Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc
Abstract
:1. Introduction
2. Physical Background
3. Overview of Approximate Methods Used in the Present Work
3.1. Multi-Band Approximation for the Spectral Absorption Coefficient
3.2. The P1 Method of Spherical Harmonics
3.3. The Discrete Ordinate Method
3.4. Approximate Net Emission Coefficient
4. Computation of the Absorption Coefficient
- Dataset I
- Dataset II
5. Results and Discussion
5.1. Isothermal Cylindrical Plasma
5.2. The Free-Burning Arc
6. Conclusions
- The approximate () and the numerically obtained () NECs depend on the datasets for the spectral absorption coefficient in particular for plasma temperatures beyond about 15,000 K. The approximate NEC is lower than , independently of the datasets that have been used.
- The P1 method and the DOM for solving the equation of radiative transfer provide practically the same numerical NECs .
- The NECs depend on the method of averaging the spectral absorption coefficient within the spectral bands. NECs that are obtained applying the Planck mean values are larger than those applying the Rosseland mean values. A hybrid definition of the mean absorption coefficient provides intermediate values that are more close to the approximate spectral NEC.
- The implementation of the NEC for a plasma radius of 1 mm, the P1 method, and the DOM with five spectral bands and a hybrid mean value of the spectral absorption coefficient into the model of the free-burning arc shows very similar values of the plasma temperature in the hot arc core and deviations in the range of 1000 K in the arc periphery. Such deviations can hardly be approved in experiments with optical emission spectroscopy.
- The arc models with the P1 method and the DOM indicate negative radiative losses (absorption of radiation) near the electrodes in contrast to the models with NECs.
- The predicted plasma temperature in the models with NECs is practically the same despite the discrepancy in the radiative loss term Qr for the two datasets for the spectral absorption coefficient, which are considered in the present study.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References and Note
- Murphy, A.B.; Uhrlandt, D. Foundation of high-pressure thermal plasmas. Plasma Sources Sci. Technol. 2018, 27, 063001. [Google Scholar] [CrossRef]
- Fauchais, P.; Coudert, J.F.; Vardelle, M. (Eds.) Diagnostics in Thermal Plasma Plasma Diagnostics; Academic Press: Boston, MA, USA, 1989. [Google Scholar]
- Colombo, V.; Concetti, A.; Ghedini, E.; Dallavalle, S.; Vancini, M. High-speed imaging in plasma arc cutting: A review and new developments. Plasma Sources Sci. Technol. 2009, 18, 023001. [Google Scholar] [CrossRef]
- Bachmann, B.; Kozakov, R.; Gött, G.; Ekkert, K.; Bachmann, J.P.; Marques, J.L.; Schöpp, H.; Uhrlandt, D.; Schein, J. High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs. J. Phys. D Appl. Phys. 2013, 46, 125203. [Google Scholar] [CrossRef]
- Murphy, A.B.; D Farmer, A.J.; Haidar, J. Laser-scattering measurement of temperature profiles of a free-burning arc. Appl. Phys. Lett. 1992, 60, 1304–1306. [Google Scholar] [CrossRef]
- Hsu, K.C.; Pfender, E. Modeling of a free-burning, high-intensity arc at elevated pressures. Plasma Chem. Plasma Process. 1984, 4, 219–234. [Google Scholar] [CrossRef]
- Simonin, O.; Delalondre, C.; Violett, P.-L. Modelling in thermal plasma and electric arc column. Pure Appl. Chem. 1992, 64, 623–628. [Google Scholar] [CrossRef]
- Wendelstorf, J.; Decker, I.; Wohlfart, H.; Simon, G. TIG and plasma arc modelling: A survey. In Mathematical Modelling of Weld Phenomena; Cerjak, H., Ed.; Institute of Materials: London, UK, 1997; Volume 650, pp. 848–897. [Google Scholar]
- Gleizes, A.; Gonzalez, J.-J.; Freton, P. Thermal plasma modelling. J. Phys. D Appl. Phys. 2005, 38, R153–R183. [Google Scholar] [CrossRef]
- Trelles, J.P.; Heberlein, J.V.R. Simulation results of arc behavior in different plasma spray torches. J. Therm. Spray Technol. 2006, 15, 563–569. [Google Scholar] [CrossRef]
- Shigeta, M. Turbulence modelling of thermal plasma flows. J. Phys. D Appl. Phys. 2016, 49, 493001. [Google Scholar] [CrossRef]
- Trelles, J.P.; Heberlein, J.V.R.; Pfender, E. Non-equilibrium modelling of arc plasma torches. J. Phys. D Appl. Phys. 2007, 40, 5937–5952. [Google Scholar] [CrossRef]
- Baeva, M.; Kozakov, R.; Gorchakov, S.; Uhrlandt, D. Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci. Technol. 2012, 21, 055027. [Google Scholar] [CrossRef]
- Baeva, M.; Benilov, M.S.; Almeida, N.A.; Uhrlandt, D. Novel non-equilibrium modelling of a DC electric arc in argon. J. Phys. D Appl. Phys. 2016, 49, 245205. [Google Scholar] [CrossRef]
- Choquet, I. Gas tungsten arc models including the physics of the cathode layer: Remaining issues. Weld. World 2018, 62, 177–196. [Google Scholar] [CrossRef]
- Benilov, M.S. Modeling the physics of interaction of high-pressure arcs with their electrodes: Advances and challenges. J. Phys. D: Appl. Phys. 2020, 53, 013002. [Google Scholar] [CrossRef]
- Nordborg, H.; Iordanis, A.A. Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. J. Phys. D Appl. Phys. 2008, 41, 135205. [Google Scholar] [CrossRef]
- Tanaka, Y.; Fujino, T.; Iwao, T. Review of thermal plasma simulation technique. IEEJ Trans. 2019, 14, 1582–1594. [Google Scholar] [CrossRef]
- Lowke, J.J. Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J. Quant. Spectrosc. Radiat. Transf. 1974, 14, 111–122. [Google Scholar] [CrossRef]
- Modest, M.F. Radiative Heat Transfer, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Iordanis, A.A.; Franck, C.M. Self-consistent radiation based modelling of electric arcs: II. Application to gas circuit breakrs. J. Phys. D Appl. Phys. 2008, 41, 135206. [Google Scholar] [CrossRef]
- Mohsni, C.; Baeva, M.; Franke, S.; Gortschakow, S.; Araoud, Z.; Charrada, K. Effect of a bidirectional coupling of a LTE arc column to a refractory cathode in atmospheric pressure argon. Phys. Plasmas 2020, 27, 073514. [Google Scholar] [CrossRef]
- Baeva, M.; Zhu, T.; Kewitz, T.; Testrich, H.; Foest, R. Self-consistent cathode-plasma coupling and role of the fluid flow approach in torch modelling. J. Therm. Spray. Technol. 2021, 30, 1737–1750. [Google Scholar] [CrossRef]
- Benilov, M.S. Theory and Modelling of Arc Cathodes. Plasma Sources Sci. Technol. 2002, 11, A49–A54. [Google Scholar] [CrossRef]
- Pateyron, B.; Delluc, G.; Calve, N. T&T Winner-Software for Thermo-Chemistry, Univ. Limoges, 2015, 87051 Limoges Cedes, France.
- Murphy, A.B.; Arundel, C.J. Transport Coefficients of Argon, Nitrogen, Oxygen, Argon-Nitrogen, and Argon-Oxygen Plasmas. Plasma Chem. Plasma Process. 1994, 14, 451–490. [Google Scholar] [CrossRef]
- Smith, D.; Altovsky, I.V.; Barabash, V.R.; Beeston, J. ITER Blanker, Shield and Material Database; ITER Documentation Series; IAEA: Vienna, Austria, 1991; Volume 29. [Google Scholar]
- Touloukian, Y.S. Thermal Conductivity: Metallic Elements and Alloys, TPRS Series, vol. 1 IFI/Plenum; IFI/Plenum: New York, NY, USA, 1970. [Google Scholar]
- Tencer, J.; Howell, J.R. Coupling radiative heat transfer in participating media with other heat transfer modes. J Braz. Soc. Mech. Sci. Eng. 2016, 38, 1473–1487. [Google Scholar] [CrossRef]
- Bartlova, M.; Bogatyreva, N.; Aubrecht, V. Radiation heat transfer in thermal argon plasma with iron vapours. Plasma Phys. Technol. 2014, 1, 8–10. [Google Scholar]
- Kloc, P.; Aubrecht, V.; Bartlova, M.; Fuchs, R. Comparison of mean absorption methods for radiation transfer models in air plasma at various pressures. Plasma Chem Plasma Process 2023, 43, 429–447. [Google Scholar] [CrossRef]
- Kozu, S.; Fujino, T.; Yoshino, T.; Mori, T. Radiative transfer calculation of CO2 thermal plasma using a hybrid Plack-Rosseland mean absorption coefficient. In Proceedings of the 22nd International Conference on Gas Discharges and Their Applications, Novi Sad, Serbia, 2–7 September 2018; pp. 127–130. [Google Scholar]
- Church, C.H.; Schlecht, R.G.; Liberman, I.; Swanson, B.W. Studies of highly radiative plasmas using the wall-stabilized pulsed arc discharge. AIAA J. 1966, 4, 1947–1953. [Google Scholar] [CrossRef]
- Bogatyreva, N.; Bartlova, M.; Aubrecht, V. Absorption properties of argon arc plasma. In Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, Belgum, 4–8 July 2016; pp. 481–484. [Google Scholar]
- Griem, H.R. Plasma Spectroscopy; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Liebermann, R.W.; Lowke, J.J. Radiation emission coefficients for sulfur hexafluoride arc plasmas. J. Quant. Spectrosc. Radiat. Transf. 1976, 16, 253–264. [Google Scholar] [CrossRef]
- Cressault, Y.; Gleizes, A. Thermal plasma properties for Ar–Al, Ar–Fe and Ar–Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure, J. Phys. D Appl. Phys. 2013, 46, 415206. [Google Scholar] [CrossRef]
- Cabannes, F.; Chapelle, J. Spectroscopic Plasma Diagnostic Reactions under Plasma Conditions; Wiley-Interscience: New York, NY, USA, 1971; Volume 1. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.10); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. Available online: https://physics.nist.gov/asd (accessed on 15 November 2022). [CrossRef]
- Whitting, E.E. An empirical approximation to the Voigt profile. J. Quant. Spectrosc. Radiat. Transf. 1968, 8, 1379–1384. [Google Scholar] [CrossRef]
- Essoltani, A.; Proulx, P.; Boulos, M.I.; Gleizes, A. Volumetric emission of argon plasmas in the presence of vapors of Fe, Si, and AI. Plasma Chem. Plasma Process. 1994, 14, 437–450. [Google Scholar] [CrossRef]
- Lassner, E.; Schubert, W.D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Springer: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Incorpera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley: New York, NY, USA, 2006. [Google Scholar]
- Baeva, M.; Gorchakov, S.; Kozakov, R.; Uhrlandt, D.; Schoenemann, T. Non-equilibrium modelling of the electrical characteristics of a free-burning arc. High Volt. Eng. 2013, 39, 2159–2165. [Google Scholar] [CrossRef]
- Baeva, M.; Cressault, Y.; Kloc, P. Comparative studies on the radiative heat transfer in a self-consistent model of a free-burning arc in argon—Dataset. Preprints 2024, 2024060853. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baeva, M.; Cressault, Y.; Kloc, P. Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc. Plasma 2024, 7, 631-650. https://doi.org/10.3390/plasma7030033
Baeva M, Cressault Y, Kloc P. Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc. Plasma. 2024; 7(3):631-650. https://doi.org/10.3390/plasma7030033
Chicago/Turabian StyleBaeva, Margarita, Yann Cressault, and Petr Kloc. 2024. "Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc" Plasma 7, no. 3: 631-650. https://doi.org/10.3390/plasma7030033
APA StyleBaeva, M., Cressault, Y., & Kloc, P. (2024). Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc. Plasma, 7(3), 631-650. https://doi.org/10.3390/plasma7030033