Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Process Reactor and Plasma Parameters
2.3. Weight Loss Measurements
2.4. Surface Characterization
2.5. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) Analysis
2.6. Water Contact Angle Measurements
3. Results and Discussion
3.1. Morphological Changes Induced by Plasma
3.2. Weight Loss by Plasma Etching
3.3. Stability of Surface-Treated BP Films: Ageing Phenomenon
3.4. FTIR Characterization
3.5. XRD Analysis
3.6. DSC Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeyeye, O.A.; Sadiku, E.R.; Reddy, A.B.; Ndamase, A.S.; Makgatho, G.; Sellamuthu, P.S.; Perumal, A.B.; Nambiar, R.B.; Fasiku, V.O.; Ibrahim, I.D.; et al. The use of biopolymers in food packaging. In Green Biopolymers and Their Nanocomposites; Gnanasekaran, D., Ed.; Springer: Singapore, 2019; pp. 137–158. [Google Scholar] [CrossRef]
- North, E.J.; Halden, R.U. Plastics and environmental health: The road ahead. Rev. Environ. Health 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Pellicer, E.; Nikolic, D.; Sort, J.; Baró, M.; Zivic, F.; Grujovic, N.; Grujic, R.; Pelemis, S. Advances in Applications of Industrial Biomaterials; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2017; ISBN 9783319627663. [Google Scholar]
- Meiron, T.; Saguy, I. Wetting properties of food packaging. Food Res. Int. 2007, 40, 653–659. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Sheng, E.; Sutherland, I.; Brewis, D.; Heath, R. Effects of the chromic acid etching on propylene polymer surfaces. J. Adhes. Sci. Technol. 1995, 9, 47–60. [Google Scholar] [CrossRef]
- Drobota, M.; Gradinaru, L.M.; Ciobanu, C.; Vasilescu, D.S. Effect of chemical treatment of poly(ethylene terephthalate) surfaces on mechanical and water-sorption properties. Univ. Politeh. Buchar. Sci. Bull. Ser. B-Chem. Mater. Sci. 2015, 77, 131–140. [Google Scholar]
- Hambardzumyan, A.; Biltresse, S.; Dufrêne, Y.; Marchand-Brynaert, J. An Unprecedented Surface Oxidation of Polystyrene Substrates by Wet Chemistry under Basic Conditions. J. Colloid Interface Sci. 2002, 252, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ellis, A.V.; Voelcker, N.H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010, 31, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Desmet, T.; Morent, R.; De Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, R.; Zibaei, R.; Hashami, Z.; Hasanvand, S.; Garavand, F.; Rouhi, M.; Jafari, S.M.; Mohammadi, R. Modification and improvement of biodegradable packaging films by cold plasma; a critical review. Crit. Rev. Food Sci. Nutr. 2020, 62, 1936–1950. [Google Scholar] [CrossRef] [PubMed]
- Praveen, K.M.; Pious, C.V.; Thomas, S.; Grohens, Y. Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields; Mozetič, M., Špatenka, P., Praveen, K.M., Thomas, S., Cvelbar, U., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Hsu, S.-H.; Chen, K.-S.; Lin, H.-R.; Chang, S.-J.; Tang, T.-P. Effect of Plasma Gas Flow Direction on Hydrophilicity of Polymer by Small Zone Cold Plasma Treatment and Hydrophobic Plasma Treatment. Int. J. Distrib. Sens. Netw. 2009, 5, 429–436. [Google Scholar] [CrossRef]
- Ataeefard, M.; Moradian, S.; Mirabedini, M.; Ebrahimi, M.; Asiaban, S. Investigating the effect of power/time in the wettability of Ar and O2 gas plasma-treated low-density polyethylene. Prog. Org. Coat. 2009, 64, 482–488. [Google Scholar] [CrossRef]
- Kostov, K.; Nishime, T.; Castro, A.; Toth, A.; Hein, L. Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 2014, 314, 367–375. [Google Scholar] [CrossRef]
- Masruroh; Santjojo, D.J.D.H. Surface modification of polystyrene by nitrogen plasma treatment. In Coatings and Thin-Film Technologies; Perez-Taborda, J.A., Bernal, A.G.A., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Slepička, P.; Trostová, S.; Kasálková, N.S.; Kolská, Z.; Sajdl, P.; Švorčík, V. Surface Modification of Biopolymers by Argon Plasma and Thermal Treatment. Plasma Process. Polym. 2011, 9, 197–206. [Google Scholar] [CrossRef]
- Mohammadalipour, M.; Asadolahi, M.; Mohammadalipour, Z.; Behzad, T.; Karbasi, S. Plasma surface modification of electrospun polyhydroxybutyrate (PHB) nanofibers to investigate their performance in bone tissue engineering. Int. J. Biol. Macromol. 2023, 230, 123167. [Google Scholar] [CrossRef]
- Fu, S.; Zhang, P. Surface modification of polylactic acid (PLA) and polyglycolic acid (PGA) monofilaments via the cold plasma method for acupoint catgut-embedding therapy applications. Text. Res. J. 2019, 89, 3839–3849. [Google Scholar] [CrossRef]
- Licciardello, M.; Ciardelli, G.; Tonda-Turo, C. Biocompatible Electrospun Polycaprolactone-Polyaniline Scaffold Treated with Atmospheric Plasma to Improve Hydrophilicity. Bioengineering 2021, 8, 24. [Google Scholar] [CrossRef]
- Bhushan, B.; Kumar, R. Plasma Treated and Untreated Thermoplastic Biopolymers/Biocomposites in Tissue Engineering and Biodegradable Implants. In Materials for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 339–369. ISBN 978-0-12-816901-8. [Google Scholar]
- Wei, Z.; Gu, J.; Ye, Y.; Fang, M.; Lang, J.; Yang, D.; Pan, Z. Biodegradable poly(butylene succinate) nanofibrous membrane treated with oxygen plasma for superhydrophilicity. Surf. Coat. Technol. 2019, 381, 125147. [Google Scholar] [CrossRef]
- Bélard, L.; Poncin-Epaillard, F.; Dole, P.; Avérous, L. Plasma-polymer coatings onto different biodegradable polyesters surfaces. Eur. Polym. J. 2013, 49, 882–892. [Google Scholar] [CrossRef]
- Zhang, R.; Lan, W.; Ding, J.; Ahmed, S.; Qin, W.; He, L.; Liu, Y. Effect of PLA/PBAT Antibacterial Film on Storage Quality of Passion Fruit during the Shelf-Life. Molecules 2019, 24, 3378. [Google Scholar] [CrossRef] [PubMed]
- Che, C.; Dashtbozorg, B.; Li, X.; Dong, H.; Jenkins, M. Effect of μPlasma Modification on the Wettability and the Ageing Behaviour of Glass Fibre Reinforced Polyamide 6 (GFPA6). Materials 2021, 14, 7721. [Google Scholar] [CrossRef]
- Kim, B.K.; Kim, K.S.; Park, C.E.; Ryu, C.M. Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures. J. Adhes. Sci. Technol. 2002, 16, 509–521. [Google Scholar] [CrossRef]
- Vassallo, E.; Aloisio, M.; Pedroni, M.; Ghezzi, F.; Cerruti, P.; Donnini, R. Effect of Low-Pressure Plasma Treatment on the Surface Wettability of Poly(butylene succinate) Films. Coatings 2022, 12, 220. [Google Scholar] [CrossRef]
- Vassallo, E.; Pedroni, M.; Silvetti, T.; Morandi, S.; Brasca, M. Inactivation of Staphylococcus aureus by the synergistic action of charged and reactive plasma particles. Plasma Sci. Technol. 2020, 22, 085504. [Google Scholar] [CrossRef]
- Chung, P.M.; Talbot, L.; Touryan, K.J. Electric Probes in Stationary and Flowing Plasma; Springer: New York, NY, USA, 1975. [Google Scholar]
- Chen, F.F. Plasma Diagnostic Techniques; Huddlestone, R.H., Leonard, S.L., Eds.; Academic Press: Cambridge, MA, USA, 1965; p. 113. [Google Scholar]
- Heidenreich, J.E.; Paraszczak, J.R.; Moisan, M.; Sauve, G. Electrostatic probe analysis of microwave plasmas used for polymer etching. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1987, 5, 347–354. [Google Scholar] [CrossRef]
- Harrick, N.J.; du Pré, F.K. Effective Thickness of Bulk Materials and of Thin Films for Internal Reflection Spectroscopy. Appl. Opt. 1966, 5, 1739–1743. [Google Scholar] [CrossRef]
- Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L.M. Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. In Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems, Costa de Caparica, Portugal, 11–13 April 2016; pp. 261–269. [Google Scholar]
- Puliyalil, H.; Cvelbar, U. Selective Plasma Etching of Polymeric Substrates for Advanced Applications. Nanomaterials 2016, 6, 108. [Google Scholar] [CrossRef]
- Su, S.; Duhme, M.; Kopitzky, R. Uncompatibilized PBAT/PLA Blends: Manufacturability, Miscibility and Properties. Materials 2020, 13, 4897. [Google Scholar] [CrossRef]
- Borcia, C.; Punga, I.; Borcia, G. Surface properties and hydrophobic recovery of polymers treated by atmospheric-pressure plasma. Appl. Surf. Sci. 2014, 317, 103–110. [Google Scholar] [CrossRef]
- Aziman, N.; Kian, L.K.; Jawaid, M.; Sanny, M.; Alamery, S. Morphological, Structural, Thermal, Permeability, and Antimicrobial Activity of PBS and PBS/TPS Films Incorporated with Biomaster-Silver for Food Packaging Application. Polymers 2021, 13, 391. [Google Scholar] [CrossRef]
- Sim, J.Y.; Raj, C.J.; Yu, K.H. Poly(butylene adipate-co-terephthalate) (PBAT)/Antimony-doped Tin Oxide Polymer Composite for Near Infrared Absorption Coating Applications. Bull. Korean Chem. Soc. 2019, 40, 674–679. [Google Scholar] [CrossRef]
- Pokhrel, S.; Sigdel, A.; Lach, R.; Slouf, M.; Sirc, J.; Katiyar, V.; Bhattarai, D.R.; Adhikari, R. Starch-based biodegradable film with poly(butylene adipate-co-terephthalate): Preparation, morphology, thermal and biodegradation properties. J. Macromol. Sci. Part A 2021, 58, 610–621. [Google Scholar] [CrossRef]
- De Matos Costa, A.R.; Crocitti, A.; de Carvalho, L.H.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends. Polymers 2020, 12, 2317. [Google Scholar] [CrossRef]
- Nobile, M.R.; Crocitti, A.; Malinconico, M.; Santagata, G.; Cerruti, P. Preparation and characterization of polybutylene succinate (PBS) and polybutylene adipate-terephthalate (PBAT) biodegradable blends. In Proceedings of the 9th International Conference on “Times of Polymers and Composites”: From Aerospace to Nanotechnology, Naples, Italy, 17–21 June 2018; p. 020180. [Google Scholar]
- Jordá-Vilaplana, A.; Fombuena, V.; García-García, D.; Samper, M.D.; Sánchez-Nácher, L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014, 58, 23–33. [Google Scholar] [CrossRef]
- Harrick, N.J. Study of Physics and Chemistry of Surfaces from Frustrated Total Internal Reflections. Phys. Rev. Lett. 1960, 4, 224–226. [Google Scholar] [CrossRef]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Harrick, J. Internal Reflection Spectroscopy; Interscience: New York, NY, USA, 1975. [Google Scholar]
- De Geyter, N.; Morent, R.; Leys, C. Surface characterization of plasma-modified polyethylene by contact angle experiments and ATR-FTIR spectroscopy. Surf. Interface Anal. 2007, 40, 608–611. [Google Scholar] [CrossRef]
- Chen, G.; Dong, S.; Zhao, S.; Li, S.; Chen, Y. Improving functional properties of zein film via compositing with chitosan and cold plasma treatment. Ind. Crop. Prod. 2019, 129, 318–326. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.-H. Microbial succinic acid, its polymer Poly(butylene succinate), and applications. In Plastics from Bacteria; Chen, G.Q., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 347–388. [Google Scholar] [CrossRef]
- Wang, X.; Cui, L.; Fan, S.; Li, X.; Liu, Y. Biodegradable Poly(butylene adipate-co-terephthalate) Antibacterial Nanocomposites Reinforced with MgO Nanoparticles. Polymers 2021, 13, 507. [Google Scholar] [CrossRef]
- Da Silva, C.G.; Kano, F.S.; Rosa, D.S. Lignocellulosic Nanofiber from Eucalyptus Waste by a Green Process and Their Influence in Bionanocomposites. Waste Biomass Valorization 2019, 11, 3761–3774. [Google Scholar] [CrossRef]
- Park, J.W.; Im, S.S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci. 2002, 86, 647–655. [Google Scholar] [CrossRef]
- Yoo, E.S.; IM, S.S. Melting Behavior of Poly(butylene succinate) during Heating Scan by DSC. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1357–1366. [Google Scholar] [CrossRef]
Plasma Gas | Total Gas Flow (Sccm) | Electron Density (m−3) | Electron Temperature (eV) | Self-Bias Voltage Vdc (V) |
---|---|---|---|---|
Oxygen plasma | 20 | 2 × 1014 ± 10% | 1 ± 0.1 | −450 |
Ar post-crosslinking plasma | 20 | 2.5 × 1015 ± 10% | 1.7 ± 0.1 | −440 |
Biopolymer | Untreated | Crosslinked 1 min | Crosslinked 2 min |
---|---|---|---|
PBS | 26.5 ± 4.4 | 24.6 ± 2.9 | 23.9 ± 4 |
PBAT | 22.6 ± 1.3 | 19.8 ± 4.1 | 16.6 ± 2.8 |
PLA/PBAT | 105.5 ± 13.5 | 63 ± 10.2 | 66.5 ± 10.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassallo, E.; Pedroni, M.; Aloisio, M.; Pietralunga, S.M.; Donnini, R.; Saitta, F.; Fessas, D. Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging. Plasma 2024, 7, 91-105. https://doi.org/10.3390/plasma7010007
Vassallo E, Pedroni M, Aloisio M, Pietralunga SM, Donnini R, Saitta F, Fessas D. Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging. Plasma. 2024; 7(1):91-105. https://doi.org/10.3390/plasma7010007
Chicago/Turabian StyleVassallo, Espedito, Matteo Pedroni, Marco Aloisio, Silvia Maria Pietralunga, Riccardo Donnini, Francesca Saitta, and Dimitrios Fessas. 2024. "Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging" Plasma 7, no. 1: 91-105. https://doi.org/10.3390/plasma7010007
APA StyleVassallo, E., Pedroni, M., Aloisio, M., Pietralunga, S. M., Donnini, R., Saitta, F., & Fessas, D. (2024). Plasma Treatment of Different Biodegradable Polymers: A Method to Enhance Wettability and Adhesion Properties for Use in Industrial Packaging. Plasma, 7(1), 91-105. https://doi.org/10.3390/plasma7010007