Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries
Abstract
:1. Introduction
2. Fundamental Aspects of Plasma: Collective Phenomena from Micro- to Macroscopic Dynamics
3. Excitation and Relaxation Schemes in the Plasma
3.1. Irreversible Plasma Energy
3.2. Recombining Detached Plasma
4. Plasma-driven Phenomena
4.1. Artificial Plasma Generation in Nominal Conditions (Temperature and Pressure)
4.2. Emergence of Plasma–Liquid Interactions
4.3. Plasma Seed Science: Enhancement of Germination and Growth of Plant Seeds
5. Emergence of the Plasma-Driven Science Concept
6. Evolution and the Future of Plasma-Driven Sciences
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alfvén, H.; Boley, F.I. Worlds-Antiworlds, Antimatter in Cosmology. Am. J. Phys. 1967, 35, 453–454. [Google Scholar] [CrossRef]
- Alfven, H. Cosmology in the Plasma Universe, Lecture at the Institute of Space Research Academy of Sciences on Moscow; TRITA-EPP-87-07: Trita, Peru, 1987; ISSN 0348-7539. [Google Scholar]
- Langmuir, I. Oscillations in Ionized Gases. Proc. Natl. Acad. Sci. USA 1928, 14, 627–637. [Google Scholar] [CrossRef]
- Tonks, L.; Langmuir, I. Oscillations in ionized gases. Phys. Rev. 1929, 33, 195. [Google Scholar] [CrossRef]
- Hori, M. Radical controlled processes. Rev Mod Plasma Phys. 2022, 6, 36. [Google Scholar] [CrossRef]
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.J.; Canal, C.; et al. The 2022 Plasma roadmap: Low temperature plasma science and technology. J. Phys. D 2022, 55, 373001. [Google Scholar] [CrossRef]
- Adamovich, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D 2017, 50, 323001. [Google Scholar] [CrossRef]
- Samukawa, S.; Hori, M.; Rauf, S.; Tachibana, K.; Bruggeman, P.; Kroesen, G.; Whitehead, J.C.; Murphy, A.B.; Gutsol, A.F.; Starikovskaia, S.; et al. The 2012 Plasma Roadmap. J. Phys. D 2012, 45, 253001. [Google Scholar] [CrossRef]
- Chen, F.F. Introduction to Plasma Physics and Controlled Fusion, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges and Materials Processing, 2nd ed.; Wiley Interscience: Hoboken, NJ, USA, 2005; p. 28. [Google Scholar]
- Niemi, K.; Waskoenig, J.; Sadeghi, N.; Gans, T.; O’Connell, D. The role of helium metastable states in radio-frequency driven helium–oxygen atmospheric pressure plasma jets: Measurement and numerical simulation. Plasma Sources Sci. Technol. 2011, 20, 055005. [Google Scholar] [CrossRef]
- Murakami, T.; Niemi, K.; Gans, T.; O’Connell, D.; Graham, W.G. Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities. Plasma Sources Sci. Technol. 2012, 22, 015003. [Google Scholar] [CrossRef]
- Yoshimura, S.; Otsubo, Y.; Yamashita, A.; Ishikawa, K. Insights into normothermic treatment with direct irradiation of atmospheric pressure plasma for biological applications. Jpn. J. Appl. Phys. 2021, 60, 010502. [Google Scholar] [CrossRef]
- Takamura, S. Kyokai Ryoiki Plasma Riko Gaku No Kiso (in Japanese); Morikita Publishing Co., Ltd.: Tokyo, Japan, 2010; ISBN 10. 4627784619. [Google Scholar]
- Ohno, N. Plasma detachment in linear devices. Plasma Phys. Control. Fusion 2017, 59, 034007. [Google Scholar] [CrossRef]
- Kallenbach, A.; Bernert, M.; Dux, R.; Reimold, F.; Wischmeier, M.; Team, A.U. Analytical calculations for impurity seeded partially detached divertor conditions. Plasma Phys. Control. Fusion 2016, 58, 045013. [Google Scholar] [CrossRef]
- Perillo, R.; Chandra, R.A.; Akkermans, G.R.; Vijvers, W.A.J.; Graef, W.A.A.D.; Classen, I.G.J.; van Dijk, J.; de Baar, M.R. Studying the influence of nitrogen seeding in a detached-like hydrogen plasma by means of numerical simulations. Plasma Phys. Control. Fusion 2018, 60, 105004. [Google Scholar] [CrossRef]
- Perillo, R.; Akkermans, G.; Classen, I.; Vijvers, W.; Chandra, R.; Jesko, K.; Korving, S.; Vernimmen, J.; de Baar, M. Experimental evidence of enhanced recombination of a hydrogen plasma induced by nitrogen seeding in linear device Magnum-PSI. Nucl. Mater. Energy 2019, 19, 87–93. [Google Scholar] [CrossRef]
- Perillo, R. Plasma chemistry in divertor relevant plasmas. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2017. [Google Scholar]
- Ohno, N.; Ezumi, N.; Takamura, S.; Krasheninnikov, S.I.; Pigarov, A.Y. Experimental evidence of molecular activated recombination in detached recombining plasmas. Phys. Rev. Lett. 1998, 81, 818. [Google Scholar] [CrossRef]
- Ohno, N.; Seki, M.; Ohshima, H.; Tanaka, H.; Kajita, S.; Hayashi, Y.; Natsume, H.; Takano, H.; Saeki, I.; Yoshikawa, M.; et al. Investigation of recombination front region in detached plasmas in a linear divertor plasma simulator. Nucl. Mater. Energy 2019, 19, 458–462. [Google Scholar] [CrossRef]
- Ohshima, H.; Kajita, S.; Tanaka, H.; Ohno, N.; van der Meiden, H.J. Thomson scattering measurement of two electron temperature components in transition to detached plasmas. Plasma Fusion Res. 2018, 13, 1201099. [Google Scholar] [CrossRef]
- Kajita, S.; Ohshima, H.; Tanaka, H.; Seki, M.; Takano, H.; Ohno, N. Spatial and temporal measurement of recombining detached plasmas by laser Thomson scattering. Plasma Sources Sci. Technol. 2019, 28, 105015. [Google Scholar] [CrossRef]
- Kajita, S.; Suzuki, K.; Tanaka, H.; Ohno, N. Helium line emission spectroscopy in recombining detached plasmas. Phys. Plasmas 2018, 25, 063303. [Google Scholar] [CrossRef]
- Kajita, S.; Akkermans, G.; Fujii, K.; van der Meiden, H.; van de Sanden, M.C.M. Emission spectroscopy of He lines in high-density plasmas in Magnum-PSI. AIP Adv. 2020, 10, 025225. [Google Scholar] [CrossRef]
- Kajita, S.; Nishijima, D.; Fujii, K.; Akkermans, G.; van der Meiden, H.J. Application of multiple regression for sensitivity analysis of helium line emissions to the electron density and temperature in Magnum-PSI. Plasma Phys. Control. Fusion 2021, 63, 055018. [Google Scholar] [CrossRef]
- Kajita, S.; Iwai, S.; Tanaka, H.; Nishijima, D.; Fujii, K.; van der Meiden, H.; Ohno, N. Use of machine learning for a helium line intensity ratio method in Magnum-PSI. Nucl. Mater. Energy 2022, 33, 101281. [Google Scholar] [CrossRef]
- Nishijima, D.; Baldwin, M.J.; Chang, F.; Tynan, G.R. Machine learning-aided line intensity ratio technique applied to deuterium plasmas. AIP Adv. 2023, 13, 055202. [Google Scholar] [CrossRef]
- Lin, K.; Goto, M.; Akatsuka, H. Improved line intensity analysis of neutral helium by incorporating the reabsorption processes in a helium collisional-radiative model. Atoms 2023, 11, 94. [Google Scholar] [CrossRef]
- Onda, T.; Kajita, S.; Iijima, T.; Tonegawa, A.; Ohno, N.; Tanaka, H. Transverse motion of a plasma column in a sheet plasma. Contrib. Plasma Phys. 2017, 57, 87–93. [Google Scholar] [CrossRef]
- Tanaka, H.; Kajita, S.; Natsume, H.; Saeki, I.; Ohno, N. Spatiotemporal dynamics of cross-field ejection events in recombining detached plasma. Plasma Phys. Control. Fusion 2020, 62, 075011. [Google Scholar] [CrossRef]
- Thakur, S.C.; Simmonds, M.J.; Caneses, J.F.; Chang, F.-J.; Hollmann, E.M.; Doerner, R.P.; Goulding, R.H.; Lumsdaine, A.; Rapp, J.; Tynan, G.R. PISCES-RF: A liquid-cooled high-power steady-state helicon plasma device. Plasma Sources Sci. Technol. 2021, 30, 055014. [Google Scholar] [CrossRef]
- Tanaka, H.; Hayashi, Y.; Kajita, S.; van der Meiden, H.J.; Yoshikawa, M.; Vernimmen, J.W.M.; Scholten, J.; Classen, I.; Morgan, T.W.; Ohno, N. Cross-field transport in detached helium plasmas in Magnum-PSI. Plasma Phys. Control. Fusion 2020, 62, 115021. [Google Scholar] [CrossRef]
- Costin, C.; Mihaila, I.; van der Meiden, H.J.; Tanaka, H.; Scholten, J.; van Eck, H.J.N. Plasma rotation and axial flow velocities in Magnum-PSI from cross-correlation measurements. Plasma Sources Sci. Technol. 2023, 32, 075010. [Google Scholar] [CrossRef]
- Ezumi, N.; Iijima, T.; Sakamoto, M.; Nakashima, Y.; Hirata, M.; Ichimura, M.; Perillo, R. Synergistic effect of nitrogen and hydrogen seeding gases on plasma detachment in the GAMMA 10/PDX tandem mirror. Nucl. Fusion 2019, 59, 066030. [Google Scholar] [CrossRef]
- Hasegawa, H.; Tanaka, H.; Ishiguro, S. Linear analysis of cross-field dynamics with feedback instability on detached divertor plasmas. Nucl. Fusion 2021, 61, 126055. [Google Scholar] [CrossRef]
- Okamoto, T.; Ezumi, N.; Togo, S.; Perillo, R.; Shigematsu, N.; Seto, T.; Takanashi, K.; Takahashi, S.; Miyauchi, R.; Sakamoto, M. Effect of impurity ions on ion current flowing into an ion sensitive probe during N2 and H2 seeding in hydrogen plasma. Plasma Fusion Res. 2023, 18, 1402047. [Google Scholar] [CrossRef]
- Tanaka, H.; Saeki, I.; Ohno, N.; Kajita, S.; Ido, T.; Natsume, H.; Hatayama, A.; Hoshino, K.; Sawada, K.; Goto, M. Detached helium plasma simulation by a one-dimensional fluid code with detailed collisional-radiative model. Phys. Plasmas 2020, 27, 102505. [Google Scholar] [CrossRef]
- Tanaka, H.; Ezumi, N.; Sugiyama, T.; Gamo, H.; Shigematsu, N.; Yoshikawa, M.; Sakamoto, M. Study of the intermittent plasma structure around the divertor simulation experimental module in GAMMA 10/PDX. Phys. Plasma 2023, 30, 032501. [Google Scholar] [CrossRef]
- Nagase, M.; Masuda, H.; Ohno, N.; Takamura, S.; Takagi, M. High density plasma generation by RF ohmic discharge in toroidal divertor simulator NAGDIS-T. J. Nucl. Mater. 2007, 363-365, 611–615. [Google Scholar] [CrossRef]
- Yada, K.; Matsui, N.; Ohno, N.; Kajita, S.; Takamura, S.; Takagi, M. Investigation of detached recombining deuterium plasma and carbon chemical erosion in the toroidal divertor simulator NAGDIS-T. J. Nucl. Mater. 2009, 390-391, 290–294. [Google Scholar] [CrossRef]
- Ohno, N.; Takamura, S. Bridge between Fusion Plasma and Plasma Processing. J. Plasma Fusion Res. 2008, 84, 740. (In Japanese) [Google Scholar]
- Asaoka, K.; Ohno, N.; Hayashi, Y.; Kajita, S.; Tanaka, H. Generation of spiral shape nitrogen recombining plasma for atomic nitrogen source. Plasma Fusion Res. 2019, 14, 3401069. [Google Scholar] [CrossRef]
- Kumar, A.; Caneses-Marin, J.; Lau, C.; Goulding, R. Parallel transport modeling of linear divertor simulators with fundamental ion cyclotron heating. Nucl. Fusion 2023, 63, 036004. [Google Scholar] [CrossRef]
- Islam, M.S.; Nakashima, Y.; Hatayama, A.; Ishiguro, S.; Hoshino, K.; Ezumi, N.; Sakamoto, M. Study of end-cell plasma parameters of GAMMA 10/PDX by the LINDA code. Plasma Phys. Contrib. Fusion 2019, 61, 125005. [Google Scholar] [CrossRef]
- Takizuka, T. Kinetic effects in edge plasma: Kinetic modeling for edge plasma and detached divertor. Plasma Phys. Control. Fusion 2017, 59, 34008. [Google Scholar] [CrossRef]
- Stangeby, P.C. Basic physical processes and reduced models for plasma detachment. Plasma Phys. Control. Fusion 2018, 60, 044022. [Google Scholar] [CrossRef]
- Kanazawa, S.; Kogoma, M.; Moriwaki, T.; Okazaki, S. Stable glow plasma at atmospheric pressure. J. Phys. D 1988, 21, 838–840. [Google Scholar] [CrossRef]
- Yokoyama, T.; Kogoma, M.; Kanazawa, S.; Moriwaki, T.; Okazaki, S. The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films. J. Phys. D 1990, 23, 374–377. [Google Scholar] [CrossRef]
- Yokoyama, T.; Kogoma, M.; Moriwaki, T.; Okazaki, S. The mechanism of the stabilisation of glow plasma at atmospheric pressure. J. Phys. D 1990, 23, 1125. [Google Scholar] [CrossRef]
- Okazaki, S.; Kogoma, M.; Uehara, M.; Kimura, Y. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J. Phys. D 1993, 26, 889–892. [Google Scholar] [CrossRef]
- Okazaki, S.; Kogoma, M. Development op atmospheric pressure glow discharge plasma and its application on a surface with curvature. J. Photopolym Sci. Technol. 1993, 6, 339. [Google Scholar] [CrossRef]
- Ishikawa, K.; Takeda, K.; Yoshimura, S.; Kondo, T.; Tanaka, H.; Toyokuni, S.; Nakamura, K.; Kajiyama, H.; Mizuno, M.; Hori, M. Generation and measurement of low-temperature plasma for cancer therapy: A historical review. Free. Radic. Res. 2023, 57, 239–270. [Google Scholar] [CrossRef]
- Pigarov, A.; Krasheninnikov, S. Application of the collisional-radiative, atomic-molecular model to the recombining divertor plasma. Phys. Lett. A 1996, 222, 251–257. [Google Scholar] [CrossRef]
- Kim, H.-H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem. Plasma Process. 2016, 36, 45–72. [Google Scholar] [CrossRef]
- Kim, H.; Teramoto, Y.; Ogata, A.; Takagi, H.; Nanba, T. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process. Polym. 2016, 14, 1600157. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Kim, H.-H.; Lefferts, L. Vibrationally excited activation of N2 in plasma-enhanced catalytic ammonia synthesis: A kinetic analysis. ACS Sustain. Chem. Eng. 2019, 7, 17515–17522. [Google Scholar] [CrossRef]
- Teramoto, Y.; Kim, H.-H. Effect of vibrationally excited N2(v) on atomic nitrogen generation using two consecutive pulse corona discharges under atmospheric pressure N2. J. Phys. D 2019, 52, 494003. [Google Scholar] [CrossRef]
- Kaneko, T.; Kato, H.; Yamada, H.; Yamamoto, M.; Yoshida, T.; Attri, P.; Koga, K.; Murakami, T.; Kuchitsu, K.; Ando, S.; et al. Functional nitrogen science based on plasma processing: Quantum devices, photocatalysts and activation of plant defense and immune systems. Jpn. J. Appl. Phys. 2022, 61, SA0805. [Google Scholar] [CrossRef]
- Ishikawa, K. Perspectives on functional nitrogen science and plasma-based in situ functionalization. Jpn. J. Appl. Phys. 2022, 61, SA0802. [Google Scholar] [CrossRef]
- Tanaka, H.; Ishikawa, K.; Mizuno, M.; Toyokuni, S.; Kajiyama, H.; Kikkawa, F.; Metelmann, H.-R.; Hori, M. State of the art in medical applications using non-thermal atmospheric pressure plasma. Rev. Mod. Plasma Phys. 2017, 1, 1–89. [Google Scholar] [CrossRef]
- Ishikawa, K.; Reuter, S. Physical and chemical basis of nonthermal plasma. In Plasma Medical Science; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Tanaka, H.; Nakamura, K.; Mizuno, M.; Ishikawa, K.; Takeda, K.; Kajiyama, H.; Utsumi, F.; Kikkawa, F.; Hori, M. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci. Rep. 2016, 6, 36282. [Google Scholar] [CrossRef]
- Liu, Y.; Ishikawa, K.; Tanaka, H.; Miron, C.; Kondo, T.; Nakamura, K.; Hori, M. Organic decomposition and synthesis reactions in lactated solution exposed to non-equilibrium atmospheric pressure plasma. Plasma Process Polym. 2023, 20, 2200193. [Google Scholar] [CrossRef]
- Miron, C.; Ishikawa, K.; Kashiwagura, S.; Suda, Y.; Tanaka, H.; Nakamura, K.; Kajiyama, H.; Toyokuni, S.; Mizuno, M.; Hori, M. Cancer-specific cytotoxicity of Ringer’s acetate solution irradiated by cold atmospheric pressure plasma. Free. Radic. Res. 2023, 57, 91–104. [Google Scholar] [CrossRef]
- Tanaka, H.; Hosoi, Y.; Ishikawa, K.; Yoshitake, J.; Shibata, T.; Uchida, K.; Hashizume, H.; Mizuno, M.; Okazaki, Y.; Toyokuni, S.; et al. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified. Sci. Rep. 2021, 11, 18488. [Google Scholar] [CrossRef]
- Ito, D.; Iwata, N.; Ishikawa, K.; Nakamura, K.; Hashizume, H.; Miron, C.; Tanaka, H.; Kajiyama, H.; Toyokuni, S.; Mizuno, M.; et al. Cytotoxicity of plasma-irradiated lactate solution produced under atmospheric airtight conditions and generation of the methyl amino group. Appl. Phys. Express 2022, 15, 056001. [Google Scholar] [CrossRef]
- Kobayashi, T.; Iwata, N.; Oh, J.S.; Hahizume, H.; Ohta, T.; Takeda, K.; Ito, M. Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals. J. Phys. D 2017, 50, 155208. [Google Scholar] [CrossRef]
- Iwata, N.; Gamaleev, V.; Hashizume, H.; Oh, J.; Ohta, T.; Ishikawa, K.; Hori, M.; Ito, M. Simultaneous achievement of antimicrobial property and plant growth promotion using plasma-activated benzoic compound solution. Plasma Process. Polym. 2019, 16, 1900023. [Google Scholar] [CrossRef]
- Iwata, N.; Ishikawa, K.; Nishikawa, Y.; Kato, H.; Shimizu, M.; Kato, M.; Hori, M. Oxygen radical irradiation transforms an organic fertilizer L-tryptophan into an environment and human-friendly bactericide. Environ. Technol. Innovation 2024, 33, 103496. [Google Scholar] [CrossRef]
- Ito, M.; Ohta, T.; Hori, M. Plasma agriculture. J. Korean Phys. Soc. 2012, 60, 937. [Google Scholar] [CrossRef]
- Koga, K.; Thapanut, S.; Amano, T.; Seo, H.; Itagaki, N.; Hayashi, N.; Shiratani, M. Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana L. Appl. Phys. Express 2016, 9, 016201. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma agriculture from laboratory to farm: A review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Xi, D.-K.; Yap, S.L.; Kumar, N.N.; Toh, C.C.; Ishikawa, K.; Hori, M. Plasma-assisted priming: Improved germination and seedling performance of papaya. Sains Malays. 2023, 52, 599–611. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Grainge, G.; Nakabayashi, K.; Iza, F.; Leubner-Metzger, G.; Steinbrecher, T. Gas-plasma-activated water impact on photo-dependent dormancy mechanisms in nicotiana tabacum seeds. Int. J. Mol. Sci. 2022, 23, 6709. [Google Scholar] [CrossRef]
- Grainge, G.; Nakabayashi, K.; Steinbrecher, T.; Kennedy, S.; Ren, J.; Iza, F.; Leubner-Metzger, G. Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. J. Exp. Bot. 2022, 73, 4065–4078. [Google Scholar] [CrossRef]
- Steinbrecher, T.; Leubner-Metzger, G. The biomechanics of seed germination. J. Exp. Bot. 2016, 68, 765–783. [Google Scholar] [CrossRef]
- Nakabayashi, K.; Walker, M.; Irwin, D.; Cohn, J.; Guida-English, S.M.; Garcia, L.; Pavlović, I.; Novák, O.; Tarkowská, D.; Strnad, M.; et al. The phytotoxin myrigalone a triggers a phased detoxification programme and inhibits lepidium sativum seed germination via multiple mechanisms including interference with auxin homeostasis. Int. J. Mol. Sci. 2022, 23, 4618. [Google Scholar] [CrossRef] [PubMed]
- August, J.; Dufour, T.; Bailly, C. Release of Arabidopsis seed dormancy by cold atmospheric plasma relies on cytoplasmic glass transition. J. Phys. D 2023, 56, 415202. [Google Scholar] [CrossRef]
- Née, G.; Kramer, K.; Nakabayashi, K.; Yuan, B.; Xiang, Y.; Miatton, E.; Finkemeier, I.; Soppe, W.J.J. Delay of germination1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 2017, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Tsuchiya, W.; Moresco, J.J.; Hayashi, Y.; Satoh, K.; Kaiwa, N.; Irisa, T.; Kinoshita, T.; Schroeder, J.I.; Yates, J.R., III; et al. Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme. Nat. Commun. 2018, 9, 2132. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Otani, M.; Kanno, Y.; Seo, M.; Yoshitake, Y.; Yoshimoto, K.; Kawakami, N. Seed dormancy 4 like1 of Arabidopsis is a key regulator of phase transition from embryo to vegetative development. Plant J. 2022, 112, 460. [Google Scholar] [CrossRef]
- Ahmed, S.; Khanom, S.; Hayashi, N. Persistence of growth enhancement induced by oxygen plasma irradiation seed and leaf. Agronomy 2023, 13, 1579. [Google Scholar] [CrossRef]
- Suriyasak, C.; Hatanaka, K.; Tanaka, H.; Okumura, T.; Yamashita, D.; Attri, P.; Koga, K.; Shiratani, M.; Hamaoka, N.; Ishibashi, Y. Alterations of DNA methylation caused by cold plasma treatment restore delayed germination of heat-stressed rice (Oryza sativa L.) seeds. ACS Agric. Sci. Technol. 2021, 1, 5–10. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M.; Mildaziene, V. Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Sci. Rep. 2021, 11, 2539. [Google Scholar] [CrossRef]
- Okumura, T.; Attri, P.; Kamataki, K.; Yamashita, N.; Tsukada, Y.; Itagaki, N.; Koga, K. Detection of NO3- introduced in plasma-irradiated dry lettuce seeds using liquid chromatography-electrospray ionization quantum mass spectrometry (LC-ESI QMS). Sci. Rep. 2022, 12, 12525. [Google Scholar] [CrossRef]
- Okumura, T.; Tanaka, H.; Nakao, T.; Anan, T.; Arita, R.; Shiraki, M.; Shiraki, K.; Miyabe, T.; Yamashita, D.; Matsuo, K.; et al. Health assessment of rice cultivated and harvested from plasma-irradiated seeds. Sci. Rep. 2023, 13, 17450. [Google Scholar] [CrossRef]
- Hashizume, H.; Kitano, H.; Mizuno, H.; Abe, A.; Yuasa, G.; Tohno, S.; Tanaka, H.; Ishikawa, K.; Matsumoto, S.; Sakakibara, H.; et al. Improvement of yield and grain quality by periodic cold plasma treatment with rice plants in a paddy field. Plasma Process. Polym. 2020, 18, 2000181. [Google Scholar] [CrossRef]
- Hashizume, H.; Kitano, H.; Mizuno, H.; Abe, A.; Yuasa, G.; Tohno, S.; Tanaka, H.; Ishikawa, K.; Matsumoto, S.; Sakakibara, H.; et al. Efficacy of periodic cold plasma treatment in a paddy to produce white-core grains in brewer’s rice cultivar Yamadanishiki. Free. Radic. Res. 2023, 57, 161–173. [Google Scholar] [CrossRef]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Venturi, S.; Yang, W.; Kaganovich, I.; Casey, T. An uncertainty-aware strategy for plasma mechanism reduction with directed weighted graphs. Phys. Plasmas 2023, 30, 043904. [Google Scholar] [CrossRef]
- Murakami, T.; Sakai, O. Rescaling the complex network of low-temperature plasma chemistry through graph-theoretical analysis. Plasma Sources Sci. Technol. 2020, 29, 115018. [Google Scholar] [CrossRef]
- Sakai, O.; Nobuto, K.; Miyagi, S.; Tachibana, K. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas. AIP Adv. 2015, 5, 107140. [Google Scholar] [CrossRef]
- Mizui, Y.; Kojima, T.; Miyagi, S.; Sakai, O. Graphical classification in multi-centrality-index diagrams for complex chemical networks. Symmetry 2017, 9, 309. [Google Scholar] [CrossRef]
- Sakai, O.; Kawaguchi, S.; Murakami, T. Complexity visualization, dataset acquisition, and machine-learning perspectives for low-temperature plasma: A review. Jpn. J. Appl. Phys. 2022, 61, 070101. [Google Scholar] [CrossRef]
- Hanicinec, M.; Mohr, S.; Tennyson, J. A regression model for plasma reaction kinetics. J. Phys. D 2023, 56, 374001. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Arisawa, M.; Shigeno, M.; Saito, N. Equilibrum and nonequilibrium chemical reactions of helicene oligomers in the noncovalent bond formation. Bull. Chem. Soc. Jpn. 2016, 89, 1145–1169. [Google Scholar] [CrossRef]
- Yamaguchi, M. Thermal hysteresis involving reversible self-catalytic reactions. Accounts Chem. Res. 2021, 54, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Sekine, M. Dielectric film etching in semiconductor device manufacturing—Development of SiO2 etching and the next generation plasma reactor. Appl. Surf. Sci. 2022, 192, 270. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ichiki, T.; Chang, J.P.; George, S.M.; Kessels, W.M.M.; Kinoshita, K. Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions? Jpn. J. Appl. Phys. 2017, 56, 06HA02. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ishijima, T.; Cho, S.I.; Elliott, S.; Hausmann, D.; Kinoshita, K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys. 2018, 57, 06JA01. [Google Scholar] [CrossRef]
- Iwase, T.; Kamaji, Y.; Kang, S.Y.; Koga, K.; Kuboi, N.; Nakamura, M.; Negishi, N.; Nozaki, T.; Nunomura, S.; Ogawa, D.; et al. Progress and perspectives in dry processes for nanoscale feature fabrication: Fine pattern transfer and high-aspect-ratio feature formation. Jpn. J. Appl. Phys. 2019, 58, SE0802. [Google Scholar] [CrossRef]
- Ishikawa, K.; Ishijima, T.; Shirafuji, T.; Armini, S.; Despiau-Pujo, E.; Gottscho, R.A.; Kanarik, K.J.; Leusink, G.J.; Marchack, N.; Murayama, T.; et al. Rethinking surface reactions in nanoscale dry processes toward atomic precision and beyond: A physics and chemistry perspective. Jpn. J. Appl. Phys. 2019, 58, SE0801. [Google Scholar] [CrossRef]
- Nozaki, T.; Okazaki, K. Non-thermal plasma catalysis of methane: Principles, energy efficiency, and applications. Catal. Today 2013, 211, 29–38. [Google Scholar] [CrossRef]
- Sheng, Z.; Kim, H.-H.; Yao, S.; Nozaki, T. Plasma-chemical promotion of catalysis for CH4 dry reforming: Unveiling plasma-enabled reaction mechanisms. Phys. Chem. Chem. Phys. 2020, 22, 19349–19358. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Ham, H.; Chen, X.; Liu, S.; Xu, H.; Lu, B.; Furukawa, S.; Kim, H.-H.; Takakusagi, S.; Sasaki, K.; et al. Cooperative catalysis of vibrationally excited CO2 and alloy catalyst breaks the thermodynamic equilibrium limitation. J. Am. Chem. Soc. 2022, 144, 14140–14149. [Google Scholar] [CrossRef]
- Otsubo, Y.; Yamashita, A.; Goto, Y.; Sakai, K.; Iida, T.; Yoshimura, S.; Johzuka, K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J. Cell. Sci. 2023, 136, jcs261292. [Google Scholar] [CrossRef]
- Ishikawa, K. Plasma diagnostics, In Cold Plasma in Food and Agriculture, Fundamentals and Applications; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kambara, M.; Kawaguchi, S.; Lee, H.J.; Ikuse, K.; Hamaguchi, S.; Ohmori, T.; Ishikawa, K. Science-based, data-driven developments in plasma processing for material synthesis and device-integration technologies. Jpn. J. Appl. Phys. 2023, 62, SA0803. [Google Scholar] [CrossRef]
- Trieschmann, J.; Vialetto, L.; Gergs, T. Machine learning for advancing low-temperature plasma modeling and simulation. J. Micro Nanopattern. Mater. Metrol. 2023, 22, 041504. [Google Scholar]
- Anirudh, R.; Archibald, R.; Asif, M.S.; Becker, M.M.; Benkadda, S.; Bremer, P.-T.; Budé, R.H.S.; Chang, C.S.; Chen, L.; Churchill, R.M.; et al. 2022 Review of Data-Driven Plasma Science. IEEE Trans. Plasma Sci. 2023, 51, 1750–1838. [Google Scholar] [CrossRef]
- Kino, H.; Ikuse, K.; Dam, H.C.; Hamaguchi, S. Characterization of descriptors in machine learning for data-based sputtering yield prediction. Phys. Plasma 2021, 28, 013504. [Google Scholar] [CrossRef]
- Yamamura, Y.; Itikawa, Y.; Itoh, N. Angular dependence of sputtering yields of monatomic solids. Report No IPPJ-AM-26. Available online: http://dpc.nifs.ac.jp/IPPJ-AM/IPPJ-AM-32.pdf (accessed on 28 December 2023).
- Krüger, F.; Gergs, T.; Trieschmann, J. Machine learning plasma-surface interface for coupling sputtering and gas-phase transport simulations. Plasma Sources Sci. Technol. 2019, 28, 035002. [Google Scholar] [CrossRef]
- Gergs, T.; Borislavov, B.; Trieschmann, J. Efficient plasma-surface interaction surrogate model for sputtering processes based on autoencoder neural networks. J. Vac. Sci. Technol. B 2021, 40, 012802. [Google Scholar] [CrossRef]
- Gergs, T.; Mussenbrock, T.; Trieschmann, J. Physics-separating artificial neural networks for predicting initial stages of Al sputtering and thin film deposition in Ar plasma discharges. J. Phys. D 2023, 56, 084003. [Google Scholar] [CrossRef]
- Gergs, T.; Mussenbrock, T.; Trieschmann, J. Physics-separating artificial neural networks for predicting sputtering and thin film deposition of AlN in Ar/N2 discharges on experimental timescales. J. Phys. D 2023, 56, 194001. [Google Scholar] [CrossRef]
- Kamataki, K.; Ohtomo, H.; Itagaki, N.; Lesly, C.F.; Yamashita, D.; Okumura, T.; Shiratani, M. Prediction by a hybrid machine learning model for high-mobility amorphous In2O3:Sn films fabricated by RF plasma sputtering deposition using a nitrogen-mediated amorphization method. J. Appl. Phys. 2023, 134, 163301. [Google Scholar] [CrossRef]
- Wang, C.; Ko, T.; Hsu, C. Machine learning with explainable artificial intelligence vision for characterization of solution conductivity using optical emission spectroscopy of plasma in aqueous solution. Plasma Process. Polym. 2021, 18, e2100096. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Ko, T.-S.; Hsu, C.-C. Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma. Anal. Chim. Acta 2021, 1179, 338822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-L.; Hsu, C.-C. Using transfer-learning-based algorithms as data reduction strategies for volatile organic compounds classification using plasma spectroscopy. J. Phys. D 2023, 56, 324003. [Google Scholar] [CrossRef]
- Mesbah, A.; Graves, D.B. Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas. J. Phys. D 2019, 52, 30LT02. [Google Scholar] [CrossRef]
- Bonzanini, A.D.; Shao, K.; Graves, D.B.; Hamaguchi, S.; Mesbah, A. Foundations of machine learning for low-temperature plasmas: Methods and case studies. Plasma Sources Sci. Technol. 2023, 32, 024003. [Google Scholar] [CrossRef]
- Franke, S.; Paulet, L.; Schäfer, J.; O’connell, D.; Becker, M.M. Plasma-MDS, a metadata schema for plasma science with examples from plasma technology. Sci. Data 2020, 7, 439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishikawa, K.; Koga, K.; Ohno, N. Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries. Plasma 2024, 7, 160-177. https://doi.org/10.3390/plasma7010011
Ishikawa K, Koga K, Ohno N. Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries. Plasma. 2024; 7(1):160-177. https://doi.org/10.3390/plasma7010011
Chicago/Turabian StyleIshikawa, Kenji, Kazunori Koga, and Noriyasu Ohno. 2024. "Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries" Plasma 7, no. 1: 160-177. https://doi.org/10.3390/plasma7010011
APA StyleIshikawa, K., Koga, K., & Ohno, N. (2024). Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries. Plasma, 7(1), 160-177. https://doi.org/10.3390/plasma7010011