Application of the Multi-Criteria Method FUCOM for Evaluating Technological Processes
Abstract
1. Introduction
2. Materials and Methods
2.1. Methodology for Selecting a Rational Technological Process
2.1.1. Stage 1—Development of Different Technological Processes
- -
- m—the number of technological processes analyzed.
2.1.2. Stage 2—Define the Evaluation Criteria
- -
- n—index indicating the number of criteria considered.
2.1.3. Stage 3—Determining the Weighting of Criteria for Each Technological Process
2.1.4. Stage 4—Evaluation, Comparison, and Selection of the Rational Technological Process
- -
- I = 1…m, j = 1…n, is the normalized value of the criterion Cj.where
- -
- ωj—weight assigned to each criterion C(1…n) (the FUCOM—determined weight of the j-th criterion).
2.1.5. Stage 5—Planning the Implementation of the Selected Rational Technological Process in Manufacturing and Monitoring It
2.2. Methodology for Conducting the Experiment
2.2.1. Selection of Research Subject and Criteria
2.2.2. Production Parameters
3. Results
3.1. Measurement Results
3.2. Analysis of the Results
3.2.1. Statistical Data Analysis
3.2.2. Determining the Warning Limits
- -
- USL—upper specification limit;
- -
- LSL—lower specification limit;
- -
- UWL—upper warning limit;
- -
- LWL—lower warning limit.
3.2.3. Analysis of Statistical Data
- -
- n—number of measured values;
- -
- Nw—number of measured values falling within the range LWL ≤ x ≤ UWL;
- -
- LWL—lower warning limit;
- -
- UWL—upper warning limit.
3.3. Application of the Methodology for Selecting a Rational Technological Process
3.3.1. Stage 1—Designing Various Technological Processes
3.3.2. Stage 2—Defining the Criteria
3.3.3. Stage 3—Defining the Importance of the Criteria
- Application of the multi-criteria method
| ⇒ | |||
3.3.4. Stage 4—Calculation and Comparison of the Different Technological Processes
- C1 (production costs)—1;
- C2 (dimension accuracy Ø16+0.018 mm)—2;
- C3 (dimension accuracy Ø24 ± 0.2 mm)—3;
- C4 (length accuracy 10 ± 0.2 mm)—4;
- C5 (production time)—5;
- C6 (roughness Ra 0.8 μm)—6.
3.3.5. Stage 5—Selection of a Rational Technological Process
4. Discussion
5. Conclusions
- Ensuring full consistency between the weights of the criteria;
- Minimizing the cognitive overload on experts;
- Transparency and easy traceability of results;
- Possibility of integration with other methods of multi-criteria analysis.
- Extending the application of the FUCOM method to a wider range of technological processes in mechanical engineering, such as additive manufacturing;
- Combining FUCOM with other MCDM methods (e.g., TOPSIS, VIKOR, AHP) to build hybrid models for more sustainable and sensitive decision-making;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MCDM | Multi-Criteria Decision-Making |
| AHP | Analytic Hierarchy Process |
| ANP | Analytic Network Process |
| TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
| BWM | Best Worst Method |
| SAW | Simple Additive Weighting Method |
| VIKOR | Višekriterijumsko Kompromisno Rangiranje |
| FUCOM | Full Consistency Method |
Appendix A. Used Measuring Instruments
Appendix A.1. Portable Profilometer—SRT 6210

| Portable Profilometer—SRT 6210 | |
|---|---|
| Measured parameters | Ra, Rz, Rq, Rt |
| Measuring range | Ra, Rq: 0.005 ÷ 16.00 µm Rz, Rt: 0.020 ÷ 160.00 µm |
| Accuracy | less than ± 10% |
| Applied standards | ISO, DIN, ANSI и JIS |
| Maximum driving stroke | 17.5 mm |
| Length of the cut | 0.25 mm/0.8 mm/2.5 mm |
| Measuring length | 1~5 L |





Appendix A.2. Digital Micrometer—ETOPOO
| Digital Micrometer—ETOPOO | |
|---|---|
| Measurement range | 5 ÷ 30 mm |
| Measurement accuracy | ±0.002 mm/0.0001″ |
| Measurement force | 5 ÷ 10 N |
| Repeatability | 0.001 mm/0.00005″ |
| Adjustment speed | 30 mm/s |


Appendix A.3. Caliper-Mitutoyo
| Caliper-Mitutoyo | |
|---|---|
| Range | 0 ÷ 150 mm |
| Graduation | 0.02 mm |
| Max. Permissible Error E MPE | ±0.03 mm |
| Max. Permissible Error S MPE | ±0.05 mm |


References
- Mihalache, A.M. An overview of possibilities for CAM machining. MATEC Web Conf. 2018, 178, 5005. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chatterjee, P.; Das, P.P. Multi-Criteria Decision-Making Methods in Manufacturing Environments: Models and Applications; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Sahoo, S.K.; Goswami, S.S. A comprehensive review of multiple criteria decision-making (MCDM) methods: Advancements, applications, and future directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
- Rosin, F.; Forget, P.; Lamouri, S.; Pellerin, R. Enhancing the Decision-Making Process through Industry 4.0 Technologies. Sustainability 2022, 14, 461. [Google Scholar] [CrossRef]
- Zayat, W.; Kilic, H.S.; Yalcin, A.S.; Zaim, S.; Delen, D. Application of MADM Methods in Industry 4.0: A Literature Review. Comput. Ind. Eng. 2023, 177, 109075. [Google Scholar] [CrossRef]
- Abdullah, F.M.; Al-Ahmari, A.M.; Anwar, S. A Hybrid Fuzzy Multi-Criteria Decision-Making Model for Evaluating the Influence of Industry 4.0 Technologies on Manufacturing Strategies. Machines 2023, 11, 310. [Google Scholar] [CrossRef]
- Torbacki, W. Towards Sustainable Industry 4.0: An MCDA-Based Assessment Framework for Manufacturing and Logistics. Sustainability 2025, 17, 5082. [Google Scholar] [CrossRef]
- Rodríguez-Carrillo, M.L.; Pérez-Domínguez, L.; Romero-López, R.; Luviano-Cruz, D.; León-Castro, E. A systematic literature review on the use of multicriteria decision making methods for small and medium-sized enterprises innovation assessment. Front. Artif. Intell. 2025, 8, 1605756. [Google Scholar] [CrossRef] [PubMed]
- Avramova, T.; Peneva, T.; Ivanov, A. Overview of Existing Multi-Criteria Decision-Making (MCDM) Methods Used in Industrial Environments. Technologies 2025, 13, 444. [Google Scholar] [CrossRef]
- Forman, E.H.; Gass, S.I. The analytic hierarchy process—An exposition. Oper. Res. 2001, 49, 469–486. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Decision Making with the Analytic Network Process: Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks; Springer: New York, NY, USA, 2006; ISBN 978-1-4614-7279-7. [Google Scholar] [CrossRef]
- Chakraborty, S. TOPSIS and modified TOPSIS: A comparative analysis. Decis. Anal. J. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Fuzzy best-worst multi-criteria decision-making method and its applications. Knowl. Based Syst. 2017, 121, 23–31. [Google Scholar] [CrossRef]
- Taherdoost, H. Analysis of Simple Additive Weighting method (SAW) as a multi-attribute decision-making technique: A step-by-step guide. J. Manag. Sci. Eng. Res. 2023, 6, 21–24. [Google Scholar] [CrossRef]
- Hosseinzadeh Lotfi, F.; Allahviranloo, T.; Pedrycz, W.; Shahriari, M.; Sharafi, H.; Razipour GhalehJough, S. Simple additive weighting (SAW) method in fuzzy environment. In Fuzzy Decision Analysis: Multi Attribute Decision Making Approach; Springer: Cham, Switzerland, 2023; Volume 1121, pp. 154–196. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, H.J.; Kwun, Y.C. Extension of the VIKOR method for group decision making with interval-valued intuitionistic fuzzy information. Fuzzy Optim. Decis. Mak. 2011, 10, 233–253. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Sofuoğlu, M.A. Fuzzy applications of FUCOM method in manufacturing environment. Politek. Derg. 2020, 23, 189–195. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, H.; Jeong, J.; Shin, D. Federated Learning for Surveillance Systems: A Literature Review and AHP Expert-Based Evaluation. Electronics 2025, 14, 3500. [Google Scholar] [CrossRef]
- Schuhmann, D.; Rupp, M.; Merkel, M.; Harrison, D.K. Additive vs. conventional manufacturing of metal components: Selection of the manufacturing process using the AHP method. Processes 2022, 10, 1617. [Google Scholar] [CrossRef]
- Jayant, A. An application of analytic network process (ANP) to evaluate green supply chain management strategies: A case study. MATEC Web Conf. 2016, 57, 3003. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, M.; Yuan, Y. Analytic network process-based multi-criteria decision approach and sensitivity analysis for temporary facility layout planning in construction projects. Appl. Sci. 2018, 8, 2434. [Google Scholar] [CrossRef]
- Pasupuleti, T.; Natarajan, M.; Kiruthika, J.; Naik, M.R.; Silambarasan, R. Application of TOPSIS approach for optimization on additive manufacturing (fusion deposition modeling) of TPU material: A systematic approach for process enhancement. SAE Tech. Pap. 2024, 28, 232. [Google Scholar] [CrossRef]
- Kamalizadeh, S.; Niknam, S.A.; Balazinski, M.; Turenne, S. The use of TOPSIS method for multi-objective optimization in milling Ti-MMC. Metals 2022, 12, 1796. [Google Scholar] [CrossRef]
- Goswami, S.S.; Behera, D.K.; Afzal, A.; Razak Kaladgi, A.; Khan, S.A.; Rajendran, P.; Subbiah, R.; Asif, M. Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry 2021, 13, 1331. [Google Scholar] [CrossRef]
- Kawecka, E.; Perec, A.; Radomska-Zalas, A. Use of the simple multicriteria decision-making (MCDM) method for optimization of the high-alloy steel cutting process by the abrasive water jet. Spectr. Mech. Eng. Oper. Res. 2024, 1, 111–120. [Google Scholar] [CrossRef]
- Thinh, H.X.; Trung, D.D. A research on application of the measurement of alternatives and ranking according to compromise solution method for multi-criteria decision making in the grinding process. EUREKA Phys. Eng. 2022, 2, 101–110. [Google Scholar] [CrossRef]
- Raigar, J.; Sharma, V.S.; Srivastava, S.; Chand, R.; Singh, J. A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique. Sādhanā 2020, 45, 101. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega 2016, 64, 126–130. [Google Scholar] [CrossRef]
- Dalić, Z.; Stević, Ž.; Erceg, P.; Macura, P.; Terzić, S. Selection of a distribution channel using the integrated FUCOM-MARCOS model. Int. Rev. 2020, 3, 80–96. [Google Scholar] [CrossRef]
- Pamučar, D.; Ecer, F. Prioritizing the weights of the evaluation criteria under fuzziness: The fuzzy full consistency method—FUCOM-F. Facta Univ. Ser. Mech. Eng. 2020, 18, 419–437. [Google Scholar] [CrossRef]
- Gölcük, İ.; Durmaz, E.D.; Şahin, R. Interval type-2 fuzzy development of FUCOM and activity relationship charts along with MARCOS for facilities layout evaluation. Appl. Soft Comput. 2022, 128, 109414. [Google Scholar] [CrossRef]
- Saha, A.; Mishra, A.R.; Rani, P.; Hezam, I.M.; Cavallaro, F. A q-Rung orthopair fuzzy FUCOM double normalization-based multi-aggregation method for healthcare waste treatment method selection. Sustainability 2022, 14, 4171. [Google Scholar] [CrossRef]
- Rachman, A.P.; Ichwania, C.; Mangkuto, R.A.; Pradipta, J.; Koerniawan, M.D.; Sarwono, J. Comparison of Multi-Criteria Decision-Making Methods for Selection of Optimum Passive Design Strategy. Energy Build. 2024, 314, 114285. [Google Scholar] [CrossRef]
- Hariri, A.; Domingues, P.; Sampaio, P. Integration of Multi-Criteria Decision-Making Approaches Adapted for Quality Function Deployment: An Analytical Literature Review and Future Research Agenda. Int. J. Qual. Reliab. Manag. 2023, 40, 2326–2350. [Google Scholar] [CrossRef]
- Pandey, V.; Komal; Dincer, H. A Review on TOPSIS Method and Its Extensions for Different Applications with Recent Development. Soft Comput. 2023, 27, 18011–18039. [Google Scholar] [CrossRef]
- Peykani, P.; Emrouznejad, A.; Nouri, M. Best-Worst Multi-Criteria Decision-Making Method: A Review of the Literature. Socio-Econ. Plan. Sci. 2025, 103, 102345. [Google Scholar] [CrossRef]
- Pamucar, D.; Macura, D.; Tavana, M.; Bozanic, D.; Knezevic, N. An integrated rough group multicriteria decision-making model for the ex-ante prioritization of infrastructure projects: The Serbian railways case. Socioecon. Plann. Sci. 2022, 79, 101098. [Google Scholar] [CrossRef]
- Dhalmahapatra, K.; Garg, A.; Singh, K.; Xavier, N.F.; Maiti, J. An integrated RFUCOM–RTOPSIS approach for failure modes and effects analysis: A case of manufacturing industry. Reliab. Eng. Syst. Saf. 2022, 221, 108333. [Google Scholar] [CrossRef]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of modified SERVQUAL–MCDM model for quality determination in reverse logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Stević, Ž.; Korucuk, S.; Karamaşa, Ç.; Demir, E.; Zavadskas, E.K. A novel integrated fuzzy-rough MCDM model for assessment of barriers related to smart logistics applications and demand forecasting method in the COVID-19 period. Int. J. Inf. Technol. Decis. Mak. 2022, 21, 1647–1678. [Google Scholar] [CrossRef]
- Popović, V.; Pamučar, D.; Stević, Ž.; Lukovac, V.; Jovković, S. Multicriteria optimization of logistics processes using a grey FUCOM-SWOT model. Symmetry 2022, 14, 794. [Google Scholar] [CrossRef]
- Peneva, T.; Avramova, T. Methodology for Selecting a Rational Technological Process. Int. J. Mod. Manuf. Technol. 2025, 17, 42. [Google Scholar] [CrossRef]
- EN ISO 2768-1:1989; General Tolerances—Part 1: Tolerances for Linear and Angular Dimensions Without Individual Tolerance Indications. International Organization for Standardization: Geneva, Switzerland, 1989.
- ISO 7870-2:2023; Control Charts—Part 2: Shewhart Control Charts. International Organization for Standardization: Geneva, Switzerland, 2023.
- EN ISO 21920-3:2022; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 3: Specification Operators. International Organization for Standardization: Geneva, Switzerland, 2022.






| Characteristics | TP N° 1 | TP N° 2 | TP N° 3 | TP N° 4 |
|---|---|---|---|---|
| Material | 41Cr4 (40X) 1.7035 | 41Cr4 (40X) 1.7035 | 55NiCrMoV7 1.2714 | 55NiCrMoV7 1.2714 |
| Manufacturing costs | 9.20 € | 8.56 € | 8.47 € | 12.15 € |
| Manufacturing time, h | 0.7006 | 0.6697 | 0.4447 | 0.2122 |
| Workpiece, mm | Ø25 | Ø25 | Ø25.8 | Ø25.8 |
| Production line | WA CNC | WA | STW | DW |
| N° | TP N° 1 CNC_53-WA CNC 15043050 | TP N° 2 C11-WA 15043057 | TP N° 3 C11_47-STW 15043254 | TP N° 4 STAMA-DW 15043227 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ra 0.8, μm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, μm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, μm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, μm | 10, mm | Ø24, mm | Ø16, mm | |
| 1 | 0.732 | 10.14 | 23.86 | 16.005 | 0.777 | 10.04 | 24.08 | 16.001 | 0.8 | 9.96 | 23.98 | 16.000 | 0.732 | 10.08 | 23.96 | 16.010 |
| 2 | 0.729 | 10.04 | 24.00 | 16.001 | 0.794 | 10.02 | 24.02 | 16.005 | 0.759 | 9.96 | 24.10 | 16.002 | 0.783 | 10.06 | 23.98 | 16.012 |
| 3 | 0.759 | 10.02 | 24.00 | 16.005 | 0.727 | 10.00 | 24.02 | 16.002 | 0.75 | 9.98 | 24.08 | 16.003 | 0.469 | 10.04 | 24.10 | 16.007 |
| 4 | 0.8 | 10.02 | 24.02 | 16.006 | 0.668 | 10.02 | 24.08 | 16.003 | 0.777 | 9.96 | 23.96 | 16.007 | 0.571 | 10.02 | 23.90 | 16.012 |
| 5 | 0.712 | 10.00 | 24.00 | 16.001 | 0.691 | 10.04 | 24.06 | 16.009 | 0.771 | 10.18 | 23.92 | 16.008 | 0.765 | 10.04 | 23.96 | 16.013 |
| 6 | 0.759 | 10.04 | 24.00 | 16.004 | 0.636 | 10.02 | 24.08 | 16.006 | 0.777 | 9.92 | 24.04 | 16.006 | 0.6 | 10.06 | 24.00 | 16.012 |
| 7 | 0.759 | 10.02 | 24.02 | 16.008 | 0.753 | 10.06 | 24.08 | 16.002 | 0.718 | 10.08 | 23.98 | 16.003 | 0.706 | 10.04 | 23.98 | 16.018 |
| 8 | 0.738 | 10.00 | 24.02 | 16.013 | 0.724 | 10.04 | 24.08 | 16.008 | 0.724 | 9.92 | 24.08 | 16.008 | 0.606 | 10.02 | 24.02 | 16.018 |
| 9 | 0.709 | 9.96 | 24.00 | 16.008 | 0.665 | 9.92 | 23.92 | 16.008 | 0.782 | 9.94 | 24.00 | 16.001 | 0.53 | 10.00 | 24.04 | 16.017 |
| 10 | 0.759 | 10.02 | 24.02 | 16.003 | 0.724 | 10.04 | 24.08 | 16.005 | 0.8 | 10.10 | 23.94 | 16.000 | 0.483 | 10.02 | 24.04 | 16.004 |
| 11 | 0.732 | 10.02 | 24.02 | 16.005 | 0.729 | 10.02 | 24.02 | 16.002 | 0.771 | 9.96 | 23.98 | 16.0038 | 0.76 | 10.04 | 23.88 | 16.004 |
| 12 | 0.706 | 10.00 | 24.02 | 16.009 | 0.8 | 10.04 | 24.02 | 16.007 | 0.747 | 10.04 | 23.98 | 16.0036 | 0.804 | 10.00 | 24.00 | 16.003 |
| 13 | 0.782 | 10.04 | 24.05 | 16.006 | 0.732 | 10.02 | 24.04 | 16.005 | 0.8 | 9.98 | 24.08 | 16.004 | 0.771 | 10.08 | 24.00 | 16.007 |
| 14 | 0.75 | 10.02 | 24.00 | 16.001 | 0.718 | 10.04 | 24.02 | 16.003 | 0.721 | 10.08 | 24.02 | 16.003 | 0.759 | 10.06 | 23.98 | 16.004 |
| 15 | 0.8 | 10.04 | 24.02 | 16.011 | 0.715 | 10.06 | 24.08 | 16.004 | 0.718 | 9.92 | 24.14 | 16.001 | 0.771 | 10.04 | 23.96 | 16.004 |
| 16 | 0.729 | 10.06 | 24.02 | 16.005 | 0.645 | 10.08 | 24.08 | 16.000 | 0.744 | 9.98 | 23.98 | 16.0039 | 0.6 | 10.08 | 24.00 | 16.009 |
| 17 | 0.782 | 10.04 | 24.00 | 16.000 | 0.665 | 10.00 | 24.06 | 16.002 | 0.777 | 9.96 | 23.96 | 16.004 | 0.8 | 10.08 | 24.02 | 16.001 |
| 18 | 0.735 | 10.02 | 24.02 | 16.008 | 0.633 | 10.04 | 24.00 | 16.004 | 0.765 | 9.84 | 24.00 | 16.001 | 0.62 | 10.00 | 24.00 | 16.003 |
| 19 | 0.732 | 10.02 | 24.02 | 16.005 | 0.765 | 10.02 | 24.10 | 16.003 | 0.759 | 9.96 | 23.98 | 16.0038 | 0.8 | 10.06 | 24.04 | 16.004 |
| 20 | 0.765 | 10.06 | 24.04 | 16.004 | 0.735 | 10.06 | 24.02 | 16.002 | 0.735 | 9.9 | 23.96 | 16.005 | 0.806 | 10.08 | 24.02 | 16.008 |
| 21 | 0.732 | 10.10 | 24.000 | 16.002 | 0.721 | 10.02 | 24.08 | 16.002 | 0.732 | 9.98 | 23.96 | 16.002 | 0.652 | 10.10 | 24.00 | 16.002 |
| 22 | 0.735 | 10.06 | 24.02 | 16.002 | 0.794 | 10.00 | 24.02 | 16.004 | 0.729 | 9.92 | 24.08 | 16.001 | 0.78 | 10.08 | 23.98 | 16.007 |
| 23 | 0.788 | 10.02 | 24.00 | 16.007 | 0.592 | 10.02 | 24.00 | 16.002 | 0.777 | 9.88 | 24.02 | 16.004 | 0.63 | 10.06 | 24.00 | 16.003 |
| 24 | 0.729 | 10.12 | 24.00 | 16.001 | 0.636 | 10.04 | 24.08 | 16.005 | 0.729 | 10.02 | 23.98 | 16.0037 | 0.606 | 10.10 | 24.00 | 16.004 |
| 25 | 0.788 | 10.04 | 24.02 | 16.003 | 0.636 | 10.02 | 24.04 | 16.001 | 0.724 | 9.92 | 23.98 | 16.0039 | 0.753 | 10.08 | 24.00 | 16.003 |
| 26 | 0.794 | 10.04 | 24.02 | 16.004 | 0.636 | 10.06 | 24.02 | 16.000 | 0.753 | 10.04 | 23.96 | 16.004 | 0.777 | 10.06 | 23.90 | 16.004 |
| 27 | 0.709 | 10.04 | 24.00 | 16.011 | 0.8 | 10.04 | 24.02 | 16.003 | 0.753 | 9.98 | 24.10 | 16.006 | 0.76 | 10.04 | 24.02 | 16.003 |
| 28 | 0.777 | 10.02 | 24.00 | 16.003 | 0.744 | 10.02 | 24.06 | 16.003 | 0.715 | 9.92 | 24.00 | 16.004 | 0.788 | 10.04 | 23.98 | 16.01 |
| 29 | 0.721 | 10.02 | 24.02 | 16.007 | 0.709 | 10.06 | 24.02 | 16.005 | 0.782 | 10.02 | 24.10 | 16.011 | 0.729 | 10.08 | 24.02 | 16.002 |
| 30 | 0.788 | 10.00 | 24.02 | 16.003 | 0.753 | 10.02 | 24.02 | 16.005 | 0.712 | 9.90 | 24.08 | 16.009 | 0.753 | 10.10 | 23.90 | 16.003 |
| 31 | 0.765 | 10.02 | 24.00 | 16.006 | 0.794 | 10.04 | 24.02 | 16.004 | 0.75 | 10.08 | 24.06 | 16.001 | 0.6 | 10.08 | 24.06 | 16.005 |
| 32 | 0.765 | 10.02 | 24.02 | 16.003 | 0.8 | 10.02 | 24.08 | 16.005 | 0.732 | 9.92 | 24.06 | 16.005 | 0.718 | 10.06 | 23.98 | 16.004 |
| 33 | 0.794 | 10.04 | 24.02 | 16.004 | 0.656 | 9.86 | 23.96 | 16.000 | 0.765 | 9.96 | 24.08 | 16.003 | 0.703 | 10.06 | 24.00 | 16.007 |
| 34 | 0.735 | 10.04 | 24.02 | 16.001 | 0.674 | 10.02 | 24.08 | 16.003 | 0.8 | 9.98 | 23.98 | 16.010 | 0.7 | 10.00 | 23.98 | 16.007 |
| 35 | 0.727 | 10.02 | 24.06 | 16.006 | 0.759 | 10.06 | 24.00 | 16.008 | 0.759 | 10.00 | 24.06 | 16.005 | 0.779 | 10.06 | 23.96 | 16.010 |
| 36 | 0.771 | 10.04 | 24.00 | 16.012 | 0.753 | 10.04 | 24.14 | 16.008 | 0.794 | 9.92 | 24.10 | 16.010 | 0.783 | 10.08 | 24.00 | 16.004 |
| 37 | 0.753 | 10.08 | 24.02 | 16.007 | 0.738 | 10.03 | 24.04 | 16.002 | 0.782 | 10.16 | 23.96 | 16.004 | 0.706 | 10.12 | 23.98 | 16.002 |
| 38 | 0.759 | 10.02 | 24.00 | 16.009 | 0.709 | 10.02 | 24.02 | 16.008 | 0.753 | 9.88 | 23.98 | 16.005 | 0.554 | 10.08 | 24.02 | 16.008 |
| 39 | 0.782 | 10.02 | 24.02 | 16.008 | 0.732 | 10.02 | 24.04 | 16.009 | 0.788 | 10.02 | 24.04 | 16.003 | 0.823 | 9.98 | 23.96 | 16.000 |
| 40 | 0.709 | 10.00 | 24.02 | 16.003 | 0.589 | 10.00 | 23.98 | 16.003 | 0.753 | 9.92 | 23.96 | 16.000 | 0.794 | 10.06 | 24.00 | 16.003 |
| 41 | 0.771 | 10.04 | 24.10 | 16.004 | 0.668 | 10.02 | 24.02 | 16.007 | 0.765 | 9.96 | 23.96 | 16.002 | 0.642 | 10.08 | 24.00 | 16.004 |
| 42 | 0.727 | 10.04 | 24.02 | 16.014 | 0.639 | 10.06 | 23.98 | 16.002 | 0.753 | 10.14 | 23.94 | 16.002 | 0.8 | 10.06 | 24.00 | 16.008 |
| 43 | 0.709 | 10.04 | 24.00 | 16.009 | 0.771 | 10.04 | 24.10 | 16.002 | 0.732 | 9.92 | 23.96 | 16.006 | 0.741 | 10.06 | 23.98 | 16.003 |
| 44 | 0.8 | 9.86 | 24.02 | 16.006 | 0.8 | 10.08 | 24.00 | 16.001 | 0.694 | 9.94 | 23.96 | 16.001 | 0.794 | 9.94 | 24.00 | 16.003 |
| 45 | 0.782 | 10.04 | 24.02 | 16.008 | 0.744 | 10.06 | 24.02 | 16.009 | 0.697 | 9.96 | 24.02 | 16.002 | 0.642 | 10.08 | 23.90 | 16.004 |
| 46 | 0.744 | 10.02 | 24.06 | 16.004 | 0.771 | 10.02 | 24.00 | 16.013 | 0.753 | 9.90 | 23.86 | 16.000 | 0.694 | 10.08 | 24.02 | 16.006 |
| 47 | 0.715 | 10.02 | 23.98 | 16.009 | 0.686 | 9.98 | 23.98 | 16.013 | 0.765 | 9.98 | 24.06 | 16.012 | 0.645 | 10.06 | 24.04 | 16.004 |
| 48 | 0.765 | 10.04 | 23.88 | 16.002 | 0.794 | 9.90 | 24.08 | 16.000 | 0.75 | 9.98 | 24.02 | 16.009 | 0.765 | 10.14 | 24.00 | 16.006 |
| 49 | 0.729 | 9.92 | 24.00 | 16.006 | 0.656 | 10.00 | 24.02 | 16.014 | 0.771 | 10.06 | 23.96 | 16.006 | 0.674 | 10.06 | 23.96 | 16.007 |
| 50 | 0.721 | 10.10 | 24.00 | 16.010 | 0.697 | 10.02 | 24.00 | 16.007 | 0.753 | 9.96 | 24.02 | 16.009 | 0.545 | 10.08 | 24.00 | 16.003 |
| Parameter | UWL | LWL | Standard Deviation—σ | 2 σ |
|---|---|---|---|---|
| Ø 16, mm | 16.015 | 16.003 | 0.003 | 0.006 |
| Ø 24, mm | 24.13 | 23.87 | 0.133 | 0.0667 |
| 10, mm | 10.13 | 9.87 | ||
| Ra 0.8 µm | 0.78 | 0.6 | 0.045 | 0.09 |
| Technological Process | TP N° 1 CNC_53-WA CNC 15043050 | TP N° 2 C11-WA 15043057 | TP N° 3 C11_47-STW 15043254 | TP N° 4 STAMA-DW 15043227 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Measured parameters | Ra 0.8, µm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, µm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, µm | 10, mm | Ø24, mm | Ø16, mm | Ra 0.8, µm | 10, mm | Ø24, mm | Ø16, mm |
| PN | 24 | 4 | 2 | 30 | 20 | 2 | 2 | 48 | 18 | 8 | 4 | 40 | 34 | 2 | 0 | 36 |
| Criterion | Weight |
|---|---|
| C1 Production costs | 1 |
| C2 Accuracy of Ø16+0.018 mm | 2 |
| C3 Accuracy of Ø24 ± 0.2 mm | 3 |
| C4 Accuracy of length 10 ± 0.2 mm | 4 |
| C5 Production time, h | 5 |
| C6 Roughness Ra 0.8 μm | 6 |
| Quantitative Data | Production Costs | Ø16, mm | Ø24, mm | 10, mm | Production Time, h | Ra 0.8 μm |
|---|---|---|---|---|---|---|
| TP N°1/CNC_53 | 9.20 € | 30 | 4 | 4 | 0.7006 | 24 |
| TP N° 2/C11 | 8.56 € | 48 | 2 | 2 | 0.6697 | 20 |
| TP N° 3/C11_47 | 8.47 € | 40 | 4 | 8 | 0.4447 | 18 |
| TP N° 4/STAMA | 12.15 € | 36 | 0 | 2 | 0.2122 | 34 |
| Criteria | N° | Criterion 1 | Criterion 2 | Criterion 3 | Criterion 4 | Criterion 5 | Criterion 6 | Rational Technological Process |
|---|---|---|---|---|---|---|---|---|
| Production Costs | Ø16 | Ø24 | 10 | Time for Production | Ra 0.8 μm | |||
| Importance of criteria | 1. | 6 | 4 | 5 | 1 | 2 | 3 | 1. TP 1/S(P1) − 9.054 2. TP 2/S(P2) − 9.318 3. TP 4/S(P4) − 9.985 4. TP 3/S(P3) − 10.790 |
| 2. | 5 | 3 | 1 | 4 | 2 | 6 | 1. TP 4/S(P4) − 8.450 2. TP 1/S(P1) − 8.649 3. TP 2/S(P2) − 9.747 4. TP 3/S(P3) − 9.898 | |
| 3. | 2 | 6 | 3 | 4 | 5 | 1 | 1. TP 3/S(P3) − 13.193 2. TP 2/S(P2) − 13.706 3. TP 1/S(P1) − 14.724 4. TP 4/S(P4) − 19.028 | |
| 4. | 2 | 1 | 3 | 4 | 6 | 5 | 1. TP 1/S(P1) − 17.082 2. TP 4/S(P4) − 20.167 3. TP 3/S(P3) − 20.915 4. TP 2/S(P2) − 23.493 | |
| 5. | 6 | 5 | 4 | 3 | 2 | 1 | 1. TP 3/S(P3) − 12.776 2. TP 2/S(P2) − 13.277 3. TP 1/S(P1) − 13.966 4. TP 4/S(P4) − 17.958 | |
| 6. | 1 | 2 | 3 | 4 | 5 | 6 | 1. TP 1/S(P1) − 12.520 2. TP 3/S(P3) − 14.242 3. TP 4/S(P4) − 14.840 4. TP 2/S(P2) − 15.181 | |
| 7. | 3 | 4 | 5 | 1 | 2 | 6 | 1. TP 1/S(P1) − 8.048 2. TP 4/S(P4) − 8.499 3. TP 2/S(P2) − 8.539 4. TP 3/S(P3) − 10.141 | |
| 8. | 4 | 5 | 2 | 1 | 6 | 3 | 1. TP 2/S(P2) − 8.783 2. TP 1/S(P1) − 9.150 3. TP 4/S(P4) − 9.635 4. TP 3/S(P3) − 10.690 | |
| 9. | 2 | 5 | 1 | 6 | 3 | 4 | 1. TP 2/S(P2) − 8.750 2. TP 1/S(P1) − 8.776 3. TP 4/S(P4) − 9.053 4. TP 3/S(P3) − 9.068 | |
| 10. | 5 | 6 | 2 | 1 | 3 | 4 | 1. TP 2/S(P2) − 7.321 2. TP 4/S(P4) − 7.755 3. TP 1/S(P1) − 7.785 4. TP 3/S(P3) − 9.391 | |
| 11. | 3 | 4 | 2 | 6 | 5 | 1 | 1. TP 3/S(P3) − 13.978 2. TP 2/S(P2) − 14.825 3. TP 1/S(P1) − 15.254 4. TP 4/S(P4) − 19.357 | |
| 12. | 3 | 4 | 2 | 1 | 6 | 5 | 1. TP 1/S(P1) − 8.769 2. TP 4/S(P4) − 8.933 3. TP 2/S(P2) − 8.965 4. TP 3/S(P3) − 10.815 | |
| 13. | 4 | 6 | 5 | 3 | 2 | 1 | 1. TP 3/S(P3) − 12.438 2. TP 2/S(P2) − 12.874 3. TP 1/S(P1) − 13.789 4. TP 4/S(P4) − 17.882 | |
| 14. | 6 | 3 | 2 | 5 | 1 | 4 | 1. TP 1/S(P1) − 8.585 2. TP 4/S(P4) − 9.444 3. TP 3/S(P3) − 9.506 4. TP 2/S(P2) − 9.999 | |
| 15. | 5 | 4 | 6 | 1 | 3 | 2 | 1. TP 1/S(P1) − 10.710 2. TP 2/S(P2) − 10.722 3. TP 3/S(P3) − 12.044 4. TP 4/S(P4) − 12.449 | |
| 16. | 3 | 4 | 2 | 5 | 1 | 4 | 1. TP 4/S(P4) − 5.576 2. TP 1/S(P1) − 5.742 3. TP 3/S(P3) − 6.885 4. TP 2/S(P2) − 6.907 | |
| 17. | 1 | 2 | 5 | 3 | 6 | 4 | 1. TP 1/S(P1) − 13.245 2. TP 3/S(P3) − 14.902 3. TP 2/S(P2) − 15.812 4. TP 4/S(P4) − 16.062 | |
| 18. | 5 | 3 | 4 | 2 | 6 | 1 | 1. TP 3/S(P3) − 15.552 2. TP 1/S(P1) − 15.901 3. TP 2/S(P2) − 16.050 4. TP 4/S(P4) − 20.190 | |
| 19. | 2 | 4 | 3 | 5 | 1 | 6 | 1. TP 1/S(P1) − 7.728 2. TP 3/S(P3) − 8.413 3. TP 2/S(P2) − 8.714 4. TP 4/S(P4) − 8.716 | |
| 20. | 4 | 5 | 6 | 1 | 2 | 3 | 1. TP 2/S(P2) − 8.602 2. TP 1/S(P1) − 8.701 3. TP 4/S(P4) − 9.664 4. TP 3/S(P3) − 10.207 | |
| 21. | 5 | 2 | 4 | 1 | 3 | 6 | 1. TP 1/S(P1) − 10.642 2. TP 4/S(P4) − 11.497 3. TP 2/S(P2) − 12.967 4. TP 3/S(P3) − 13.813 | |
| 22. | 3 | 1 | 6 | 5 | 2 | 4 | 1. TP 1/S(P1) − 16.687 2. TP 4/S(P4) − 20.023 3. TP 3/S(P3) − 20.332 4. TP 2/S(P2) − 23.233 | |
| 23. | 3 | 2 | 4 | 5 | 6 | 1 | 1. TP 3/S(P3) − 17.754 2. TP 1/S(P1) − 17.952 3. TP 2/S(P2) − 19.537 4. TP 4/S(P4) − 23.055 | |
| 24. | 2 | 3 | 6 | 4 | 5 | 1 | 1. TP 3/S(P3) − 15.642 2. TP 1/S(P1) − 16.493 3. TP 2/S(P2) − 16.836 4. TP 4/S(P4) − 21.477 | |
| 25. | 1 | 6 | 3 | 5 | 4 | 2 | 1. TP 3/S(P3) − 11.094 2. TP 2/S(P2) − 11.345 3. TP 1/S(P1) − 11.636 4. TP 4/S(P4) − 14.532 | |
| 26. | 4 | 5 | 1 | 2 | 3 | 6 | 1. TP 4/S(P4) − 6.929 2. TP 2/S(P2) − 7.468 3. TP 1/S(P1) − 7.565 4. TP 3/S(P3) − 8.680 | |
| 27. | 2 | 1 | 4 | 5 | 6 | 3 | 1. TP 1/S(P1) − 18.170 2. TP 3/S(P3) − 21.596 3. TP 4/S(P4) − 21.977 4. TP 2/S(P2) − 24.473 | |
| 28. | 5 | 1 | 4 | 3 | 6 | 2 | 1. TP 1/S(P1) − 18.894 2. TP 3/S(P3) − 22.218 3. TP 4/S(P4) − 22.911 4. TP 2/S(P2) − 24.894 | |
| 29. | 6 | 4 | 2 | 3 | 5 | 1 | 1. TP 3/S(P3) − 13.946 2. TP 2/S(P2) − 14.378 3. TP 1/S(P1) − 14.901 4. TP 4/S(P4) − 18.667 | |
| 30. | 3 | 6 | 5 | 2 | 4 | 1 | 1. TP 3/S(P3) − 13.225 2. TP 2/S(P2) − 13.233 3. TP 1/S(P1) − 14.303 4. TP 4/S(P4) − 18.409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avramova, T.; Peneva, T.; Ivanov, A. Application of the Multi-Criteria Method FUCOM for Evaluating Technological Processes. Technologies 2025, 13, 537. https://doi.org/10.3390/technologies13110537
Avramova T, Peneva T, Ivanov A. Application of the Multi-Criteria Method FUCOM for Evaluating Technological Processes. Technologies. 2025; 13(11):537. https://doi.org/10.3390/technologies13110537
Chicago/Turabian StyleAvramova, Tanya, Teodora Peneva, and Aleksandar Ivanov. 2025. "Application of the Multi-Criteria Method FUCOM for Evaluating Technological Processes" Technologies 13, no. 11: 537. https://doi.org/10.3390/technologies13110537
APA StyleAvramova, T., Peneva, T., & Ivanov, A. (2025). Application of the Multi-Criteria Method FUCOM for Evaluating Technological Processes. Technologies, 13(11), 537. https://doi.org/10.3390/technologies13110537

