Particle Propagation and Electron Transport in Gases
Abstract
:1. Introduction
2. The Monte Carlo Method
2.1. Principle
2.2. Monte Carlo Method as Formal Solution of the Electron Transport Problem
3. The Monte Carlo Flux Method
3.1. Principle
3.2. Mathematical Derivation of Monte Carlo Flux
3.3. Discretization of the Electron Velocity Distribution Function
3.4. Calculation of the Transport Matrix
3.5. Advantages and Disadvantages
- Since the MCF is used to calculate the transition frequency and not directly the kinetic distribution, the MCF results have uniform statistical fluctuations for all the regions of the distribution, in particular also the tail, which instead may be statistically inaccessible to the traditional method given the low number of electrons described;
- The matrix-based approach does not require a series expansion of the EVDF and it is easier to implement than a multi-term Boltzmann solver. In perspective, the MCF method can be combined with efficient algorithms for matrix operations and GPU acceleration;
- As a difference with respect to other variance reduction techniques, mainly based on variable mathematical weights for the simulated particles, the MCF method addresses the fundamental problem of the very large ratio, amounting to several orders of magnitude, between the relaxation time of the distribution and the inter-collision time. Hence, the stochastic part of MC simulations is limited to a small time interval, which is typically orders of magnitude lower than the steady-state time for the electron energy distribution function (EEDF).
- The increasing size of the transport matrix lengthens the computational time and this is also a limit for practical use of the MCF method. This is a problem, for example, for an extension to the configuration space, since additional calculations of transition weights of electrons moving between different cells in the spatial coordinates are needed. Nevertheless, matrices in this case are largely sparse. Hence, the use of efficient algorithms for sparse matrix calculations could help to reduce the large memory that is required;
- The method presented here can only deal with calculations of flux transport parameters. However, bulk parameters are needed when comparing results of calculated electron transport coefficient with swarm measurements, especially at high E/N [75]. An extension of the MCF method to the configuration space will provide calculations of the aforementioned parameters as well;
- The transport matrix includes the effect of both field and collisional events. This has practical limitations for calculations of transition weights in the presence of a time-varying electric field evolving in timescales comparable with the energy relaxation time. In fact, this limits the applicability of MCF to DC and high frequency fields, and makes MCF not suitable for studies of RF or pulsed discharges.
4. Propagator Method
4.1. Principle
4.2. Classification of Cell Configurations and Expressions of Electron Motion
4.3. Collision Propagator
- Elastic collision
- The electrons are scattered isotropically without loss of energy. They are redistributed to the destination cells having the same energy in proportion to the solid angle of the destination cell subtended at the origin of velocity space (Figure 4a).
- Excitation collision
- The electrons lose excitation energy and are redistributed to the lower-energy cells of (Figure 4b).
- Ionization collision
- The electrons lose ionization energy and the residual energy is shared by the primary and secondary electrons. The electrons, which are doubled, are redistributed to the lower-energy cells of with relevantly given ratios under the law of energy conservation (Figure 4c).
- Electron attachment
- The electrons captured by gas molecules disappear from velocity space (Figure 4d).
4.4. Models of Velocity-Space under Uniform Electric Fields
4.5. Models of Configuration Space between Parallel-Plane Electrodes
4.6. Models of Boundary-Free Real Space in Steady-State Townsend Condition
4.7. Models of Boundary-Free Real-Space Time-of-Flight Condition
4.8. Models of Velocity Space and Real Space under Uniform Electric and Magnetic Fields
4.9. Challenges in Computational Techniques
5. Summary and Conclusions
- What is the most efficient presentation of the propagation concept depending on the conditions of plasma?
- How can the concept of propagation be extended to nonlinear systems such as those that emerge when collisions between charged particles or gas heating are taken into account?
- Can the mathematical grids that are employed at different times of the different approaches be replaced with spectral descriptions?
- Could propagators, which represent input–output relations, efficiently be computed using machine learning and artificial intelligence?
- Could the similarity between the propagators used in plasma and those used in other areas of physics help to develop faster or less memory-intensive computational methods?
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Villani, C. A review of mathematical topics in collisional kinetic theory. Handb. Math. Fluid Dyn. 2002, 1, 3–8. [Google Scholar]
- Cercignani, C. Mathematical Methods in Kinetic Theory; Springer: Berlin/Heidelberg, Germany, 1969; Volume 1. [Google Scholar]
- Desvillettes, L.; Mischler, S. About the splitting algorithm for Boltzmann and BGK equations. Math. Model. Methods Appl. Sci. 1996, 6, 1079–1102. [Google Scholar] [CrossRef]
- Balescu, R. Statistical Mechanics of Charged Particles; Wiley-Interscience: Hoboken, NJ, USA, 1963. [Google Scholar]
- Grad, H. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 1949, 2, 331–407. [Google Scholar] [CrossRef]
- Duderstadt, J.J.; Martin, W.R. Transport Theory; John Wiley & Sons: Chichester, UK, 1979; 613p. [Google Scholar]
- Adamovich, I.; Agarwal, S.; Ahedo, E.; Alves, L.L.; Baalrud, S.; Babaeva, N.; Bogaerts, A.; Bourdon, A.; Bruggeman, P.; Canal, C.; et al. The 2022 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2022, 55, 373001. [Google Scholar] [CrossRef]
- Makabe, T. Velocity distribution of electrons in time-varying low-temperature plasmas: Progress in theoretical procedures over the past 70 years. Plasma Sources Sci. Technol. 2018, 27, 033001. [Google Scholar] [CrossRef]
- Kushner, M.J. Application of a particle simulation to modeling commutation in a linear thyratron. J. Appl. Phys. 1987, 61, 2784–2794. [Google Scholar] [CrossRef]
- Boyle, G.; Stokes, P.; Robson, R.; White, R. Boltzmann’s equation at 150: Traditional and modern solution techniques for charged particles in neutral gases. J. Chem. Phys. 2023, 159, 024306. [Google Scholar] [CrossRef] [PubMed]
- Braglia, G.L.; Romanò, L. Monte Carlo and Boltzmann two-term calculations of electron transport in CO2. Lett. Nuovo C. (1971–1985) 1984, 40, 513–518. [Google Scholar] [CrossRef]
- Braglia, G.L.; Wilhelm, J.; Winkler, E. Multi-term solutions of Boltzmann’s equation for electrons in the real gases Ar, CH4 and CO2. Lett. Nuovo C. (1971–1985) 1985, 44, 365–378. [Google Scholar] [CrossRef]
- Donko, Z.; Dyatko, N. First-principles particle simulation and Boltzmann equation analysis of negative differential conductivity and transient negative mobility effects in xenon. Eur. Phys. J. D 2016, 70, 135. [Google Scholar] [CrossRef]
- Hagelaar, G.; Donko, Z.; Dyatko, N. Modification of the Coulomb logarithm due to electron-neutral collisions. Phys. Rev. Lett. 2019, 123, 025004. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, M.; Hennad, A.; Alkaa, A. Monte Carlo simulation of electron swarms at low reduced electric fields. Phys. Rev. E 1994, 49, 3264–3273. [Google Scholar] [CrossRef]
- Prigogine, I. Non-Equilibrium Statistical Mechanics; Courier Dover Publications: Mineola, NY, USA, 2017. [Google Scholar]
- Segur, P.; Yousfi, M.; Kadri, M.H.; Bordage, M.C. A survey of the numerical methods currently in use to describe the motion of an electron swarm in a weakly ionized gas. Transp. Theory Stat. Phys. 1986, 15, 705–757. [Google Scholar] [CrossRef]
- White, R.D.; Robson, R.E.; Dujko, S.; Nicoletopoulos, P.; Li, B. Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas. J. Phys. D Appl. Phys. 2009, 42, 194001. [Google Scholar] [CrossRef]
- Rockwood, S.D. Elastic and inelastic cross sections for electron-Hg scattering from Hg transport data. Phys. Rev. A 1973, 8, 2348–2358. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722–733. [Google Scholar] [CrossRef]
- Tejero-del-Caz, A.; Guerra, V.; Gonçalves, D.; da Silva, M.L.; Marques, L.; Pinhão, N.; Pintassilgo, C.D.; Alves, L.L. The LisbOn KInetics Boltzmann solver. Plasma Sources Sci. Technol. 2019, 28, 043001. [Google Scholar] [CrossRef]
- Colonna, G.; D’Angola, A. Two-term Boltzmann Equation. In Plasma Modeling (Second Edition) Methods and Applications; IOP Publishing: Bristol, UK, 2022; pp. 1–2. [Google Scholar]
- Available online: https://github.com/IST-Lisbon/LOKI (accessed on 20 October 2020).
- Available online: http://www.bolsig.laplace.univ-tlse.fr/ (accessed on 1 February 2024).
- Dyatko, N.A.; Kochetov, I.V.; Napartovich, A.P.; Sukharev, A.G. EEDF: The Software Package for Calculations of the Electron Energy Distribution Function. Available online: https://fr.lxcat.net/download/EEDF (accessed on 1 February 2024).
- White, R.D.; Robson, R.E.; Schmidt, B.; Morrison, M.A. Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas? J. Phys. D Appl. Phys. 2003, 36, 3125–3131. [Google Scholar] [CrossRef]
- Dujko, S.; White, R.D.; Petrović, Z.L.; Robson, R.E. A multi-term solution of the nonconservative Boltzmann equation for the analysis of temporal and spatial non-local effects in charged-particle swarms in electric and magnetic fields. Plasma Sources Sci. Technol. 2011, 20, 024013. [Google Scholar] [CrossRef]
- Loffhagen, D. Multi-term and non-local electron Boltzmann equation. In Plasma Modeling; IOP Publishing: Bristol, UK, 2016; pp. 2053–2563, 3–1–3–30. [Google Scholar] [CrossRef]
- Robson, R.; White, R.; Hildebrandt, M. Fundamentals of Charged Particle Transport in Gases and Condensed Matter; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Pitchford, L.C.; ONeil, S.V.; Rumble, J.R., Jr. Extended Boltzmann analysis of electron swarm experiments. Phys. Rev. A 1981, 23, 294–304. [Google Scholar] [CrossRef]
- Stephens, J. A multi-term Boltzmann equation benchmark of electron-argon cross-sections for use in low temperature plasma models. J. Phys. D Appl. Phys. 2018, 51, 125203. [Google Scholar] [CrossRef]
- Longo, S. Monte Carlo models of electron and ion transport in non-equilibrium plasmas. Plasma Sources Sci. Technol. 2000, 9, 468–476. [Google Scholar] [CrossRef]
- Boeuf, J.P.; Marode, E. A Monte Carlo analysis of an electron swarm in a nonuniform field: The cathode region of a glow discharge in helium. J. Phys. D Appl. Phys. 1982, 15, 2169–2187. [Google Scholar] [CrossRef]
- Penetrante, B.M.; Bardsley, J.N.; Pitchford, L.C. Monte Carlo and Boltzmann calculations of the density gradient expanded energy distribution functions of electron swarms in gases. J. Phys. Appl. Phys. 1985, 18, 1087–1100. [Google Scholar] [CrossRef]
- Spanier, J.; Gelbard, E.M. Monte Carlo Principles and Neutron Transport Problems; Dover Publications, Inc.: Mineola, NY, USA, 2008. [Google Scholar]
- Unpublished cross Sections Extracted. Available online: http://magboltz.web.cern.ch/magboltz/ (accessed on 1 February 2024).
- Biagi, S.F. Monte Carlo simulation of electron drift and diffusion in counting gases under the influence of electric and magnetic fields. Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 1999, 421, 234–240. [Google Scholar] [CrossRef]
- Rabie, M.; Franck, C.M. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas. Comput. Phys. Comm. 2016, 203, 268–277. [Google Scholar] [CrossRef]
- Dias, T.C.; Tejero-del Caz, A.; Alves, L.L.; Guerra, V. The LisbOn KInetics Monte Carlo solver. Comput. Phys. Comm. 2023, 282, 108554. [Google Scholar] [CrossRef]
- Taccogna, F. Monte Carlo Collision method for low temperature plasma simulation. J. Plasma Phys. 2015, 81, 305810102. [Google Scholar] [CrossRef]
- Schaefer, G.; Hui, P. The Monte Carlo flux method. J. Comput. Phys. 1990, 89, 1–30. [Google Scholar] [CrossRef]
- Sugawara, H.; Iwamoto, H. A technology demonstration of propagator matrix power method for calculation of electron velocity distribution functions in gas in long-term transient and succeeding equilibrium states under dc electric fields. Jpn. J. Appl. Phys. 2021, 60, 046001. [Google Scholar] [CrossRef]
- Gamba, I.M.; Rjasanow, S. Galerkin–Petrov approach for the Boltzmann equation. J. Comput. Phys. 2018, 366, 341–365. [Google Scholar] [CrossRef]
- Challis, L. The Green of Green functions. Phys. Today 2003, 56, 41–46. [Google Scholar] [CrossRef]
- Longo, S. Monte Carlo simulation of charged species kinetics in weakly ionized gases. Plasma Sources Sci. Technol. 2006, 15, S181–S188. [Google Scholar] [CrossRef]
- Pitchford, L.C.; Phelps, A.V. Comparative calculations of electron-swarm properties in N2 at moderate E/N values. Phys. Rev. A 1982, 25, 540–554. [Google Scholar] [CrossRef]
- Yousfi, M.; de Urquijo, J.; Juárez, A.; Basurto, E.; Hernández-Ávila, J.L. Electron Swarm Coefficients in CO2-N2 and CO2-O2 Mixtures. IEEE Trans. Plasma Sci. 2009, 37, 764–772. [Google Scholar] [CrossRef]
- Raspopović, Z.M.; Sakadžíc, S.; Bzenić, S.A.; Petrović, Z.L. Benchmark calculations for Monte Carlo simulations of electron transport. IEEE Trans. Plasma Sci. 1999, 27, 1241–1248. [Google Scholar] [CrossRef]
- Loffhagen, D.; Winkler, R.; Donkó, Z. Boltzmann equation and Monte Carlo analysis of the spatiotemporal electron relaxation in nonisothermal plasmas. Eur. Phys. J. Appl. Phys. 2002, 18, 189–200. [Google Scholar] [CrossRef]
- Andreev, S.; Bernatskiy, A.; Dyatko, N.; Kochetov, I.; Ochkin, V. Measurements and interpretation of EEDF in a discharge with a hollow cathode in helium: Effect of the measuring probe and the anode on the form of the distribution function. Plasma Sources Sci. Technol. 2022, 31, 105016. [Google Scholar] [CrossRef]
- Nolan, A.; Brennan, M.; Ness, K.; Wedding, A. A benchmark model for analysis of electron transport in non-conservative gases. J. Phys. D Appl. Phys. 1997, 30, 2865–2871. [Google Scholar] [CrossRef]
- Dyatko, N.; Napartovich, A. Electron swarm characteristics in Ar:NF3 mixtures under steady-state Townsend conditions. J. Phys. D Appl. Phys. 1999, 32, 3169–3178. [Google Scholar] [CrossRef]
- Tzeng, Y.; Kunhardt, E. Effect of energy partition in ionizing collisions on the electron-velocity distribution. Phys. Rev. A 1986, 34, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Skullerud, H.R. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field. J. Phys. D Appl. Phys. 1968, 1, 1567–1568. [Google Scholar] [CrossRef]
- Longo, S. Direct derivation of Skullerud’s Monte Carlo method for charged particle transport from the linear Boltzmann equation. Physica A 2002, 313, 389–396. [Google Scholar] [CrossRef]
- Ristivojevic, Z.; Petrović, Z.L. A Monte Carlo simulation of ion transport at finite temperatures. Plasma Sources Sci. Technol. 2012, 21, 035001. [Google Scholar] [CrossRef]
- Longo, S.; Diomede, P. Monte Carlo modeling of gas phase ion transport under thermal gradients and external fields. Eur. Phys. J. Appl. Phys. 2004, 26, 177–185. [Google Scholar] [CrossRef]
- Resibois, P.; Leener, M.D. Classical Kinetic Theory of Fluids; John Wiley and Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Longo, S. The derivation of Particle Monte Carlo methods for plasma modeling from transport equations. arXiv 2008, arXiv:0805.3105. [Google Scholar]
- Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics; Butterworth-Heinemann: Oxford, UK, 1982; Volume 4. [Google Scholar]
- Mattuck, R.D. A Guide to Feynman Diagrams in the Many-Body Problem; The McGraw-Hill Book Company: New York, NY, USA, 1992. [Google Scholar]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 1992; Volume 1. [Google Scholar]
- Gardiner, C.W. Handbook of Stochastic Methods; Springer: Berlin, Germany, 1985; Volume 3. [Google Scholar]
- Prinja, A.K.; Larsen, E.W. General principles of neutron transport. In Handbook of Nuclear Engineering; Springer: Boston, MA, USA, 2010; pp. 427–542. [Google Scholar]
- Vialetto, L. Modelling of Plasma for CO2 Conversion: Electron Kinetics, Chemistry and Transport; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2021. [Google Scholar]
- Rees, H.D. The numerical analysis of semiclassical transport problems. J. Phys. C Solid State Phys. 1970, 3, 965–974. [Google Scholar] [CrossRef]
- Kumar, K. Short-time development of swarms-approach to hydrodynamic regime for charged particles in neutral gases. J. Phys. D Appl. Phys. 1981, 14, 2199–2208. [Google Scholar] [CrossRef]
- Nanbu, K. Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Jpn. 1980, 49, 2042–2049. [Google Scholar] [CrossRef]
- Vialetto, L.; Longo, S.; Diomede, P. Benchmark calculations for electron velocity distribution function obtained with Monte Carlo Flux simulations. Plasma Sources Sci. Technol. 2019, 28, 115015. [Google Scholar] [CrossRef]
- Vialetto, L.; Viegas, P.; Longo, S.; Diomede, P. Benchmarking of Monte Carlo Flux simulations of electrons in CO2. Plasma Sources Sci. Technol. 2020, 29, 115006. [Google Scholar] [CrossRef]
- Viegas, P.; Vialetto, L.; Wolf, A.; Peeters, F.; Groen, P.; Righart, T.; Bongers, W.; Van de Sanden, M.; Diomede, P. Insight into contraction dynamics of microwave plasmas for CO2 conversion from plasma chemistry modelling. Plasma Sources Sci. Technol. 2020, 29, 105014. [Google Scholar] [CrossRef]
- Viegas, P.; Vialetto, L.; van de Steeg, A.W.; Wolf, A.; Bongers, W.A.; van Rooij, G.J.; van de Sanden, M.; Diomede, P.; Peeters, F. Resolving discharge parameters from atomic oxygen emission. Plasma Sources Sci. Technol. 2021, 30, 065022. [Google Scholar] [CrossRef]
- Micca Longo, G.; Vialetto, L.; Diomede, P.; Longo, S.; Laporta, V. Plasma modeling and prebiotic chemistry: A review of the state-of-the-art and perspectives. Molecules 2021, 26, 3663. [Google Scholar] [CrossRef]
- Vialetto, L.; van de Steeg, A.; Viegas, P.; Longo, S.; Van Rooij, G.; van de Sanden, M.; van Dijk, J.; Diomede, P. Charged particle kinetics and gas heating in CO2 microwave plasma contraction: Comparisons of simulations and experiments. Plasma Sources Sci. Technol. 2022, 31, 055005. [Google Scholar] [CrossRef]
- Petrović, Z.L.; Dujko, S.; Marić, D.; Malović, G.; Nikitović, Ž.; Šašić, O.; Jovanović, J.; Stojanović, V.; Radmilović-Rad¯ enović, M. Measurement and interpretation of swarm parameters and their application in plasma modelling. J. Phys. D Appl. Phys. 2009, 42. [Google Scholar] [CrossRef]
- Sugawara, H. A relaxation-accelerated propagator method for calculations of electron energy distribution function and electron transport parameters in gas under dc electric fields. Plasma Sources Sci. Technol. 2017, 26, 044002. [Google Scholar] [CrossRef]
- Hitchon, W.; Koch, D.; Adams, J. An efficient scheme for convection-dominated transport. J. Comput. Phys. 1989, 83, 79–95. [Google Scholar] [CrossRef]
- Drallos, P.J.; Wadehra, J.M. A novel algorithm for calculating the time evolution of the electron energy distribution function in gaseous discharge. J. Appl. Phys. 1988, 63, 5601–5603. [Google Scholar] [CrossRef]
- Drallos, P.J.; Wadehra, J.M. Exact time-dependent evolution of electron-velocity distribution functions in a gas using the Boltzmann equation. Phys. Rev. A 1989, 40, 1967–1975. [Google Scholar] [CrossRef]
- Maeda, K.; Makabe, T. Time-dependent rf swarm transport by direct numerical procedure of the Boltzmann equation. Jpn. J. Appl. Phys. 1994, 33, 4173–4176. [Google Scholar] [CrossRef]
- Sommerer, T.J.; Hitchon, W.N.G.; Lawler, J.E. Self-consistent kinetic model of the cathode fall of a glow discharge. Phys. Rev. A 1989, 39, 6356–6366. [Google Scholar] [CrossRef]
- Sommerer, T.J.; Hitchon, W.N.G.; Harvey, R.E.P.; Lawler, J.E. Self-consistent kinetic calculations of helium rf glow discharges. Phys. Rev. A 1991, 43, 4452–4472. [Google Scholar] [CrossRef]
- Parker, G.J.; Hitchon, W.N.G.; Lawler, J.E. Accelerated solution of the Boltzmann equation. J. Comput. Phys. 1993, 106, 147–154. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y. Equality of the higher-order diffusion coefficients between component and composite electron swarms in gas. Japan. J. Appl. Phys. 2006, 45, 5189–5196. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y.; Tagashira, H. Position-dependent electron swarm behaviour in steady-state Townsend discharges. J. Phys. D Appl. Phys. 1992, 25, 1483–1487. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y.; Tagashira, H. Analyses of electron swarms in gases in steady-state Townsend conditions. J. Phys. D Appl. Phys. 1994, 27, 90–94. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y.; Tagashira, H. Properties of electron swarms in gases in the upstream region of an electron source. J. Phys. D Appl. Phys. 1995, 28, 61–67. [Google Scholar] [CrossRef]
- Sugawara, H.; Tagashira, H.; Sakai, Y. Evaluation of real space electron drift velocity in gases using moment equations performed in velocity space. J. Phys. D Appl. Phys. 1997, 30, 368–373. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y.; Tagashira, H.; Kitamori, K. The spatio-temporal development of electron swarms in gases: Moment equation analysis and Hermite polynomial expansion. J. Phys. D Appl. Phys. 1998, 31, 319–327. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sugawara, H.; Ikeda, K. An improved calculation scheme of electron flow in a propagator method for solving the Boltzmann equation. Jpn. J. Appl. Phys. 2023, 62, SL1020. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y. Electron acceleration in gas by impulse electric field and its application to selective promotion of an electron-molecule reaction. J. Phys. D Appl. Phys. 2003, 36, 1994–2000. [Google Scholar] [CrossRef]
- Thomas, W.R.L. Determination of total excitation cross section in neon by comparison of theoretical and experimental values of Townsend’s primary ionization coefficient. J. Phys. B At. Mol. Phys. Ser. 2 1969, 2, 551–561. [Google Scholar] [CrossRef]
- Standish, R.K. Motion of charged-particles in a homogeneous reacting medium with a one-dimensional geometry. Aust. J. Phys. 1989, 42, 223–232. [Google Scholar] [CrossRef]
- Chantry, P.J. Comment on “Electron diffusion under the influence of an electric field near absorbing boundaries”. Phys. Rev. A 1982, 25, 1209–1213. [Google Scholar] [CrossRef]
- Tagashira, H.; Sakai, Y.; Sakamoto, S. The development of electron avalanches in argon at high E/N values: II. Boltzmann equation analysis. J. Phys. D Appl. Phys. 1977, 10, 1051–1063. [Google Scholar] [CrossRef]
- Kitamori, K.; Tagashira, H.; Sakai, Y. Development of electron avalanches in argon—An exact Boltzmann-equation analysis. J. Phys. D Appl. Phys. 1980, 13, 535–550. [Google Scholar] [CrossRef]
- Sugawara, H.; Sakai, Y. An analysis of transverse evolution of electron swarms in gases using moment equations and a propagator method. J. Phys. D Appl. Phys. 1999, 32, 1671–1680. [Google Scholar] [CrossRef]
- Sugawara, H. Configuration of propagator method for calculation of electron velocity distribution function in gas under crossed electric and magnetic fields. Plasma Sci. Technol. 2019, 21, 094001. [Google Scholar] [CrossRef]
- Sugawara, H. A computational scheme of propagator method for moment equations to derive real-space electron transport coefficients in gas under crossed electric and magnetic fields. IEEE Trans. Plasma Sci. 2019, 47, 1071–1082. [Google Scholar] [CrossRef]
- Reid, I.D. An investigation of the accuracy of numerical solutions of Boltzmann’s equation for electron swarms in gases with large inelastic cross sections. Aust. J. Phys. 1979, 32, 231–254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vialetto, L.; Sugawara, H.; Longo, S. Particle Propagation and Electron Transport in Gases. Plasma 2024, 7, 121-145. https://doi.org/10.3390/plasma7010009
Vialetto L, Sugawara H, Longo S. Particle Propagation and Electron Transport in Gases. Plasma. 2024; 7(1):121-145. https://doi.org/10.3390/plasma7010009
Chicago/Turabian StyleVialetto, Luca, Hirotake Sugawara, and Savino Longo. 2024. "Particle Propagation and Electron Transport in Gases" Plasma 7, no. 1: 121-145. https://doi.org/10.3390/plasma7010009
APA StyleVialetto, L., Sugawara, H., & Longo, S. (2024). Particle Propagation and Electron Transport in Gases. Plasma, 7(1), 121-145. https://doi.org/10.3390/plasma7010009