abstract
In terms of the battery management system of a mobile music speaker, reliability optimization has always been an important topic. This paper proposes a new dynamic redundant battery management algorithm based on the existing fault-tolerant structure of a lithium battery pack. The internal [...] Read more.
In terms of the battery management system of a mobile music speaker, reliability optimization has always been an important topic. This paper proposes a new dynamic redundant battery management algorithm based on the existing fault-tolerant structure of a lithium battery pack. The internal configuration is adjusted according to the SOC of each battery, and the power supply battery is dynamically allocated. This paper selects four batteries to experiment on with two different algorithms. The simulation results show that compared with the traditional battery management algorithm, the dynamic redundant battery management algorithm extends the battery pack working time by 18.75%, and the energy utilization rate of B1 and B4 increases by 96.0% and 99.8%, respectively. This proves that the dynamic redundant battery management algorithm can effectively extend battery working time and improve energy utilization. Full article
Show Figures

Figure 1

14 pages, 2433 KiB  
Article
Photovoltaic Inverter Reliability Study through SiC Switches Redundant Structures
by Ignacio Villanueva, Nimrod Vázquez, Joaquín Vaquero, Claudia Hernández, Héctor López-Tapia and Rene Osorio-Sánchez
Technologies 2023, 11(2), 59; https://doi.org/10.3390/technologies11020059 - 14 Apr 2023
Cited by 4 | Viewed by 2006
Abstract
Reliability is a very important issue in power electronics; however, sometimes it is not considered, studied, or analyzed. At present, renewables have become more popular, and more complex setups are required to drive this type of system. In the specific case of inverters [...] Read more.
Reliability is a very important issue in power electronics; however, sometimes it is not considered, studied, or analyzed. At present, renewables have become more popular, and more complex setups are required to drive this type of system. In the specific case of inverters in photovoltaic systems, the user’s safety, quality, reliability, and the system’s useful life must be guaranteed. In this paper, the reliability of a full bridge inverter is predicted by calculating metrics such as failure rates and Mean Time Between Failures. Reliability is obtained using different types of structures for SiC MOSFETs: serial systems, active parallel redundant systems, and passive parallel redundant systems. Finally, the reliability study shows that a system with a passive parallel redundant structure is more reliable and has a higher useful life compared to the other structures. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

16 pages, 3584 KiB  
Article
Computational Investigation of a Tibial Implant Using Topology Optimization and Finite Element Analysis
by Nikolaos Kladovasilakis, Theologos Bountourelis, Konstantinos Tsongas and Dimitrios Tzetzis
Technologies 2023, 11(2), 58; https://doi.org/10.3390/technologies11020058 - 13 Apr 2023
Cited by 3 | Viewed by 2236
Abstract
Additive manufacturing methods enable the rapid fabrication of fully functional customized objects with complex geometry and lift the limitations of traditional manufacturing techniques, such as machining. Therefore, the structural optimization of parts has concentrated increased scientific interest and more especially for topology optimization [...] Read more.
Additive manufacturing methods enable the rapid fabrication of fully functional customized objects with complex geometry and lift the limitations of traditional manufacturing techniques, such as machining. Therefore, the structural optimization of parts has concentrated increased scientific interest and more especially for topology optimization (TO) processes. In this paper, the working principles and the two approaches of the TO procedures were analyzed along with an investigation and a comparative study of a novel case study for the TO processes of a tibial implant designed for additive manufacturing (DfAM). In detail, the case study focused on the TO of a tibial implant for knee replacement surgery in order to improve the overall design and enhance its efficiency and the rehabilitation process. An initial design of a customized tibial implant was developed utilizing reserve engineering procedures with DICOM files from a CT scan machine. The mechanical performance of the designed implant was examined via finite element analyses (FEA) under realistic static loads. The TO was conducted with two distinct approaches, namely density-based and discrete-based, to compare them and lead to the best approach for biomechanical applications. The overall performance of each approach was evaluated through FEA, and its contribution to the final mass reduction was measured. Through this study, the maximum reduction in the implant’s mass was achieved by maintaining the mechanical performance at the desired levels and the best approach was pointed out. To conclude, with the discrete-based approach, a mass reduction of around 45% was achieved, almost double of the density-based approach, offering on the part physical properties which provide comprehensive advantages for biomechanical application. Full article
Show Figures

Figure 1

17 pages, 1314 KiB  
Article
A Novel Methodology for Human Kinematics Motion Detection Based on Smartphones Sensor Data Using Artificial Intelligence
by Ali Raza, Mohammad Rustom Al Nasar, Essam Said Hanandeh, Raed Abu Zitar, Ahmad Yacoub Nasereddin and Laith Abualigah
Technologies 2023, 11(2), 55; https://doi.org/10.3390/technologies11020055 - 11 Apr 2023
Cited by 14 | Viewed by 3774
Abstract
Kinematic motion detection aims to determine a person’s actions based on activity data. Human kinematic motion detection has many valuable applications in health care, such as health monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry manufacturing, caring for the [...] Read more.
Kinematic motion detection aims to determine a person’s actions based on activity data. Human kinematic motion detection has many valuable applications in health care, such as health monitoring, preventing obesity, virtual reality, daily life monitoring, assisting workers during industry manufacturing, caring for the elderly. Computer vision-based activity recognition is challenging due to problems such as partial occlusion, background clutter, appearance, lighting, viewpoint, and changes in scale. Our research aims to detect human kinematic motions such as walking or running using smartphones’ sensor data within a high-performance framework. An existing dataset based on smartphones’ gyroscope and accelerometer sensor values is utilized for the experiments in our study. Sensor exploratory data analysis was conducted in order to identify valuable patterns and insights from sensor values. The six hyperparameters, tunned artificial indigence-based machine learning, and deep learning techniques were applied for comparison. Extensive experimentation showed that the ensemble learning-based novel ERD (ensemble random forest decision tree) method outperformed other state-of-the-art studies with high-performance accuracy scores. The proposed ERD method combines the random forest and decision tree models, which achieved a 99% classification accuracy score. The proposed method was successfully validated with the k-fold cross-validation approach. Full article
(This article belongs to the Special Issue Wearable Technologies III)
Show Figures

Figure 1