Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4072 KiB  
Article
Electrochemical Reactions at the Boundary Areas Between Cold Atmospheric Pressure Plasma, Air, and Water
by Jamiah Thomas and Alexander G. Volkov
Plasma 2024, 7(4), 891-903; https://doi.org/10.3390/plasma7040049 - 25 Nov 2024
Cited by 1 | Viewed by 975
Abstract
A cold atmospheric-pressure He-plasma jet (CAPPJ) interacts with air and water, producing reactive oxygen and nitrogen species (RONS), including biologically active ions, radicals, and molecules such as NOx, H2O2, HNO3, HNO2, and O [...] Read more.
A cold atmospheric-pressure He-plasma jet (CAPPJ) interacts with air and water, producing reactive oxygen and nitrogen species (RONS), including biologically active ions, radicals, and molecules such as NOx, H2O2, HNO3, HNO2, and O3. These compounds can activate interfacial redox processes in biological tissues. The CAPPJ can oxidize N2 to HNO3 and water to H2O2 at the interface between plasma and water. It can also induce the oxidation of water-soluble redox compounds in various organisms and in vitro. This includes salicylic acid, hydroquinone, and mixtures of antioxidants such as L (+)-ascorbic acid sodium salt with NADPH. It can react with redox indicators, such as ferroin, in a three-phase system consisting of air, CAPPJ, and water. Without reducing agents in the water, the CAPPJ will oxidize the water and decrease the pH of the solution. When antioxidants such as ascorbate, 1,4-hydroquinone, or NADPH are present in the aqueous phase, the CAPPJ oxidizes these substances first and then oxidizes water to H2O2. The multielectron mechanisms of the redox reactions in the plasma-air/water interfacial area are discussed and analyzed. Full article
Show Figures

Figure 1

10 pages, 3000 KiB  
Article
Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma
by Samira Amiri Khoshkar Vandani, Lian Farhadian, Alex Pennycuick and Hai-Feng Ji
Plasma 2024, 7(4), 867-876; https://doi.org/10.3390/plasma7040047 - 11 Nov 2024
Cited by 2 | Viewed by 1445
Abstract
This work explores the polymerization of sodium 4-styrenesulfonate (NaSS) inside filter paper using dielectric barrier discharge (DBD) plasma and its application in the environmental field. The plasma-based technique, performed under mild conditions, solves common problems associated with conventional polymerization inside porous materials. The [...] Read more.
This work explores the polymerization of sodium 4-styrenesulfonate (NaSS) inside filter paper using dielectric barrier discharge (DBD) plasma and its application in the environmental field. The plasma-based technique, performed under mild conditions, solves common problems associated with conventional polymerization inside porous materials. The polymerization process was monitored using Fourier-transform infrared (FTIR) spectroscopy, which confirmed the consumption of double bonds, particularly in NaSS samples containing the optimal concentration of crosslinker divinyl benzene (DVB) (0.25% wt). Our work demonstrates the effectiveness and promise of DBD plasma as a substitute polymerization approach, especially for those in porous materials. Full article
(This article belongs to the Special Issue Recent Advances of Dielectric Barrier Discharges)
Show Figures

Graphical abstract

13 pages, 601 KiB  
Article
Exploring Experimental Isotope Scaling and Density Limit in Tokamak Transport
by Jan Weiland, Tariq Rafiq and Eugenio Schuster
Plasma 2024, 7(3), 780-792; https://doi.org/10.3390/plasma7030041 - 23 Sep 2024
Viewed by 1064
Abstract
As it turns out, both isotope scaling and density limits are phenomena closely linked to fluid closure. The necessity to include ion viscosity arises for both phenomena. Thus, we have added ion viscosity to our model. The experimental isotope scaling has been successfully [...] Read more.
As it turns out, both isotope scaling and density limits are phenomena closely linked to fluid closure. The necessity to include ion viscosity arises for both phenomena. Thus, we have added ion viscosity to our model. The experimental isotope scaling has been successfully recovered in our fluid model through parameter scans. Although ion viscosity typically exerts a small effect, the density limit is manifested by increasing the density by approximately tenfold from the typical experimental density. In our case, this increase originates from the density in the Cyclone base case. Notably, these phenomena would not manifest with a gyro-Landau fluid closure. The isotope scaling is nullified by the addition of a gyro-Landau term, while the density limit results from permitting ion viscosity to become comparable to the gyro-Landau term. The mechanism of zonal flows, demonstrated analytically for the Dimits upshift, yields insights into the isotope scaling observed in experiments. In our approach, ion viscosity is introduced in place of the Landau fluid resonances found in some fluid models. This implies that the mechanism of isotope scaling operates at the level of fluid closure in connection with the generation of zonal flows. The strength of zonal flows in our model has been verified, particularly in connection with the successful simulation of the nonlinear Dimits shift. Consequently, a role is played by our approach in the temperature perturbation part of the Reynolds stress. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

29 pages, 11770 KiB  
Article
Plasma Dynamics and Electron Transport in a Hall-Thruster-Representative Configuration with Various Propellants: I—Variations with Discharge Voltage and Current Density
by Maryam Reza, Farbod Faraji and Aaron Knoll
Plasma 2024, 7(3), 651-679; https://doi.org/10.3390/plasma7030034 - 6 Aug 2024
Cited by 2 | Viewed by 1435
Abstract
The results from a wide-ranging parametric investigation into the behavior of the collisionless partially magnetized plasma discharge of three propellants—xenon, krypton, and argon—are reported in this two-part article. These studies are performed using high-fidelity reduced-order particle-in-cell (PIC) simulations in a 2D configuration that [...] Read more.
The results from a wide-ranging parametric investigation into the behavior of the collisionless partially magnetized plasma discharge of three propellants—xenon, krypton, and argon—are reported in this two-part article. These studies are performed using high-fidelity reduced-order particle-in-cell (PIC) simulations in a 2D configuration that represents an axial–azimuthal cross-section of a Hall thruster. In this part I paper, we discuss the effects of discharge voltage and current density (mass flow rate). Our parametric studies assess the spectra of the resolved instabilities under various plasma conditions. We evaluate the ability of the relevant theories from the literature to explain the variations in the instabilities’ characteristics across the studied plasma parameter space and for various propellants. Moreover, we investigate the changes in the electrons’ cross-magnetic-field transport, as well as the significance of the contribution of different momentum terms to this phenomenon across the analyzed cases. In terms of salient observations, the ion acoustic instability (IAI)-related modes are found to be dominant across the simulation cases, with the ion transit time instability also seen to develop at low current density values. Across the explored parameter space, the instabilities have the main contributions to the electrons’ transport within the plume region. The peak of the electric momentum force term, representing the effect of the instabilities, overall shifts toward the plume as either the current density or the discharge voltage increases. The numerical findings are compared against relevant experimental observations reported in the literature. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

20 pages, 5459 KiB  
Article
Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc
by Margarita Baeva, Yann Cressault and Petr Kloc
Plasma 2024, 7(3), 631-650; https://doi.org/10.3390/plasma7030033 - 5 Aug 2024
Cited by 1 | Viewed by 1413
Abstract
The radiative heat transfer in arc plasma models is considered from the point of view of its description in terms of a net emission coefficient, the method of spherical harmonics in its lowest order, and the discrete ordinate method. Net emission coefficients are [...] Read more.
The radiative heat transfer in arc plasma models is considered from the point of view of its description in terms of a net emission coefficient, the method of spherical harmonics in its lowest order, and the discrete ordinate method. Net emission coefficients are computed, applying approximate analytical and numerical approaches and a multi-band representation of the spectral absorption coefficient with three kinds of its averaging and two datasets. Self-consistent access to the radiative heat transfer is applied to a two-dimensional axisymmetric model of a free-burning arc in argon at atmospheric pressure. The results obtained from the models employing the net emission coefficient, the method of spherical harmonics, and the discrete ordinate method are compared. Full article
Show Figures

Graphical abstract

15 pages, 8648 KiB  
Article
Influence of Voltage Rising Time on the Characteristics of a Pulsed Discharge in Air in Contact with Water: Experimental and 2D Fluid Simulation Study
by Antoine Herrmann, Joëlle Margot and Ahmad Hamdan
Plasma 2024, 7(3), 616-630; https://doi.org/10.3390/plasma7030032 - 5 Aug 2024
Cited by 1 | Viewed by 1091
Abstract
In the context of plasma–liquid interactions, the phase of discharge ignition is of great importance as it may influence the properties of the produced plasma. Herein, we investigated the influence of voltage rising time (τrise) on discharge [...] Read more.
In the context of plasma–liquid interactions, the phase of discharge ignition is of great importance as it may influence the properties of the produced plasma. Herein, we investigated the influence of voltage rising time (τrise) on discharge ignition in air as well as on discharge propagation on the surface of water. Experimentally, τrise was adjusted to 0.1, 0.4, 0.6, and 0.8 kV/ns using a nanosecond high-voltage pulser, and discharges were characterized using voltage/current probes and an ICCD camera. Faster ignition, higher breakdown voltage, and greater discharge current (peak value) were observed at higher τrise. ICCD images revealed that higher τrise also promoted the formation of more filaments, with increased radial propagation over the water surface. To further understand these discharges, a previously developed 2D fluid model was used to simulate discharge ignition and propagation under various τrise conditions. The simulation provided the spatiotemporal evolution of the E-field, electron density, and surface charge density. The trend of the simulated position of the ionization front is similar to that observed experimentally. Furthermore, rapid vertical propagation (<1 ns) of the discharge towards the liquid surface was observed. As τrise increased, the velocity of discharge propagation towards the liquid increased. Higher τrise values also led to more charges in the ionization front propagating at the water surface. The discharge ceased to propagate when the charge number in the ionization front reached 0.5 × 108 charges, irrespective of the τrise value. Full article
(This article belongs to the Special Issue Processes in Atmospheric Pressure Plasmas)
Show Figures

Figure 1

31 pages, 14363 KiB  
Article
Hybrid Dielectric Barrier Discharge Reactor: Characterization for Ozone Production
by Dariusz Korzec, Florian Freund, Christian Bäuml, Patrik Penzkofer and Stefan Nettesheim
Plasma 2024, 7(3), 585-615; https://doi.org/10.3390/plasma7030031 - 27 Jul 2024
Cited by 4 | Viewed by 2197
Abstract
The generation of ozone by dielectric barrier discharge (DBD) is widely used for water and wastewater treatment, the control of catalytic reactions, and surface treatment. Recently, a need for compact, effective, and economical ozone and reactive oxygen–nitrogen species (RONS) generators for medical, biological, [...] Read more.
The generation of ozone by dielectric barrier discharge (DBD) is widely used for water and wastewater treatment, the control of catalytic reactions, and surface treatment. Recently, a need for compact, effective, and economical ozone and reactive oxygen–nitrogen species (RONS) generators for medical, biological, and agricultural applications has been observed. In this study, a novel hybrid DBD (HDBD) reactor fulfilling such requirements is presented. Its structured high-voltage (HV) electrode allows for the ignition of both the surface and volume microdischarges contributing to plasma generation. A Peltier module cooling of the dielectric barrier, made of alumina, allows for the efficient control of plasma chemistry. The typical electrical power consumption of this device is below 30 W. The operation frequency of the DBD driver oscillating in the auto-resonance mode is from 20 to 40 kHz. The specific energy input (SEI) of the reactor was controlled by the DBD driver input voltage in the range from 10.5 to 18.0 V, the Peltier current from 0 to 4.5 A, the duty cycle of the pulse-width modulated (PWM) power varied from 0 to 100%, and the gas flow from 0.5 to 10 SLM. The operation with oxygen, synthetic air, and compressed dry air (CDA) was characterized. The ultraviolet light (UV) absorption technique was implemented for the measurement of the ozone concentration. The higher harmonics of the discharge current observed in the frequency range of 5 to 50 MHz were used for monitoring the discharge net power. Full article
(This article belongs to the Special Issue Processes in Atmospheric Pressure Plasmas)
Show Figures

Figure 1

14 pages, 1127 KiB  
Article
Analysis of ICRF Heating Schemes in ITER Non-Active Plasmas Using PION+ETS Integrated Modeling
by Tomas Bensadon, Mervi J. Mantsinen, Thomas Jonsson, Dani Gallart, Xavier Sáez and Jordi Manyer
Plasma 2024, 7(3), 517-530; https://doi.org/10.3390/plasma7030028 - 19 Jul 2024
Viewed by 1069
Abstract
The PION code has been integrated into the European Transport Solver (ETS) transport workflow, and we present the first application to model Ion Cyclotron Resonance Frequency (ICRF) heating scenarios in the next-step fusion reactor ITER. We present results of predictive, self-consistent and time-dependent [...] Read more.
The PION code has been integrated into the European Transport Solver (ETS) transport workflow, and we present the first application to model Ion Cyclotron Resonance Frequency (ICRF) heating scenarios in the next-step fusion reactor ITER. We present results of predictive, self-consistent and time-dependent simulations where the resonant ion concentration is varied to study its effects on the performance, with a special emphasis on the resulting bulk ion heating and thermal ion temperature. We focus on two ICRF heating schemes, i.e., fundamental H minority heating in a 4He plasma at 2.65 T/7.5 MA and a three-ion ICRF scheme consisting of fundamental 3He heating in a H-4He plasma at 3.3 T/ 8.8 MA. The H minority heating scenario is found to result in strong absorption by resonant H ions as compared to competing absorption mechanisms and dominant background electron heating for H concentrations up to 10%. The highest H absorption of ∼80% of the applied ICRF power and highest ion temperature of ∼15 keV are obtained with an H concentration of 10%. For the three-ion scheme in 85%:15% H:4He plasma, PION+ETS predicts 3He absorption in the range of 21–65% for 3He concentrations in the range of 0.01–0.20%, with the highest 3He absorption at a 3He concentration of 0.20%. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

13 pages, 5830 KiB  
Article
Determination of Highly Transient Electric Field in Water Using the Kerr Effect with Picosecond Resolution
by Petr Hoffer, Václav Prukner, Garima Arora, Radek Mušálek and Milan Šimek
Plasma 2024, 7(2), 316-328; https://doi.org/10.3390/plasma7020018 - 22 Apr 2024
Cited by 2 | Viewed by 1923
Abstract
This study utilizes the Kerr effect in the analysis of a pulsed electric field (intensity ~108 V/m, limited by the liquid dielectric strength) in deionized water at the sub-nanosecond time scale. The results provide information about voltage waveforms at the field-producing anode [...] Read more.
This study utilizes the Kerr effect in the analysis of a pulsed electric field (intensity ~108 V/m, limited by the liquid dielectric strength) in deionized water at the sub-nanosecond time scale. The results provide information about voltage waveforms at the field-producing anode (160 kV peak, du/dt > 70 kV/ns). The analysis is based on detecting the phase shifts between measured and reference pulsed laser beams (pulse width, 35 ps; wavelength, 532 nm) using a Mach–Zehnder interferometer. The signal-to-noise ratio of the detected phase shift is maximized by an appropriate geometry of the field-producing anode, which creates a correctly oriented strong electric field along the interaction path and simultaneously does not electrically load the feeding transmission line. The described method has a spatial resolution of ~1 μm, and its time resolution is determined by the laser pulse duration. Full article
Show Figures

Figure 1

16 pages, 2298 KiB  
Review
Recent Developments in the Use of Plasma in Medical Applications
by Fiona O’Neill, Liam O’Neill and Paula Bourke
Plasma 2024, 7(2), 284-299; https://doi.org/10.3390/plasma7020016 - 10 Apr 2024
Cited by 4 | Viewed by 3822
Abstract
A detailed review of the scientific literature was undertaken to examine the most recent developments in plasma processing in the field of medicine. The first part of the review includes a detailed breakdown of the different types of coatings that can be applied [...] Read more.
A detailed review of the scientific literature was undertaken to examine the most recent developments in plasma processing in the field of medicine. The first part of the review includes a detailed breakdown of the different types of coatings that can be applied onto medical devices using plasma, with a specific focus on antimicrobial surfaces. The developments in plasma-deposited biocompatibles, drug delivery and adhesive coatings in 2023 are described, and specific applications in additive manufacturing are highlighted. The use of plasma and plasma-activated liquids as standalone therapeutics continues to evolve, and pertinent advances in this field are described. In addition, the combination of plasma medicine with conventional pharmaceutical interventions is reviewed, and key emerging trends are highlighted, including the use of plasma to enhance drug delivery directly into tissue. The potential synergies between plasma medicine and chemotherapeutics for oncology and infection treatment are a growing area, and recent advancements are noted. Finally, the use of plasma to control excess antibiotics and to intentionally degrade such materials in waste streams is described. Full article
Show Figures

Figure 1

25 pages, 2858 KiB  
Review
Cold Atmospheric Plasma Medicine: Applications, Challenges, and Opportunities for Predictive Control
by Ali Kazemi, McKayla J. Nicol, Sven G. Bilén, Girish S. Kirimanjeswara and Sean D. Knecht
Plasma 2024, 7(1), 233-257; https://doi.org/10.3390/plasma7010014 - 16 Mar 2024
Cited by 12 | Viewed by 9792
Abstract
Plasma medicine is an emerging field that applies the science and engineering of physical plasma to biomedical applications. Low-temperature plasma, also known as cold plasma, is generated via the ionization of atoms in a gas, generally via exposure to strong electric fields, and [...] Read more.
Plasma medicine is an emerging field that applies the science and engineering of physical plasma to biomedical applications. Low-temperature plasma, also known as cold plasma, is generated via the ionization of atoms in a gas, generally via exposure to strong electric fields, and consists of ions, free radicals, and molecules at varying energy states. Plasmas generated at low temperatures (approximately room temperature) have been used for applications in dermatology, oncology, and anti-microbial strategies. Despite current and ongoing clinical use, the exact mechanisms of action and the full range of effects of cold plasma treatment on cells are only just beginning to be understood. Direct and indirect effects of plasma on immune cells have the potential to be utilized for various applications such as immunomodulation, anti-infective therapies, and regulating inflammation. In this review, we combine diverse expertise in the fields of plasma chemistry, device design, and immunobiology to cover the history and current state of plasma medicine, basic plasma chemistry and their implications, the effects of cold atmospheric plasma on host cells with their potential immunological consequences, future directions, and the outlook and recommendations for plasma medicine. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

23 pages, 10884 KiB  
Article
Practical Model for the Calculation of Lateral Electromagnetic Loads in Tokamaks at Asymmetric Vertical Displacement Events (AVDEs)
by Sergey Sadakov, Fabio Villone, Daniel Iglesias, Luis Maqueda, Jesus Almenara-Rescalvo, Guglielmo Rubinacci and Salvatore Ventre
Plasma 2024, 7(1), 178-200; https://doi.org/10.3390/plasma7010012 - 13 Mar 2024
Cited by 1 | Viewed by 1633
Abstract
This paper describes a new practical numerical model for the calculation of lateral electromagnetic (EM) loads in tokamaks during asymmetric vertical displacement events (AVDEs). The model combines key features of two recently reported trial models while avoiding their drawbacks. Their common basic feature [...] Read more.
This paper describes a new practical numerical model for the calculation of lateral electromagnetic (EM) loads in tokamaks during asymmetric vertical displacement events (AVDEs). The model combines key features of two recently reported trial models while avoiding their drawbacks. Their common basic feature is the superposition of two patterns of halo current: one perfectly symmetric and another perfectly anti-symmetric. This model combines the following features that have not been combined before (a) a helically distorted halo layer wrapping around core plasma, and (b) halo-to-wall interception belts slipping along plasma-facing walls. This combination almost doubles the lateral net forces. An AVDE creates significant lateral net moments. Being relatively modest at VDEs, the lateral moments become a dominant component of EM loads at AVDEs. The model carefully tracks the balance of net EM loads (zero total for the tokamak), as a necessary condition for the consequent numerical simulation of the tokamak’s dynamic response. This balance is needed as well for the development of tokamak monitoring algorithms and simulators. In order to decouple from the current uncertainties in the interpretation and simulation of AVDE physics, the model does not simulate AVDE evolution but uses it as an input assumption based on the existing interpretation and simulation of AVDE physics. This means the model is to be used in a manner of parametric study, at widely varied input assumptions on AVDE evolution and severity. Parametric results will fill a library of ready-for-use waveforms of asymmetric EM loads (distributed and total) at tokamak structures and coils, so that the physics community may point to specific variants for subsequent engineering analysis. This article presents the first practical contribution to this AVDE library. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

18 pages, 3294 KiB  
Review
Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries
by Kenji Ishikawa, Kazunori Koga and Noriyasu Ohno
Plasma 2024, 7(1), 160-177; https://doi.org/10.3390/plasma7010011 - 27 Feb 2024
Cited by 8 | Viewed by 3333
Abstract
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be [...] Read more.
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be produced under nominal conditions around atmospheric pressure and room temperature, phenomena related to the interaction of plasma with liquid solutions and living organisms at the plasma boundaries are emerging. Currently, the relationships between these complex interactions should be solved using science-based data-driven approaches; these approaches require a reliable and comprehensive database of dynamic changes in the chemical networks of elementary reactions. Consequently, the elucidation of the mechanisms governing plasma-driven phenomena and the discovery of the latent actions behind these plasma-driven phenomena will be realized through plasma-driven science. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

14 pages, 683 KiB  
Review
A Physical Metric for Inertial Confinement Fusion Capsules
by Baolian Cheng and Paul A. Bradley
Plasma 2024, 7(1), 146-159; https://doi.org/10.3390/plasma7010010 - 21 Feb 2024
Cited by 1 | Viewed by 1842
Abstract
The performance of fusion capsules on the National Ignition Facility (NIF) is strongly affected by the physical properties of the hot deuterium–tritium (DT) fuel, such as the mass, areal density, and pressure of the hot spot at the stagnation time. All of these [...] Read more.
The performance of fusion capsules on the National Ignition Facility (NIF) is strongly affected by the physical properties of the hot deuterium–tritium (DT) fuel, such as the mass, areal density, and pressure of the hot spot at the stagnation time. All of these critical quantities depend on one measured quantity, which is the ratio of the specific peak implosion energy to the specific internal energy of the hot spot. This unique physical quantity not only can measure the incremental progress of the inertial confinement fusion capsules towards ignition but also measures the conversion of the peak implosion kinetic energy of the pusher shell into the internal energy of the hot fuel in a capsule. Analysis of existing NIF shots to date are performed. The ratio metric is compared quantitatively with the ignition criterion. Results provide new perspectives on the NIF experiments by which the performance of the burning plasma can be determined and controlled through the fine tune of the implosion parameters, which improves future designs and predictions of the ignition capsules. Full article
Show Figures

Figure 1

25 pages, 545 KiB  
Review
Particle Propagation and Electron Transport in Gases
by Luca Vialetto, Hirotake Sugawara and Savino Longo
Plasma 2024, 7(1), 121-145; https://doi.org/10.3390/plasma7010009 - 16 Feb 2024
Cited by 3 | Viewed by 1986
Abstract
In this review, we detail the commonality of mathematical intuitions that underlie three numerical methods used for the quantitative description of electron swarms propagating in a gas under the effect of externally applied electric and/or magnetic fields. These methods can be linked to [...] Read more.
In this review, we detail the commonality of mathematical intuitions that underlie three numerical methods used for the quantitative description of electron swarms propagating in a gas under the effect of externally applied electric and/or magnetic fields. These methods can be linked to the integral transport equation, following a common thread much better known in the theory of neutron transport than in the theory of electron transport. First, we discuss the exact solution of the electron transport problem using Monte Carlo (MC) simulations. In reality we will go even further, showing the interpretative role that the diagrams used in quantum theory and quantum field theory can play in the development of MC. Then, we present two methods, the Monte Carlo Flux and the Propagator method, which have been developed at this moment. The first one is based on a modified MC method, while the second shows the advantage of explicitly applying the mathematical idea of propagator to the transport problem. Full article
Show Figures

Figure 1

15 pages, 984 KiB  
Article
Rapid Access to Empirical Impact Ionization Cross Sections for Atoms and Ions across the Periodic Table
by Stephan Fritzsche, Liguang Jiao and Giorgio Visentin
Plasma 2024, 7(1), 106-120; https://doi.org/10.3390/plasma7010008 - 30 Jan 2024
Cited by 2 | Viewed by 2493
Abstract
Electron-impact ionization (EII) processes are essential for modelling high-temperature plasma in quite different research areas, from astrophysics to material science to plasma and fusion research and in several places elsewhere. In most, if not all, of these fields, partial and total EII cross [...] Read more.
Electron-impact ionization (EII) processes are essential for modelling high-temperature plasma in quite different research areas, from astrophysics to material science to plasma and fusion research and in several places elsewhere. In most, if not all, of these fields, partial and total EII cross sections are required, and often for a good range of electron energies, in order to determine, for instance, the level population of ions and spectral line intensities in plasma under both local and non-local thermodynamic equilibrium conditions. To obey these needs, various kinds of semi-empirical EII cross sections have been applied in practice, often simply because of the large computational demands in dealing explicitly with two free electrons within the continuum. Here, we expand Jac, the Jena Atomic Calculator, to provide such empirical EII cross sections for (most) atoms and ions across the periodic table. Five empirical models from the recent literature have been implemented to support a simple and rapid access to the partial EII cross sections for electrons from a (partly filled) shell (n)q as well as the total ionization cross sections. We here restrict ourselves to the direct part of the EII cross section, whereas the impact excitation of electrons with subsequent autoionization and the resonant electron capture with double autoionization have been left aside in this first implementation. Rapid access to the (direct) EII cross sections will help already to better understand the role of electron-impact processes in the diagnostics of fusion plasma or the interpretation of astrophysical spectra. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

15 pages, 4899 KiB  
Article
Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging
by Espedito Vassallo, Matteo Pedroni, Marco Aloisio, Silvia Maria Pietralunga, Riccardo Donnini, Francesca Saitta and Dimitrios Fessas
Plasma 2024, 7(1), 91-105; https://doi.org/10.3390/plasma7010007 - 26 Jan 2024
Cited by 2 | Viewed by 2856
Abstract
Biodegradable polymers (poly(butylene succinate (PBS)), poly(butylene adipate terephthalate (PBAT)) and poly(lactic acid)/poly(butylene adipate terephthalate (PLA/PBAT)) blend) were treated in radiofrequency (13.56 MHz) low-pressure (10 Pa) oxygen with argon post-crosslinking plasma to enhance wettability and adhesion properties. Surface morphology and roughness modification caused by [...] Read more.
Biodegradable polymers (poly(butylene succinate (PBS)), poly(butylene adipate terephthalate (PBAT)) and poly(lactic acid)/poly(butylene adipate terephthalate (PLA/PBAT)) blend) were treated in radiofrequency (13.56 MHz) low-pressure (10 Pa) oxygen with argon post-crosslinking plasma to enhance wettability and adhesion properties. Surface morphology and roughness modification caused by plasma exposure were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical modifications of plasma-treated samples were evaluated by Fourier Transform infrared spectroscopy (FTIR). Due to the limited durability of plasma activation, the hydrophobic recovery was evaluated by water contact angle (WCA) measurements. The ageing effect was measured over 15 days in order to assess this kind of treatment as a potential industrial scalable method to increase biodegradable polymers hydrophilic properties for food packaging applications. The effects of polymer activation on its weight loss were also determined. Differential scanning calorimetry (DSC) analysis was used to study the effect of plasma treatment on the thermal properties of the polymers, while the crystallinity was investigated by X-ray diffraction (XRD). Full article
Show Figures

Figure 1

16 pages, 8697 KiB  
Article
Thermal Plasma Spheroidization and Characterization of Stainless Steel Powders Using Direct Current Plasma Technology
by Pierpaolo Iovane, Carmela Borriello, Giuseppe Pandolfi, Sabrina Portofino, Gabriella Rametta, Loredana Tammaro, Nicola Fedele and Sergio Galvagno
Plasma 2024, 7(1), 76-90; https://doi.org/10.3390/plasma7010006 - 23 Jan 2024
Cited by 3 | Viewed by 2425
Abstract
The production of spherical powders has recently registered a boost due to the need to fabricate new printing materials for Additive Manufacturing applications, from polymers and resins to metals and ceramics. Among these materials, stainless steels powders play a leading role, since they [...] Read more.
The production of spherical powders has recently registered a boost due to the need to fabricate new printing materials for Additive Manufacturing applications, from polymers and resins to metals and ceramics. Among these materials, stainless steels powders play a leading role, since they are widely used in industry and everyday life; indeed, micron-sized spherical stainless steel powders have specific characteristics and are considered as one of the best candidates for Additive Manufacturing systems and for application in a wide range of sectors. In this paper, stainless steel 316 L powders were used to explore and identify the best process parameters of a thermal plasma process able to produce spherical powders for Additive Manufacturing applications. X-ray Diffraction, Scanning Electron Microscopy, Particle Size Distribution and Flowability analysis were performed to characterize reagents and products. Powders with a high circularity (>0.8) and improved flowability (<30 s/50 g) were successfully obtained. The collected results were compared with data available from the literature to identify the potential use of the spherical produced powders. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

15 pages, 4379 KiB  
Article
Polystyrene (PS) Degradation Induced by Nanosecond Electric Discharge in Air in Contact with PS/Water
by Aurélie Zamo, Catherine Rond and Ahmad Hamdan
Plasma 2024, 7(1), 49-63; https://doi.org/10.3390/plasma7010004 - 16 Jan 2024
Cited by 1 | Viewed by 2541
Abstract
Water pollution with microplastics has become a significant concern. Conventional treatment methods have proven ineffective, and alternatives are being explored. Herein, we assess the degradation efficiency of polystyrene (PS) by measuring its nanosecond discharge in air in contact with water. Its discharge is [...] Read more.
Water pollution with microplastics has become a significant concern. Conventional treatment methods have proven ineffective, and alternatives are being explored. Herein, we assess the degradation efficiency of polystyrene (PS) by measuring its nanosecond discharge in air in contact with water. Its discharge is characterized during processing, and a transition from streamer-like to spark-like discharge occurs due to the increased electrical conductivity of water. Experiments are conducted at different frequencies, and the highest degradation is achieved at 10 kHz; an 83% polystyrene weight loss is recorded after 5 min of processing. The optical spectra of the discharge show no evidence of C-species, and an FTIR analysis of the processed polystyrene reveals no structural modifications. An NMR analysis shows the presence of ethylbenzene in water. Finally, a mechanism of PS degradation is proposed. Full article
(This article belongs to the Special Issue Processes in Atmospheric Pressure Plasmas)
Show Figures

Figure 1

20 pages, 4928 KiB  
Review
A Tutorial on the One-Dimensional Theory of Electron-Beam Space-Charge Effect and Steady-State Virtual Cathode
by Weihua Jiang
Plasma 2024, 7(1), 29-48; https://doi.org/10.3390/plasma7010003 - 5 Jan 2024
Cited by 2 | Viewed by 2596
Abstract
The space-charge effects of pulsed high-current electron beams are very important to high-power particle beam accelerators and high-power microwave devices. The related physical phenomena have been studied for decades, and a large number of informative publications can be found in numerous scientific journals [...] Read more.
The space-charge effects of pulsed high-current electron beams are very important to high-power particle beam accelerators and high-power microwave devices. The related physical phenomena have been studied for decades, and a large number of informative publications can be found in numerous scientific journals over many years. This review article is aimed at systematically summarizing most of the previous findings in a logical manner. Using a normalized one-dimensional mathematical model, analytical solutions have been obtained for the space-charge-limited current of both planar diode and drifting space. In addition, in the case of a beam current higher than the space-charge-limited current, the virtual cathode behavior and beam current reflection are quantitively studied. Furthermore, the criteria of steady-state virtual cathode formation are investigated, which leads to the physical understanding of the unstable nature of the virtual cathode. This review article is expected to serve as an integrated source of related information for young researchers and students working on high-power microwaves and pulsed particle beams. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

18 pages, 5201 KiB  
Article
Pulsed Dielectric Barrier Discharges for Gas-Phase Composition Control: A Simulation Model
by Ruggero Barni, Prince Alex and Claudia Riccardi
Plasma 2023, 6(4), 735-752; https://doi.org/10.3390/plasma6040050 - 12 Dec 2023
Cited by 4 | Viewed by 2301
Abstract
We present results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular, we addressed the effect of the pulsed operation mode of a planar dielectric barrier discharge. As conjectured, the large difference in the [...] Read more.
We present results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular, we addressed the effect of the pulsed operation mode of a planar dielectric barrier discharge. As conjectured, the large difference in the time scales involved in the fast dissociation of molecules in plasmas and their subsequent reactions to produce stable chemical species makes the presence of a continuously repeated plasma production stage unnecessary and a waste of electrical power and efficiency. The results on NOx remediation, ozone production, water vapor and ammonia dissociation are discussed. A few comparisons with experimental findings in a dielectric barrier discharge reactor already used for applications are also briefly addressed. Our results clearly indicate a pattern for the optimization of the discharge using a carefully designed repetition rate and duty cycle. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2023)
Show Figures

Graphical abstract

21 pages, 13047 KiB  
Article
Experimental Progress in the Development of a Metal Foil Pump for DEMO
by Yannick Kathage, Alejandro Vazquez Cortes, Stefan Merli, Christian Day, Thomas Giegerich, Stefan Hanke, Juri Igitkhanov, Andreas Schulz and Matthias Walker
Plasma 2023, 6(4), 714-734; https://doi.org/10.3390/plasma6040049 - 28 Nov 2023
Cited by 5 | Viewed by 2576
Abstract
Experimental findings to contribute to the preliminary design of a metal foil pump for fuel separation in the Direct Internal Recycling loop of the DEMO fusion device are presented. In parametric studies on a small-scale superpermeation experiment with a microwave plasma source and [...] Read more.
Experimental findings to contribute to the preliminary design of a metal foil pump for fuel separation in the Direct Internal Recycling loop of the DEMO fusion device are presented. In parametric studies on a small-scale superpermeation experiment with a microwave plasma source and two different metal foil materials, niobium Nb and vanadium V, a substantial increase in permeation with plasma power and with a decrease in pressure was observed. To ease operation in the typical fusion environment, in-situ heating procedures were developed to recover from impurity contamination. The temperature independence of plasma-driven permeation from 600 to 900 °C metal foil temperature was demonstrated. No proof of an isotopic effect for plasma-driven permeation of protium and deuterium could be found. The highest repeatable permeation flux achieved was 6.7 Pa∙m3/(m2∙s) or ~5.5 × 10−3 mol H/(m2∙s). The found compression ratios do safely allow the operation of the metal foil pump using ejector pumps as backing stages for the permeate. In a dedicated experimental setup, the operation of the plasma source in a strong magnetic field was tested. Parametric studies of pressure, power input, magnetic flux density, field gradient and field angle are presented. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Graphical abstract

15 pages, 2801 KiB  
Article
Generation of Plasma-Activated Fluids for Successful Disinfection of Pseudomonas aeruginosa in Liquid Environments and Determination of Microbial Damage
by Mareike Hummert, Paul Leenders, Alexander Mellmann, Karsten Becker and Thorsten Kuczius
Plasma 2023, 6(4), 699-713; https://doi.org/10.3390/plasma6040048 - 21 Nov 2023
Cited by 5 | Viewed by 2686
Abstract
The application of the non-thermal atmospheric pressure plasma technology is a promising tool for microbial inactivation. During the activation process, many reactive substances and radicals arise associated with physicochemical changes in the fluid and massive pH drop. In this study, we analyzed and [...] Read more.
The application of the non-thermal atmospheric pressure plasma technology is a promising tool for microbial inactivation. During the activation process, many reactive substances and radicals arise associated with physicochemical changes in the fluid and massive pH drop. In this study, we analyzed and optimized plasma activation settings and conditions of water and liquids to obtain inactivation of the waterborne microorganism Pseudomonas aeruginosa in a liquid environment. The minimal electrical output was 60 Watt with 20 min activation time followed by 30 min contact time with 108 cells/mL. Using higher electrical power (>90 W) with a Lab Unit generating plasma-activated water, a shorter activation time (<10 min) was sufficient for bacterial inactivation. The organic and inorganic composition of the activated liquid with different mineral salt concentrations is of utmost importance for the yield of reactive species during the plasma activation process and consequently for the antimicrobial effect. Plasma-activated fluids with high organic and inorganic contents demonstrated lower inactivation efficiencies than low loaded fluids; yet antimicrobial efficacy could be achieved by increasing the electrical power and activation time. For sufficient inactivation of bacterial suspensions, at least half a volume unit of plasma-activated water had to be added after appropriately optimized activation. Further dilutions reduced the antimicrobial effect. PAW lost activity after being left standing for a prolonged time after activation, so for maximizing the antimicrobial effect a direct use after activation is recommendable. Bacterial inactivation was shown by the absence of colony forming units on culture media and, at the molecular level, damage to the membrane and inactivation of enzymes were observed. Plasma-activated fluids demonstrated a high potential in applications as microbiological disinfectant in liquids. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

12 pages, 1213 KiB  
Article
Comparison of Saturation Rules Used for Gyrokinetic Quasilinear Transport Modeling
by Scott E. Parker, Calder S. Haubrich, Stefan Tirkas, Qiheng Cai and Yang Chen
Plasma 2023, 6(4), 611-622; https://doi.org/10.3390/plasma6040042 - 12 Oct 2023
Cited by 2 | Viewed by 2711
Abstract
Theory-based transport modeling has been widely successful and is built on the foundations of quasilinear theory. Specifically, the quasilinear expression of the flux can be used in combination with a saturation rule for the toroidal mode amplitude. Most transport models follow this approach. [...] Read more.
Theory-based transport modeling has been widely successful and is built on the foundations of quasilinear theory. Specifically, the quasilinear expression of the flux can be used in combination with a saturation rule for the toroidal mode amplitude. Most transport models follow this approach. Saturation rules are heuristic and difficult to rigorously derive. We compare three common saturation rules using a fairly accurate quasilinear expression for the fluxes computed using local linear gyrokinetic simulation. We take plasma parameters from experimental H-mode profiles and magnetic equilibrium and include electrons, deuterium, and carbon species. We find that the various saturation rules provide qualitatively similar behavior. This may help to explain why the different theory-based transport models can all predict core tokamak profiles reasonably well. Comparisons with nonlinear local and global gyrokinetic simulations are discussed. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

15 pages, 3273 KiB  
Article
Inclusion of Biological Targets in the Analysis of Electrical Characteristics of Non-Thermal Plasma Discharge
by Julia Sutter, Jascha Brettschneider, Sara Mamchur, Fred Krebs, Sophia Gershman and Vandana Miller
Plasma 2023, 6(3), 577-591; https://doi.org/10.3390/plasma6030040 - 15 Sep 2023
Cited by 5 | Viewed by 2246
Abstract
In Plasma Medicine studies, the effect of non-thermal plasma (NTP) on biological targets is typically correlated with the amount of stable reactive oxygen and nitrogen species produced in a liquid medium. The effect of NTP and the response of the biological target on [...] Read more.
In Plasma Medicine studies, the effect of non-thermal plasma (NTP) on biological targets is typically correlated with the amount of stable reactive oxygen and nitrogen species produced in a liquid medium. The effect of NTP and the response of the biological target on cellular redox mechanisms is overlooked in these investigations. Additionally, the influence of electrical properties of cells on the physical properties of NTP is neglected. Therefore, we used a floating electrode dielectric barrier discharge plasma to explore the impact of cell structure, size, and viability of the biological target on the physical properties of NTP. Lissajous figures were used to determine circuit capacitance and energy per cycle during NTP exposure of different cell suspensions. We show that both, structural integrity and active enzymic processes of cells change the electrical properties of NTP. Correlations were also drawn between NTP-produced hydrogen peroxide and nitrite with measured capacitance. Our studies indicate that the observed changes between different cell suspensions may be due to a feedback loop between the biological target and the NTP source. In future studies, a more detailed analysis is needed to improve the control of clinical NTP devices. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2023)
Show Figures

Graphical abstract

11 pages, 1448 KiB  
Article
Plasma Energy Loss by Cathode Heat Conduction in a Vacuum Arc: Cathode Effective Voltage
by Isak I. Beilis
Plasma 2023, 6(3), 492-502; https://doi.org/10.3390/plasma6030034 - 11 Aug 2023
Cited by 2 | Viewed by 1607
Abstract
The importance of understanding the energy loss specifics by the cathode for vacuum arc metallic plasma generation and its applications were emphasized. To this end, the heat conduction losses per unit current were characterized by the cathode effective voltage uef, which [...] Read more.
The importance of understanding the energy loss specifics by the cathode for vacuum arc metallic plasma generation and its applications were emphasized. To this end, the heat conduction losses per unit current were characterized by the cathode effective voltage uef, which is weakly dependent on the current. In this paper, a physical model and a mathematical approach were developed to describe the energy dissipation due to heat conduction in the cathode body, which is heated by energy outflowed from the adjacent plasma. The arc plasma generation was considered by taking into account the kinetics of the heavy particle fluxes in the non-equilibrium layer near the vaporizing surface. The phenomena of electric sheath, heat and mass transfer at the cathode were taken into account. The self-consistent numerical analysis was performed with a system of equations for a copper cathode spot. The transient analysis starts from the spot initiation, modeled by the plasma arising at the initial time determined by the kind of arc triggering, up to spot development. The results of the calculations show that the cathode effective voltage uef is determined by the cathode temperature as a function of spot time. The calculated evolution of the voltage uef shows that the steady state of uef is approximately 7 V, and it is reached when the cathode temperature reaches a steady state at approximately one microsecond. This essential result provides an explanation for the good agreement with the experimental cathode effective voltage (6–8 V) measured for the arc duration from one millisecond up to a few seconds. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

12 pages, 2343 KiB  
Article
Isotope Detection in Microwave-Assisted Laser-Induced Plasma
by Ali M. Alamri, Jan Viljanen, Philip Kwong and Zeyad T. Alwahabi
Plasma 2023, 6(3), 466-477; https://doi.org/10.3390/plasma6030032 - 1 Aug 2023
Cited by 5 | Viewed by 2347
Abstract
Isotope detection and identification is paramount in many fields of science and industry, such as in the fusion and fission energy sector, in medicine and material science, and in archeology. Isotopic information provides fundamental insight into the research questions related to these fields, [...] Read more.
Isotope detection and identification is paramount in many fields of science and industry, such as in the fusion and fission energy sector, in medicine and material science, and in archeology. Isotopic information provides fundamental insight into the research questions related to these fields, as well as insight into product quality and operational safety. However, isotope identification with established mass-spectrometric methods is laborious and requires laboratory conditions. In this work, microwave-assisted laser-induced breakdown spectroscopy (MW-LIBS) is introduced for isotope detection and identification utilizing radical and molecular emission. The approach is demonstrated with stable B and Cl isotopes in solids and H isotopes in liquid using emissions from BO and BO2, CaCl, and OH molecules, respectively. MW-LIBS utilizes the extended emissive plasma lifetime and molecular-emission signal-integration times up to 900 μs to enable the use of low (~4 mJ) ablation energy without compromising signal intensity and, consequently, sensitivity. On the other hand, long plasma lifetime gives time for molecular formation. Increase in signal intensity towards the late microwave-assisted plasma was prominent in BO2 and OH emission intensities. As MW-LIBS is online-capable and requires minimal sample preparation, it is an interesting option for isotope detection in various applications. Full article
(This article belongs to the Special Issue Advances in Laser Plasma Spectroscopy Applications)
Show Figures

Figure 1

24 pages, 2059 KiB  
Article
Validating the Multi-Mode Model’s Ability to Reproduce Diverse Tokamak Scenarios
by Tariq Rafiq, Zibo Wang, Shira Morosohk, Eugenio Schuster, Jan Weiland, Wilkie Choi and Hyun-Tae Kim
Plasma 2023, 6(3), 435-458; https://doi.org/10.3390/plasma6030030 - 24 Jul 2023
Cited by 7 | Viewed by 1910
Abstract
A large-scale validation exercise was conducted to assess the multi-mode model (MMM) anomalous transport model in the integrated modeling code TRANSP. The validation included 6 EAST discharges, 17 KSTAR discharges, 72 JET ITER-like wall D-D discharges, and 4 DIII-D fusion plasma discharges. Using [...] Read more.
A large-scale validation exercise was conducted to assess the multi-mode model (MMM) anomalous transport model in the integrated modeling code TRANSP. The validation included 6 EAST discharges, 17 KSTAR discharges, 72 JET ITER-like wall D-D discharges, and 4 DIII-D fusion plasma discharges. Using the MMM, the study computed anomalous thermal, particle, impurity, and momentum transport within TRANSP. Simulations for EAST, KSTAR, and JET focused on electron and ion temperatures and safety factor profiles, while DIII-D simulations also considered electron density, toroidal rotation frequency, and flow shear. The predicted profiles were compared to experimental data at the diagnostic time, quantifying the comparison using root-mean-square (RMS) deviation and relative offsets. The study found an average RMS deviation of 9.3% for predicted electron temperature and 10.5% for ion temperature, falling within the experimental measurement error range 20%. The MMM model demonstrated computational efficiency and the ability to accurately reproduce a wide range of discharges, including various scenarios and plasma parameters, such as plasma density, gyroradius, collisionality, beta, safety factor and heating method variations. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

16 pages, 1222 KiB  
Article
Plasma-Assisted Abatement of Per- and Polyfluoroalkyl Substances (PFAS): Thermodynamic Analysis and Validation in Gliding Arc Discharge
by Mikaela J. Surace, Jimmy Murillo-Gelvez, Mobish A. Shaji, Alexander A. Fridman, Alexander Rabinovich, Erica R. McKenzie, Gregory Fridman and Christopher M. Sales
Plasma 2023, 6(3), 419-434; https://doi.org/10.3390/plasma6030029 - 17 Jul 2023
Cited by 7 | Viewed by 3318
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (OH) and/or hydrated electrons (e(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

15 pages, 1345 KiB  
Article
A Boltzmann Electron Drift Diffusion Model for Atmospheric Pressure Non-Thermal Plasma Simulations
by Arturo Popoli, Fabio Ragazzi, Giacomo Pierotti, Gabriele Neretti and Andrea Cristofolini
Plasma 2023, 6(3), 393-407; https://doi.org/10.3390/plasma6030027 - 7 Jul 2023
Cited by 7 | Viewed by 2330
Abstract
We introduce a fluid computational model for the numerical simulation of atmospheric pressure dielectric barrier discharge plasmas. Ion and neutral species are treated with an explicit drift diffusion approach. The Boltzmann relation is used to compute the spatial distribution of electrons as a [...] Read more.
We introduce a fluid computational model for the numerical simulation of atmospheric pressure dielectric barrier discharge plasmas. Ion and neutral species are treated with an explicit drift diffusion approach. The Boltzmann relation is used to compute the spatial distribution of electrons as a function of the electrostatic potential and the ionic charge density. This technique, widely used to speed up particle and fluid models for low-pressure conditions, poses several numerical challenges for high-pressure conditions and large electric field values typical of applications involving atmospheric-pressure plasmas. We develop a robust algorithm to solve the non-linear electrostatic Poisson problem arising from the Boltzmann electron approach under AC electric fields based on a charge-conserving iterative computation of the reference electric potential and electron density. We simulate a volumetric reactor in dry air, comparing the results yielded by the proposed method with those obtained when the drift diffusion approach is used for all charged species, including electrons. We show that the proposed methodology retains most of the physical information provided by the reference modeling approach while granting a substantial advantage in terms of computation time. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2023)
Show Figures

Figure 1

11 pages, 520 KiB  
Article
What Machine Learning Can and Cannot Do for Inertial Confinement Fusion
by Baolian Cheng and Paul A. Bradley
Plasma 2023, 6(2), 334-344; https://doi.org/10.3390/plasma6020023 - 1 Jun 2023
Cited by 3 | Viewed by 3034
Abstract
Machine learning methodologies have played remarkable roles in solving complex systems with large data, well-defined input–output pairs, and clearly definable goals and metrics. The methodologies are effective in image analysis, classification, and systems without long chains of logic. Recently, machine-learning methodologies have been [...] Read more.
Machine learning methodologies have played remarkable roles in solving complex systems with large data, well-defined input–output pairs, and clearly definable goals and metrics. The methodologies are effective in image analysis, classification, and systems without long chains of logic. Recently, machine-learning methodologies have been widely applied to inertial confinement fusion (ICF) capsules and the design optimization of OMEGA (Omega Laser Facility) capsule implosion and NIF (National Ignition Facility) ignition capsules, leading to significant progress. As machine learning is being increasingly applied, concerns arise regarding its capabilities and limitations in the context of ICF. ICF is a complicated physical system that relies on physics knowledge and human judgment to guide machine learning. Additionally, the experimental database for ICF ignition is not large enough to provide credible training data. Most researchers in the field of ICF use simulations, or a mix of simulations and experimental results, instead of real data to train machine learning models and related tools. They then use the trained learning model to predict future events. This methodology can be successful, subject to a careful choice of data and simulations. However, because of the extreme sensitivity of the neutron yield to the input implosion parameters, physics-guided machine learning for ICF is extremely important and necessary, especially when the database is small, the uncertain-domain knowledge is large, and the physical capabilities of the learning models are still being developed. In this work, we identify problems in ICF that are suitable for machine learning and circumstances where machine learning is less likely to be successful. This study investigates the applications of machine learning and highlights fundamental research challenges and directions associated with machine learning in ICF. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

14 pages, 12225 KiB  
Article
EUV/VUV Spectroscopy for the Study of Carbon Impurity Transport in Hydrogen and Deuterium Plasmas in the Edge Stochastic Magnetic Field Layer of Large Helical Device
by Tetsutarou Oishi, Shigeru Morita, Masahiro Kobayashi, Gakushi Kawamura, Yasuko Kawamoto, Tomoko Kawate, Suguru Masuzaki, Chihiro Suzuki and Motoshi Goto
Plasma 2023, 6(2), 308-321; https://doi.org/10.3390/plasma6020021 - 12 May 2023
Cited by 3 | Viewed by 2124
Abstract
The ergodic layer in the Large Helical Device (LHD) consists of stochastic magnetic fields exhibiting a three-dimensional structure that is intrinsically formed by helical coils. Spectroscopic diagnostics was employed in the extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength ranges to investigate emission [...] Read more.
The ergodic layer in the Large Helical Device (LHD) consists of stochastic magnetic fields exhibiting a three-dimensional structure that is intrinsically formed by helical coils. Spectroscopic diagnostics was employed in the extreme ultraviolet (EUV) and vacuum ultraviolet (VUV) wavelength ranges to investigate emission lines of carbon impurities in both hydrogen (H) and deuterium (D) plasmas, aiming to elucidate the impact of distinct bulk ions on impurity generation and transport in the edge plasmas of the LHD. The emission intensity of carbon CIII, CIV, CV, and CVI lines is significantly higher in the D plasma compared to the H plasma, indicating a greater sputtering rate of carbon materials in the D plasma, resulting in a higher quantity of carbon impurities originating from the divertor plates. A Doppler profile measurement of the second order of CIV line emission (1548.20 × 2 Å) was attempted using a 3 m normal-incidence VUV spectrometer in the edge plasma at a horizontally elongated plasma position. The flow velocity reaches its maximum value close to the outermost region of the ergodic layer, and the observed flow direction aligns with the friction force in the parallel momentum balance. The flow velocity increases with the electron density in H plasmas, suggesting that the friction force becomes more dominant in the force balance at higher density regimes. This leads to an increase in the impurity flow, which can contribute to the impurity screening. In contrast, the flow velocity in the D plasma is smaller than that in the H plasma. The difference in flow values between D and H plasmas, when the friction force term dominates in the momentum balance, could be attributed to the mass dependence of the thermal velocity of the bulk ions. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

27 pages, 6355 KiB  
Article
From Repeatability to Self-Organization of Guided Streamers Propagating in a Jet of Cold Plasma
by Henri Decauchy and Thierry Dufour
Plasma 2023, 6(2), 250-276; https://doi.org/10.3390/plasma6020019 - 5 May 2023
Cited by 2 | Viewed by 2894
Abstract
In this work, a jet of cold plasma is generated in a device supplied in helium and powered with a high-voltage nanopulse power supply, hence generating guided streamers. We focus on the interaction between these guided streamers and two targets placed in a [...] Read more.
In this work, a jet of cold plasma is generated in a device supplied in helium and powered with a high-voltage nanopulse power supply, hence generating guided streamers. We focus on the interaction between these guided streamers and two targets placed in a series: a metal mesh target (MM) at floating potential followed by a metal plate target (MP) grounded by a 1500 Ω resistor. We demonstrate that such an experimental setup allows to shift from a physics of streamer repeatability to a physics of streamer self-organization, i.e., from the repetition of guided streamers that exhibit fixed spatiotemporal constants to the emergence of self-organized guided streamers, each of which is generated on the rising edge of a high-voltage pulse. Up to five positive guided streamers can be self-organized one after the other, all distinct in space and time. While self-organization occurs in the capillary and up to the MM target, we also demonstrate the existence of transient emissive phenomena in the inter-target region, especially a filamentary discharge whose generation is directly correlated with complexity order Ω. The mechanisms of the self-organized guided streamers are deciphered by correlating their optical and electrical properties measured by fast ICCD camera and current-voltage probes, respectively. For the sake of clarity, special attention is paid to the case where three self-organized guided streamers (α, β and γ) propagate at vα = 75.7 km·s–1, vβ = 66.5 km·s–1 and vγ = 58.2 km·s–1), before being accelerated in the vicinity of the MM target. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

13 pages, 23963 KiB  
Article
Characteristics of Double-Layer, Large-Flow Dielectric Barrier Discharge Plasma Source for Toluene Decomposition
by Mao Xu, Yohei Fukuyama, Kazuki Nakai, Zhizhi Liu, Yuki Sumiya and Akitoshi Okino
Plasma 2023, 6(2), 212-224; https://doi.org/10.3390/plasma6020016 - 3 Apr 2023
Cited by 5 | Viewed by 3180
Abstract
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma [...] Read more.
The direct decomposition of toluene-containing humidified air at large flow rates was studied in two types of reactors with dielectric barrier discharge (DBD) features in ambient conditions. A scalable large-flow DBD reactor (single-layer reactor) was designed to verify the feasibility of large-flow plasma generation and evaluate its decomposition characteristics with toluene-containing humidified air, which have not been investigated. In addition, another large-flow DBD reactor with a multilayer structure (two-layer reactor) was developed as an upscale version of the single-layer reactor, and the scalability and superiority of the features of the multilayer structure were validated by comparing the decomposition characteristics of the two reactors. Consequently, the large-flow DBD reactor showed similar decomposition characteristics to those of the small-flow DBD reactor regarding applied voltage, flow velocity, flow rate, and discharge length, thus justifying the feasibility of large-flow plasma generation. Additionally, the two-layer reactor is more effective than the single-layer reactor, suggesting multilayer configuration is a viable scheme for further upscaled DBD systems. A high decomposition rate of 59.5% was achieved at the considerably large flow rate of 110 L/min. The results provide fundamental data and present guidelines for the implementation of the DBD plasma-based system as a solution for volatile organic compound abatement. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

19 pages, 2899 KiB  
Article
Plane Parallel Barrier Discharges for Carbon Dioxide Splitting: Influence of Discharge Arrangement on Carbon Monoxide Formation
by Ronny Brandenburg, Milko Schiorlin, Michael Schmidt, Hans Höft, Andrei V. Pipa and Volker Brüser
Plasma 2023, 6(1), 162-180; https://doi.org/10.3390/plasma6010013 - 6 Mar 2023
Cited by 14 | Viewed by 2937
Abstract
A planar volume dielectric barrier discharge (DBD) in pure carbon dioxide (CO2) for the formation of carbon monoxide (CO) is examined by combined electrical and CO density measurements. The influence of the type of electrode, the barrier material, the barrier thickness, [...] Read more.
A planar volume dielectric barrier discharge (DBD) in pure carbon dioxide (CO2) for the formation of carbon monoxide (CO) is examined by combined electrical and CO density measurements. The influence of the type of electrode, the barrier material, the barrier thickness, and the discharge gap on the plasma power and the CO formation is analyzed systematically. The electrical characterization by means of charge-voltage plots is based on the simplest equivalent circuit model of DBDs, extended by the so-called partial surface discharge effect and the presence of parallel parasitic capacitances. The stackable discharge arrangement in this study enables one to elucidate the influence of parasitic capacitances, which can be overlooked in the application of such plasma sources. The determination of the discharge voltage from charge-voltage plots and the validity of the so-called Manley power equation are revised by taking into account non-uniform coverage as well as parasitic capacitances. The energy yield (EY) of CO is analyzed and compared with the literature. No correlations of EY with the mean reduced electric field strength or the geometric parameters of the DBD arrangement are observed. Full article
(This article belongs to the Special Issue Dielectric Barrier Discharges 2023)
Show Figures

Figure 1

23 pages, 7129 KiB  
Article
Application of Plasma Bridge for Grounding of Conductive Substrates Treated by Transferred Pulsed Atmospheric Arc
by Dariusz Korzec, Markus Hoffmann and Stefan Nettesheim
Plasma 2023, 6(1), 139-161; https://doi.org/10.3390/plasma6010012 - 5 Mar 2023
Cited by 1 | Viewed by 2616
Abstract
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N2 and H [...] Read more.
An atmospheric pressure plasma jet (APPJ) sustained by a pulsed atmospheric arc (PAA) transferred on an electrically conducting surface was operated with a mean power of 700 W, a pulse frequency of 60 kHz, and a gas mixture of N2 and H2 with up to 10% H2, flowing at 30 to 70 SLM. It was shown that the plasma bridge ignited between the grounded injector and electrically conducting and floating substrates can be used for electrical grounding. This allowed for arc transfer on such substrates. The plasma bridge was stable for Argon flow through the injector from 3 to 10 SLM. Its length was between 5 and 15 mm. The plasma bridge current was 350 mA. The copper contact pads on an alumina electronic board were treated using the plasma bridge sustained by Ar injection for grounding. First, an oxide film of about 65 nm was grown by a compressed dry air (CDA) plasma jet. Then, this film was reduced at a speed of 4 cm2/s by forming gas 95/5 (95% of N2 and 5% of H2) plasma jet. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

12 pages, 3294 KiB  
Article
Understanding the Role of Plasma Bullet Currents in Heating Skin to Mitigate Risks of Thermal Damage Caused by Low-Temperature Atmospheric-Pressure Plasma Jets
by Shunya Hashimoto, Hideo Fukuhara, Endre J. Szili, Chiaki Kawada, Sung-Ha Hong, Yuta Matsumoto, Tatsuru Shirafuji, Masayuki Tsuda, Atsushi Kurabayashi, Mutsuo Furihata, Hiroshi Furuta, Akimitsu Hatta, Keiji Inoue and Jun-Seok Oh
Plasma 2023, 6(1), 103-114; https://doi.org/10.3390/plasma6010009 - 27 Feb 2023
Cited by 4 | Viewed by 3095
Abstract
Low-temperature atmospheric-pressure plasma jets are generally considered a safe medical technology with no significant long-term side effects in clinical studies reported to date. However, there are studies emerging that show plasma jets can cause significant side effects in the form of skin burns [...] Read more.
Low-temperature atmospheric-pressure plasma jets are generally considered a safe medical technology with no significant long-term side effects in clinical studies reported to date. However, there are studies emerging that show plasma jets can cause significant side effects in the form of skin burns under certain conditions. Therefore, with a view of developing safer plasma treatment approaches, in this study we have set out to provide new insights into the cause of these skin burns and how to tailor plasma treatments to mitigate these effects. We discovered that joule heating by the plasma bullet currents is responsible for creating skin burns during helium plasma jet treatment of live mice. These burns can be mitigated by treating the mice at a further distance so that the visible plasma plume does not contact the skin. Under these treatment conditions we also show that the plasma jet treatment still retains its medically beneficial property of producing reactive oxygen species in vivo. Therefore, treatment distance is an important parameter for consideration when assessing the safety of medical plasma treatments. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

17 pages, 7958 KiB  
Review
Flexible Cold Atmospheric Plasma Jet Sources
by Carles Corbella, Sabine Portal and Michael Keidar
Plasma 2023, 6(1), 72-88; https://doi.org/10.3390/plasma6010007 - 16 Feb 2023
Cited by 8 | Viewed by 7397
Abstract
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas [...] Read more.
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas and uneven surfaces. The generation of charged species (electrons and ions) and reactive species (radicals), together with emitted UV photons, enables a rich plasma chemistry that should be uniform on arbitrary sample profiles. Lateral gradients in plasma parameters from multi-jets should, therefore, be minimized and addressed by means of plasma monitoring techniques, such as electrical diagnostics and optical emission spectroscopy analysis (OES). This article briefly reviews the main strategies adopted to build morphing APPJ arrays and ultra-flexible and long tubes to project cold plasma jets. Basic aspects, such as inter-jet interactions and nozzle shape, have also been discussed, as well as potential applications in the fields of polymer processing and plasma medicine. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

14 pages, 3890 KiB  
Article
Analysis and Mitigation of Pulse-Pile-Up Artifacts in Plasma Pulse-Height X-ray Spectra
by Taosif. Ahsan, Charles P. S. Swanson, Chris Galea, Sangeeta P. Vinoth, Tony Qian, Tal Rubin and Samuel A. Cohen
Plasma 2023, 6(1), 58-71; https://doi.org/10.3390/plasma6010006 - 2 Feb 2023
Cited by 2 | Viewed by 3006
Abstract
Pulse pile-up in pulse-height energy analyzers increases when the incident rate of pulses increases relative to the inverse of the dead time per pulse of the detection system. Changes in the observed energy distributions with incident rate and detector-electronics-formed pulse shape then occur. [...] Read more.
Pulse pile-up in pulse-height energy analyzers increases when the incident rate of pulses increases relative to the inverse of the dead time per pulse of the detection system. Changes in the observed energy distributions with incident rate and detector-electronics-formed pulse shape then occur. We focus on weak high energy tails in X-ray spectra, important for measurements on partially ionized, warm (50–500 eV average electron energy), pure hydrogen plasma. A first-principles two-photon pulse-pile-up model is derived specific to trapezoidal-shaped pulses; quantitative agreement is found between the measurements and the model’s predictions. The model is then used to diagnose pulse-pile-up tail artifacts and mitigate them in relatively low count-rate spectra. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

13 pages, 2975 KiB  
Article
Physical Properties of Plasma-Activated Water
by Mobish Shaji, Alexander Rabinovich, Mikaela Surace, Christopher Sales and Alexander Fridman
Plasma 2023, 6(1), 45-57; https://doi.org/10.3390/plasma6010005 - 30 Jan 2023
Cited by 13 | Viewed by 5399
Abstract
Recent observations of plasma-activated water (PAW)’s surfactant behavior suggest that the activation of water with non-equilibrium plasma can decrease the surface tension of the water. This suggested change to the surface tension also indicates that the addition of plasma can lead to changes [...] Read more.
Recent observations of plasma-activated water (PAW)’s surfactant behavior suggest that the activation of water with non-equilibrium plasma can decrease the surface tension of the water. This suggested change to the surface tension also indicates that the addition of plasma can lead to changes in the physical properties of the water, knowledge of which can expand existing PAW applications and open new ones. While the chemical behavior of PAW has been extensively analyzed, to the best of our knowledge the physical properties of PAW have not been investigated. This study focuses on the need for experimental determination of PAW’s physical properties—namely, surface tension, viscosity, and contact angle. The experimental results of this study show that the addition of plasma lowers the surface tension of water at room temperature, increases the viscosity of water at high temperatures, and lowers the contact angle of droplets on glass surfaces at room temperatures. Potential factors influencing these changes include plasma alteration of the mesoscopic structure of water at low temperatures and plasma additives acting as foreign particles in water at higher temperatures. Ultimately, this investigation demonstrates that the physical properties of water change due to plasma activation, which could lead to potential industrial applications of PAW as a surfactant or as a washing-out and cleaning agent. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

26 pages, 690 KiB  
Article
Hydrogen-, Helium-, and Lithium-like Bound States in Classical and Quantum Plasmas
by Werner Ebeling and Gerd Röpke
Plasma 2023, 6(1), 1-26; https://doi.org/10.3390/plasma6010001 - 28 Dec 2022
Cited by 3 | Viewed by 2563
Abstract
We study the effective interactions and the mass action constants for pair and triple associations in classical and quantum plasmas. Avoiding double counting, we derive new expressions for the mass action constants. The calculations resulted in values that were substantially smaller than the [...] Read more.
We study the effective interactions and the mass action constants for pair and triple associations in classical and quantum plasmas. Avoiding double counting, we derive new expressions for the mass action constants. The calculations resulted in values that were substantially smaller than the standard ones in relevant temperature ranges by up to 50 percent. On this basis, we determine the pressure of H, He and Li plasmas and the osmotic coefficient of electrolytes with higher charges such as, e.g., seawater. Classical and quantum Coulomb systems show strong similarities. The contributions in low orders with respect to the interaction e2 are suppressed by thermal and screening effects. The contributions of weakly bound states, near the continuum edge, to the mass action constants are reduced, replacing the exponential functions with cropped exponentials. The new mass action constants are consistent with well-known extended limiting cases of screening effects. We analyze classical examples including the salts CaCl2 and LaCl3, and a model of seawater including multiple associations. In the case of quantum systems, we follow the work of Planck–Brillouin–Larkin for H plasmas and study He and Li plasmas. The equation of state (EoS) for wide-density regions is obtained through the concatenation of the EoS for the low-density region of partial ionization with the EoS of degenerate plasmas, where all bound states are dissolved and Fermi, Hartree–Fock and Wigner contributions dominate. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

41 pages, 4900 KiB  
Review
A Comprehensive Review on Amplification of Laser Pulses via Stimulated Raman Scattering and Stimulated Brillouin Scattering in Plasmas
by Renju Miriam Cheriyan, Nikhil Varghese, R. S. Sooraj, Kavya H. Rao and N. Smijesh
Plasma 2022, 5(4), 499-539; https://doi.org/10.3390/plasma5040037 - 24 Nov 2022
Cited by 2 | Viewed by 3328
Abstract
The demand for high-intensity lasers has grown ever since the invention of lasers in 1960, owing to their applications in the fields of inertial confinement fusion, plasma-based relativistic particle accelerators, complex X-ray and gamma-ray sources, and laboratory astrophysics. To create such high-intensity lasers, [...] Read more.
The demand for high-intensity lasers has grown ever since the invention of lasers in 1960, owing to their applications in the fields of inertial confinement fusion, plasma-based relativistic particle accelerators, complex X-ray and gamma-ray sources, and laboratory astrophysics. To create such high-intensity lasers, free-running lasers were either Q-switched or mode-locked to increase the peak power to the gigawatt range. Later, chirped pulse amplification was developed, allowing the generation of peak power up to 1012 W. However, the next generation of high-intensity lasers might not be able to be driven by the solid-state technology alone as they are already operating close to their damage thresholds. In this scenario, concepts of amplification based on plasmas has the potential to revolutionize the laser industry, as plasma is already a broken-down medium, and hence does not pose any problems related to the damage thresholds. On the other hand, there are many other aspects that need to be addressed before developing technologies based on plasma-based amplification, and they are being investigated via theoretical and numerical methods and supported by several experiments. In this report, we review the prospects of employing plasma as the medium of amplification by utilising stimulated scattering techniques, such as the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) techniques, to modulate high-power laser pulses, which would possibly be the key to the next generation of high-power lasers. The 1980s saw the commencement of research in this field, and possibilities of obtaining high peak powers were verified theoretically with the help of numerical calculations and simulations. The extent of amplification by these stimulated scattering schemes are limited by a number of instabilities such as forward Raman scattering (FRS), filamentation, etc., and here, magnetised plasma played an important role in counteracting these parasitic effects. The current research combines all these factors to experimentally realise a large-scale plasma-based amplifier, which can impact the high-energy laser industry in the near future. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

8 pages, 411 KiB  
Article
Effects of Plasma on Physical Properties of Water: Nanocrystalline-to-Amorphous Phase Transition and Improving Produce Washing
by Jinjie He, Alexander Rabinovich, Dmitri Vainchtein, Alexander Fridman, Christopher Sales and Mikhail N. Shneider
Plasma 2022, 5(4), 462-469; https://doi.org/10.3390/plasma5040034 - 3 Nov 2022
Cited by 2 | Viewed by 2252
Abstract
Washing fresh produce using Plasma-activated water recently became a promising eco-friendly alternative to using chemical additives such as Chlorine. We discuss the produce-washing experiments that illustrate that addition of plasma to washing water is a multi-faced phenomena. Not only it increases the sterilization [...] Read more.
Washing fresh produce using Plasma-activated water recently became a promising eco-friendly alternative to using chemical additives such as Chlorine. We discuss the produce-washing experiments that illustrate that addition of plasma to washing water is a multi-faced phenomena. Not only it increases the sterilization ability of water by killing pathogens, but it also has improved washibility: the ability to remove pathogens from the cleaning surface. We propose an explanation of these features based on the recently discoveries that many physical and chemical properties of water change their temperature dependence between about 35 and 60 degrees Celsius. In particular, heat conductance, light absorption, and surface tension all change their temperature dependence. These drastic changes were associated with water gradually changing its mesoscopic structure: while at the higher temperatures water is a uniform media (amorphous state), at the temperatures below transition it consists of many nano-to-micro-scale clusters (crystalline state). This transition is similar to the second order phase transition. In the present paper we propose that treating water with non-thermal plasma (adding plasma-created active compounds) can lower the temperature of the transition and thus cause a significant change in such physical quantities as surface tension, viscosity, freezing rate, and wettability and washability. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

11 pages, 9040 KiB  
Article
Plasma Deposition to Improve Barrier Performance of Biodegradable and Recyclable Substrates Intended for Food Packaging
by Espedito Vassallo, Matteo Pedroni, Marco Aloisio, Hao Chen, Giuseppe Firpo, Silvia Maria Pietralunga and Dario Ripamonti
Plasma 2022, 5(4), 451-461; https://doi.org/10.3390/plasma5040033 - 28 Oct 2022
Cited by 5 | Viewed by 2468
Abstract
The extensive application of biodegradable polymers in the food packaging industries was partially limited due to poor barrier performances. In the present work, we investigated the improvement of oxygen barrier performances by means of the deposition of a few nanometres of SiOx coatings [...] Read more.
The extensive application of biodegradable polymers in the food packaging industries was partially limited due to poor barrier performances. In the present work, we investigated the improvement of oxygen barrier performances by means of the deposition of a few nanometres of SiOx coatings on Poly(butylene succinate) (PBS) films. The coated samples produced by the plasma-enhanced chemical vapor deposition technique were tested in terms of morphology and composition of the surface and barrier properties. Barrier performances studied as a function of SiOx thickness were greatly improved and a reduction of at least 99% was achieved for oxygen transmission rate. In order to reduce the formation of residual stress between PBS substrate and SiOx coatings, a proper buffer layer (silicon organic SiOxCyHz) was used. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

15 pages, 7339 KiB  
Article
A Plasma-Based Decontamination Process Reveals Potential for an in-Process Surface-Sanitation Method
by Thomas Weihe, Uta Schnabel, Mathias Andrasch, Jörg Stachowiak, Frank Tübbecke and Jörg Ehlbeck
Plasma 2022, 5(3), 351-365; https://doi.org/10.3390/plasma5030027 - 6 Sep 2022
Cited by 5 | Viewed by 2180
Abstract
Methods, which use an indirect plasma treatment for the inactivation of microorganisms in foods, claim a vastly growing field of research. This paper presents a method that uses plasma-processed air (PPA) as a sanitizer. In addition to a sanitation concept for the decontamination [...] Read more.
Methods, which use an indirect plasma treatment for the inactivation of microorganisms in foods, claim a vastly growing field of research. This paper presents a method that uses plasma-processed air (PPA) as a sanitizer. In addition to a sanitation concept for the decontamination of produce in the value chain, the presented method offers a possible application as an “in-process” surface sanitation. PPA provides antimicrobial-potent species, which are predominantly reactive nitrogen species (RNS); this has an outstanding groove penetration property. In an experimental approach, surfaces, made from materials, which are frequently used for the construction of food-processing plants, were inoculated with different microorganisms. Listeria monocytogenes (ATCC 15313), Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 10538), Salmonella enterica subsp. enterica serovar Typhimurium (ATCC 43971), and Salmonella enterica subsp. enterica serovar Enteritidis (ATCC 13076) are all microorganisms that frequently appear in foods and possess the risk for cross-contamination from the plant to the produce or vice versa. The contaminated samples were treated for various treatment times (1–5 min) with PPA of different antimicrobial potencies. Subsequently, the microbial load on the specimens was determined and compared with the load of untreated samples. As a result, reduction factors (RF) up to several log10-steps were obtained. Although surface and the bacterial strain showed an influence on the RF, the major influence was seen by a prolongation of the treatment time and an increase in the potency of the PPA. Full article
Show Figures

Figure 1

18 pages, 5327 KiB  
Article
Simple Parametric Model for Calculation of Lateral Electromagnetic Loads in Tokamaks at Asymmetric Vertical Displacement Events (AVDE)
by Sergey Sadakov, Fabio Villone, Guglielmo Rubinacci and Salvatore Ventre
Plasma 2022, 5(3), 306-323; https://doi.org/10.3390/plasma5030024 - 25 Jul 2022
Cited by 1 | Viewed by 2076
Abstract
This paper describes a family of relatively simple numerical models for calculation of asymmetric electromagnetic (EM) loads at all tokamak structures and coils at asymmetric vertical plasma displacement events (AVDE). Unlike currently known AVDE studies concentrated on plasma physics, these models have a [...] Read more.
This paper describes a family of relatively simple numerical models for calculation of asymmetric electromagnetic (EM) loads at all tokamak structures and coils at asymmetric vertical plasma displacement events (AVDE). Unlike currently known AVDE studies concentrated on plasma physics, these models have a practical purpose to calculate detailed time-dependent patterns of AVDE-induced EM loads everywhere in the tokamak. They are built to intrinsically assure good-enough EM load balance (opposite net forces and torques for the Vacuum Vessel and the Magnets with zero total for the entire tokamak), as needed for consequent simulation of the tokamak’s dynamic response to AVDE, as well as for the development of tokamak monitoring algorithms and tokamak simulators. To achieve these practical goals, the models work in a manner of parametric study. They do not intervene in details of plasma physics, but run at widely varied input assumptions on AVDE evolution and severity. Their outputs will fill a library of ready-for-use lateral EM loads for multiple variants of AVDE evolution and severity. The tokamak physics community can select any variant from the library, and engineers can pick ready-for-use AVDE loads. Investigated here, EM models represent one already known approach and one newly suggested. The latter attempts to reflect the helical pattern of halo currents in plasma and delivers richer outcomes and, thus, can be preferred as the single practical model for parametric calculations. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

11 pages, 3472 KiB  
Article
Chamber with Inverted Electrode Geometry for Measuring and Control of Ion Flux-Energy Distribution Functions
by Christian Schulze, He Li, Leonie Mohn, Martin Müller and Jan Benedikt
Plasma 2022, 5(3), 295-305; https://doi.org/10.3390/plasma5030023 - 23 Jun 2022
Cited by 2 | Viewed by 4593
Abstract
Measurements of ion flux-energy distribution functions at the high sheath potential of the driven electrode in a classical low-pressure asymmetric capacitively coupled plasma are technically difficult as the diagnostic device needs to float with the applied radio frequency voltage. Otherwise, the ion sampling [...] Read more.
Measurements of ion flux-energy distribution functions at the high sheath potential of the driven electrode in a classical low-pressure asymmetric capacitively coupled plasma are technically difficult as the diagnostic device needs to float with the applied radio frequency voltage. Otherwise, the ion sampling is disturbed by the varying electric field between the grounded device and the driven electrode. To circumvent such distortions, a low-pressure plasma chamber with inverted electrode geometry, where the larger electrode is driven and the smaller electrode is grounded, has been constructed and characterized. Measurements of the ion flux-energy distribution functions with an energy-selective mass spectrometer at the high sheath potential of the grounded electrode are presented for a variety of conditions and ions. The potential for suppressing low-energy ions from resonant charge transfer collisions in the sheath by the dilution of the working gas is demonstrated. Additionally, the setup is supplemented by an inductively coupled plasma that controls the plasma density and consequently the ion flux to the substrate while the radio frequency bias controls the ion energy. At high ion energies, metal ions are detected as a consequence of the ionization of sputtered electrode material. The proposed setup opens a way to study precisely the effects of ion treatment for a variety of substrates such as catalysts, polymers, or thin films. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Impact of Internal Faraday Shields on RF Driven Hydrogen Discharges
by David Rauner, Dominikus Zielke, Stefan Briefi and Ursel Fantz
Plasma 2022, 5(3), 280-294; https://doi.org/10.3390/plasma5030022 - 21 Jun 2022
Cited by 3 | Viewed by 4615
Abstract
At RF plasma reactors operated at high power, internal Faraday shields are required to shield dielectric vessel or windows from erosion due to isotropic heat and particle fluxes. By utilizing a flexible and diagnostically well-equipped laboratory setup, crucial effects that accompany the application [...] Read more.
At RF plasma reactors operated at high power, internal Faraday shields are required to shield dielectric vessel or windows from erosion due to isotropic heat and particle fluxes. By utilizing a flexible and diagnostically well-equipped laboratory setup, crucial effects that accompany the application of internal Faraday shields at low-pressure hydrogen (and deuterium) RF discharges are identified and quantified in this contribution. Both an inductively coupled plasma (ICP) utilizing a helical coil and a low-field helicon discharge applying a Nagoya-type III antenna at magnetic fields of up to 12 mT are investigated. Discharges are driven at 4 MHz and in the pressure range between 0.3 and 10 Pa while the impact of the Faraday shields on both the RF power transfer efficiency and spectroscopically determined bulk plasma parameters (electron density and temperature, atomic density) is investigated. Three main effects are identified and discussed: (i) due to the Faraday shield, the measured RF power transfer efficiency is globally reduced. This is mainly caused by increased power losses due to induced eddy currents within the electrostatic shield, as accompanying numerical simulations by a self-consistent fluid model demonstrate. (ii) The Faraday shield reduces the atomic hydrogen density in the plasma by one order of magnitude, as the recombination rate of atoms on the metallic (copper) surfaces of the shield is considerably higher compared to the dielectric quartz walls. (iii) The Faraday shield suppresses the transition of the low-field helicon setup to a wave heated regime at the present conditions. This is attributed to a change of boundary conditions for wave propagation, as the plasma is in direct contact with the conductive surfaces of the Faraday shield rather than being operated in a laterally fully dielectric vessel. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

11 pages, 1601 KiB  
Article
Pulsed Spherical Tokamak—A New Approach to Fusion Reactors
by Mikhail Gryaznevich, Valery A. Chuyanov and Yuichi Takase
Plasma 2022, 5(2), 247-257; https://doi.org/10.3390/plasma5020019 - 18 May 2022
Cited by 6 | Viewed by 3965
Abstract
Traditionally, spherical tokamak (ST) reactors are considered to operate in a steady state. This paper analyses the advantages of a pulsed ST reactor. The methodology developed for conventional tokamak (CT) reactors is used and it is shown that advantages of a pulsed operation [...] Read more.
Traditionally, spherical tokamak (ST) reactors are considered to operate in a steady state. This paper analyses the advantages of a pulsed ST reactor. The methodology developed for conventional tokamak (CT) reactors is used and it is shown that advantages of a pulsed operation are even more pronounced in an ST reactor because of its ability to operate at a higher beta, therefore achieving a higher bootstrap current fraction, which, together with a lower inductance, reduces requirements for magnetic flux from the central solenoid for the plasma current ramp-up and sustainment. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

10 pages, 2621 KiB  
Article
Poly (O-Aminophenol) Produced by Plasma Polymerization Has IR Spectrum Consistent with a Mixture of Quinoid & Keto Structures
by Natalie M. Stuart and Karl Sohlberg
Plasma 2022, 5(2), 196-205; https://doi.org/10.3390/plasma5020015 - 14 Apr 2022
Cited by 1 | Viewed by 2616
Abstract
A vibrational analysis of various poly(o-aminophenol) structures has been undertaken using first principles methods. It is shown that a mixture of quinoid and keto forms of poly(o-aminophenol) gives rise to a simulated spectrum that replicates the experimental infrared spectra of plasma-produced poly(o-aminophenol) better [...] Read more.
A vibrational analysis of various poly(o-aminophenol) structures has been undertaken using first principles methods. It is shown that a mixture of quinoid and keto forms of poly(o-aminophenol) gives rise to a simulated spectrum that replicates the experimental infrared spectra of plasma-produced poly(o-aminophenol) better than either the quinoid or keto poly(o-aminophenol) spectra alone. An unassigned peak in the spectrum is attributed to hydrogen bonding to the silica substrate. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences)
Show Figures

Figure 1

Back to TopTop