Feature Papers in Plasma Sciences 2025

A special issue of Plasma (ISSN 2571-6182).

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1826

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA
Interests: nonequilibrium plasma; pulsed discharges; plasmachemistry; combustion; detonation waves; shock waves; plasma aerodynamics

Special Issue Information

Dear Colleagues,

This Special Issue, entitled “Feature Papers in Plasma Sciences 2025”, aims to collect high-quality original research articles, communications, and review papers in the cutting-edge field of plasma sciences. We encourage Editorial Board Members of Plasma (https://www.mdpi.com/journal/plasma/editors) to contribute feature papers that reflect the latest progress in their research field or invite relevant experts and colleagues instead.

The publications in the first and second volumes, which we believe may be of interest to you, can be found here: https://www.mdpi.com/journal/plasma/special_issues/plasmafp; https://www.mdpi.com/journal/plasma/special_issues/570U0DI1YV.

Prof. Dr. Andrey Starikovskiy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plasma is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • atmospheric-pressure plasma
  • electron, ion and plasma sources
  • low-temperature plasma and its applications
  • plasma diagnostics
  • electric discharges in gases, liquids and solids
  • plasma dynamics
  • plasma electrical properties
  • plasma theory and modelling
  • plasma–surface interaction
  • low-pressure plasma

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4724 KiB  
Article
Absorption of FD-150 in Brain Endothelial Cells by Cold Atmospheric Microplasma
by Md Jahangir Alam, Abubakar Hamza Sadiq, Jaroslav Kristof, Mahedi Hasan, Farhana Begum, Yamano Tomoki and Kazuo Shimizu
Plasma 2025, 8(2), 19; https://doi.org/10.3390/plasma8020019 - 12 May 2025
Viewed by 188
Abstract
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric [...] Read more.
The blood–brain barrier (BBB) limits drug delivery to the brain, particularly for large or hydrophilic molecules. Brain microvascular endothelial cells (bEND.3), which form part of the BBB, play a critical role in regulating drug uptake. This study investigates the use of cold atmospheric microplasma (CAM) to enhance membrane permeability and facilitate drug delivery in bEND.3 cells. CAM generates reactive oxygen species (ROS) that modulate membrane properties. We exposed bEND.3 cells to CAM at varying voltages (3, 3.5, 4, and 4.5 kV) and measured drug uptake using the fluorescent drug FD-150, fluorescence intensity, ROS levels, membrane lipid order, and membrane potential. The results showed a significant increase in fluorescence intensity and drug concentration in the plasma-treated cells compared to controls. ROS production, measured by DCFH-DA staining, was higher in the plasma-treated cells, supporting the hypothesis that CAM enhances membrane permeability through ROS-induced changes. Membrane lipid order, assessed using the LipiORDER probe, shifted from the liquid-ordered (Lo) to liquid-disordered (Ld) phase, indicating increased membrane fluidity. Membrane depolarization was detected with DisBAC2(3) dye, showing increased fluorescence in the plasma-treated cells. Cell viability, assessed by trypan blue and LIVE/DEAD™ assays, revealed transient damage at higher voltages (≥4 kV), with recovery after 24 h. These results suggest that CAM enhances drug delivery in bEND.3 cells by modulating membrane properties via ROS production and changes in membrane potential. CAM offers a promising strategy for improving drug delivery to the brain, with potential applications in brain-targeted therapies. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

14 pages, 488 KiB  
Article
A Theoretical Study of the Ionization States and Electrical Conductivity of Tantalum Plasma
by Shi Chen, Qishuo Zhang, Qianyi Feng, Ziyue Yu, Jingyi Mai, Hongping Zhang, Lili Huang, Chengjin Huang and Mu Li
Plasma 2025, 8(2), 16; https://doi.org/10.3390/plasma8020016 - 28 Apr 2025
Viewed by 218
Abstract
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization [...] Read more.
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization composition and electrical conductivity of tantalum plasma across a wide range of densities and temperatures is essential. In this study, we calculate the densities of ionization species and the electrical conductivity of partially ionized, nonideal tantalum plasma based on a simplified theoretical model that accounts for high ionization states up to the atomic number of the element and the lowering of ionization energies. A comparison of the ionization compositions between tantalum and copper plasmas highlights the significant role of ionization energies in determining species populations. Additionally, the average electron–neutral momentum transfer cross-section significantly influences the electrical conductivity calculations, and calibration with experimental measurements offers a method for estimating this atomic parameter. The impact of electrical conductivity in the intermediate-density range on the laser absorption coefficient is discussed using the Drude model. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

15 pages, 3975 KiB  
Article
Decomposition Mechanisms of Lignin-Related Aromatic Monomers in Solution Plasma
by Takaki Miyamoto, Jeanielle Amurao, Eiji Minami and Haruo Kawamoto
Plasma 2025, 8(2), 14; https://doi.org/10.3390/plasma8020014 - 10 Apr 2025
Viewed by 361
Abstract
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition [...] Read more.
Lignin is a natural aromatic macromolecule present in wood and an abundant resource on Earth, yet it is hardly used. In this study, an aqueous solution plasma treatment was investigated for the catalyst-free production of valuable chemicals from lignin. To elucidate the decomposition mechanism, the aqueous solution plasma treatment was applied to the fundamental lignin aromatic model compounds—phenol, guaiacol, and syringol. The results showed that the decomposition rate followed the order syringol > guaiacol > phenol, indicating that electron-donating methoxy groups enhance reactivity. These aromatic model compounds underwent hydroxylation at the ortho and para positions, oxidative ring cleavage, and fragmentation, leading to the formation of various dicarboxylic acids, primarily oxalic acid. All these reactions were promoted by hydroxyl radicals generated from water. Ultimately, decarbonylation and decarboxylation of carboxyl groups resulted in gasification, mainly producing H2, CO, and CO2. These results provide fundamental insights into lignin decomposition and demonstrate that aqueous solution plasma is a promising method for producing dicarboxylic acids from lignin under mild conditions without catalysts. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

17 pages, 13969 KiB  
Article
Combined Plasma and Laser Heating of Graphite
by Aleksey Chaplygin, Mikhail Yakimov, Sergey Vasil’evskii, Mikhail Kotov, Ilya Lukomskii, Semen Galkin, Andrey Shemyakin, Nikolay Solovyov and Anatoly Kolesnikov
Plasma 2025, 8(1), 9; https://doi.org/10.3390/plasma8010009 - 4 Mar 2025
Viewed by 721
Abstract
This paper investigates a novel combined laser and plasma heating test technique. Integrating the 1.5 kW Raycus RFL-C1500 laser source into the VGU-4 Inductively Coupled Plasma Facility (IPMech RAS) allowed the study of fine-grain MPG-7 graphite ablation in the high-temperature range from 2920 [...] Read more.
This paper investigates a novel combined laser and plasma heating test technique. Integrating the 1.5 kW Raycus RFL-C1500 laser source into the VGU-4 Inductively Coupled Plasma Facility (IPMech RAS) allowed the study of fine-grain MPG-7 graphite ablation in the high-temperature range from 2920 to 3865 K under exposure to subsonic nitrogen plasma flow and combined exposure to nitrogen plasma flow and laser irradiation. Graphite nitridation and sublimation were observed. The subsonic nitrogen plasma flow was characterized by numerical modeling, probes, and spectral measurements. The proposed experimental approach is promising for simulating the entry conditions of planetary mission vehicles into different atmospheres. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

Back to TopTop