Skip to Content
You are currently on the new version of our website. Access the old version .

Automation

Automation is an international, peer-reviewed, open access journal on automation and control systems published bimonthly online by MDPI.

All Articles (240)

Common-mode voltage (CMV) is a critical concern in motor drive applications employing multilevel inverters, as it can lead to significant issues such as high-frequency noise, electromagnetic interference, and motor bearing degradation. These effects can compromise the reliability, reduce the operational lifespan of electric machines, and introduce safety hazards. In this study, an enhanced Direct Torque Control (DTC) strategy incorporating Space Vector Modulation (SVM) is proposed to specifically address CMV-related challenges in induction motors (IM) driven by a three-level Neutral-Point-Clamped (NPC) inverter. The proposed DTC scheme utilizes a specialized modulation technique that effectively mitigates CMV while also minimizing current harmonic content, and torque and flux ripples with a constant switching frequency. The developed SVM algorithm simplifies the three-level space vector representation into six equivalent two-level diagrams, enabling more efficient control. The zero-voltage vector is synthesized virtually by combining two active vectors within a two-level hexagonal structure. The effectiveness of the proposed DTC approach is validated through both simulation and Hardware-In-the-Loop (HIL) testing. Compared to the conventional DTC method, the proposed solution demonstrates superior performance in CMV minimization and leakage current reduction. Notably, it limits the CMV amplitude to Vdc/6, a significant improvement over the Vdc/2 typically observed with the standard DTC approach.

13 February 2026

Circuit topology of three-level NPC inverter-fed IM.

Industrial surface defect detection is crucial for quality control in manufacturing, yet remains challenging due to the small scale, low contrast, and texture variability of defects. While YOLOv8n offers high inference speed and efficiency, its accuracy is limited by insufficient feature representation and inadequate data diversity. This paper proposes a detection framework integrating Channel–Spatial Modulation Attention (CASM) and Small-Scale Grid Texture Shuffling Augmentation (SG-TSA) into YOLOv8n to improve detection performance without sacrificing efficiency. CASM introduces a parallel channel–spatial attention structure with adaptive fusion to better capture fine-grained defect features, while SG-TSA increases sample diversity by introducing realistic texture perturbations within defect regions. Experiments on the NEU-DET dataset show that our method improves mAP@0.5:0.95 by 3.01% and mAP@0.5 by 2.84% over baseline YOLOv8n. These results highlight the importance of architecture-specific optimization for lightweight detectors in industrial scenarios.

12 February 2026

Structural diagram of CASM.

This paper presents a robust sensorless control strategy for a dual-inverter doubly fed induction motor (DFIM) designed for high-performance electric vehicle (EV) traction systems. The proposed scheme eliminates the mechanical speed sensor by employing a sliding-mode observer (SMO) for real-time estimation of rotor speed and flux, ensuring accurate feedback under load disturbances and thereby enhancing reliability while reducing implementation cost. The DFIM is powered by two voltage-source inverters that independently control the stator and rotor windings through space vector pulse-width modulation (SVPWM). A power-sharing strategy optimally distributes the electromagnetic power between the two converters, ensuring smooth transitions between sub-synchronous and super-synchronous operating modes. Furthermore, a stator-flux-oriented vector control (SFOC) scheme incorporating a graphical torque optimization algorithm is developed to maximize torque while satisfying inverter and machine constraints across both base-speed and flux-weakening regions. The stability of the SMO-based estimation and closed-loop control is rigorously validated using Lyapunov theory. Comprehensive MATLAB R2024b/Simulink simulations conducted under the WLTC-Class 3 driving cycle confirm high accuracy and robustness, showing fast dynamic response, precise speed estimation, and smooth torque behavior across the full speed range. The results demonstrate that the SMO-based DFIM drive offers a cost-effective and reliable solution for next-generation EV traction applications.

11 February 2026

Block diagram of the proposed EV traction system based on dual inverter DFIM.

In response to the need for cost-effective and resilient drivetrain architectures in renewable energy emulation platforms, this paper proposes a wind turbine emulator (WTE) designed to enhance the operational efficiency of variable-speed wind turbines (WTs) connected to electric generators in power grid applications. The proposed emulator relies on a robust sensorless vector-controlled induction motor (IM) drive fed by a reduced-switch soft–voltage source inverter (Soft-VSI) topology. The proposed control chain combines a second-order super-twisting sliding-mode flux observer, based on stator measurements, with a modified MRAS speed estimator whose Popov hyperstability offers explicit PI tuning and ensures stable sensorless speed convergence. The complete WTE design, from the aerodynamic model to the Soft-VSI induction motor drive, is implemented and evaluated in MATLAB/Simulink environment. A Mexican hat wind speed profile is used to excite the emulator and assess its dynamic behavior under diverse transient conditions. The simulation results demonstrate fast convergence of the estimated flux and speed, stable closed-loop operation when using the estimated speed, and strong robustness against no-loaded and loaded operations and rotor-resistance variations. Moreover, a comparative analysis between the proposed control scheme and a conventional first-order sliding-mode flux observer is carried out to highlight the enhanced flux and speed estimation accuracy, reduced chattering, and improved dynamic robustness of the WTE. The proposed framework provides a flexible tool to support the energy transition through the development of advanced wind energy system control strategies.

11 February 2026

Proposed wind turbine emulator structure.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Advances in Construction and Project Management
Reprint

Advances in Construction and Project Management

Volume III: Industrialisation, Sustainability, Resilience and Health & Safety
Editors: Srinath Perera, Albert P. C. Chan, Dilanthi Amaratunga, Makarand Hastak, Patrizia Lombardi, Sepani Senaratne, Xiaohua Jin, Anil Sawhney
Advances in Construction and Project Management
Reprint

Advances in Construction and Project Management

Volume II: Construction and Digitalisation
Editors: Srinath Perera, Albert P. C. Chan, Dilanthi Amaratunga, Makarand Hastak, Patrizia Lombardi, Sepani Senaratne, Xiaohua Jin, Anil Sawhney

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Automation - ISSN 2673-4052