Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction
Abstract
:1. Introduction
2. Streamer Model
- Case 1: Background ionization is m−3 and the photoionization is not considered as a source of electrons and positive ions.
- Case 2: Background ionization is m−3 and the photoionization is considered as a source of electrons and positive ions.
- Courant–Friedrichs–Lewy (CFL) condition.
- Change in magnitude of the electric field in a time step should be lower than 10%.
3. Results and Discussion
3.1. Case 1: Electric Field and Electron Density Using Implicit and Explicit FDM with FCT
3.2. Case 2: Electric Field and Electron Density Using Implicit and Explicit FDM with FCT
3.3. Comparative Analysis of Computational Efficiency of Streamer Calculation Using FDMs with FCT
3.4. Accuracy of the Electric Field
3.5. Comparative Analysis of FDM with FCT Streamer Results and Prior Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nijdam, S.; Teunissen, J.; Ebert, U. The physics of streamer discharge phenomena. Plasma Sources Sci. Technol. 2020, 29, 103001. [Google Scholar] [CrossRef]
- Dijcks, S.; van der Leegte, M.; Nijdam, S. Imaging and reconstruction of positive streamer discharge tree structures. Plasma Sources Sci. Technol. 2023, 32, 045004. [Google Scholar] [CrossRef]
- Cooray, V.; Jayasinghe, H.; Rubinstein, M.; Rachidi, F. The Geometry and Charge of the Streamer Bursts Generated by Lightning Rods under the Influence of High Electric Fields. Atmosphere 2022, 13, 2028. [Google Scholar] [CrossRef]
- Gallimberti, I. The mechanism of the long spark formation. J. Phys. Colloq. 1979, 40, C7–C193. [Google Scholar] [CrossRef]
- Gallimberti, I.; Bacchiega, G.; Bondiou-Clergerie, A.; Lalande, P. Fundamental processes in long air gap discharges. C. R. Phys. 2002, 3, 1335–1359. [Google Scholar] [CrossRef]
- Arevalo, L.; Cooray, V.; Wu, D.; Jacobson, B. A new static calculation of the streamer region for long spark gaps. J. Electrost. 2012, 70, 15–19. [Google Scholar] [CrossRef]
- Ivanovskiy, A. On the mechanisms of lightning initiation and positive leader intergrowth. Phys. Lett. A 2022, 440, 128112. [Google Scholar] [CrossRef]
- Lin, L.; Meng, X.; Mei, H.; Wang, L. Mechanism of Positive Streamer Discharge Under Intense Vertical Component Electric Field. IEEE Trans. Dielectr. Electr. Insul. 2025, 32, 392–399. [Google Scholar] [CrossRef]
- Fang, Y.; Zeng, H.; Yang, B.; Mao, S.; Fang, J. Analysis and comparison of streamer discharge characteristics in equipotential live-line work gap and its simplified gaps under positive switching impulse. J. Electrost. 2024, 132, 103985. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Liu, N.; Li, A.; Fan, W. Particle simulation of streamer discharges on surface of DC transmission line in presence of raindrops. J. Appl. Phys. 2021, 129, 183306. [Google Scholar] [CrossRef]
- Ebert, U.; Montijn, C.; Briels, T.M.P.; Hundsdorfer, W.; Meulenbroek, B.; Rocco, A.; van Veldhuizen, E.M. The multiscale nature of streamers. Plasma Sources Sci. Technol. 2006, 15, S118. [Google Scholar] [CrossRef]
- Teunissen, J.; Ebert, U. Simulating streamer discharges in 3D with the parallel adaptive Afivo framework. J. Phys. D Appl. Phys. 2017, 50, 474001. [Google Scholar] [CrossRef]
- Dawson, G.A.; Winn, W.P. A model for streamer propagation. Z. Phys. 1965, 183, 159–171. [Google Scholar] [CrossRef]
- Gallimberti, I. A computer model for streamer propagation. J. Phys. D Appl. Phys. 1972, 5, 2179–2189. [Google Scholar] [CrossRef]
- Morrow, R.; Lowke, J.J. Streamer propagation in air. J. Phys. D Appl. Phys. 1997, 30, 614. [Google Scholar] [CrossRef]
- Zhuang, C.; Zeng, R. A local discontinuous Galerkin method for 1.5-dimensional streamer discharge simulations. Appl. Math. Comput. 2013, 219, 9925–9934. [Google Scholar] [CrossRef]
- Agnello, R.; Fubiani, G.; Furno, I.; Guittienne, P.; Howling, A.; Jacquier, R.; Taccogna, F. A 1.5D fluid—Monte Carlo model of a hydrogen helicon plasma. Plasma Phys. Control. Fusion 2022, 64, 055012. [Google Scholar] [CrossRef]
- Bagheri, B.; Teunissen, J.; Ebert, U.; Becker, M.M.; Chen, S.; Ducasse, O.; Eichwald, O.; Loffhagen, D.; Luque, A.; Mihailova, D.; et al. Comparison of six simulation codes for positive streamers in air. Plasma Sources Sci. Technol. 2018, 27, 095002. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, A.; Teunissen, J. A comparison of particle and fluid models for positive streamer discharges in air. Plasma Sources Sci. Technol. 2022, 31, 015012. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Bazelyan, E.M. Simulation of long-streamer propagation in air at atmospheric pressure. J. Phys. D Appl. Phys. 1996, 29, 740. [Google Scholar] [CrossRef]
- Morrow, R.; Blackburn, T.R. The stepped nature of lightning, and the upward connecting streamer. J. Phys. D Appl. Phys. 2002, 35, L69. [Google Scholar] [CrossRef]
- Strobel, L.R.; Guerra-Garcia, C. Numerical investigation of the bridging and current flow of a positive DC streamer using a 1.5D model. J. Phys. D Appl. Phys. 2025, 58, 105203. [Google Scholar] [CrossRef]
- Bessières, D.; Paillol, J.; Bourdon, A.; Ségur, P.; Marode, E. A new one-dimensional moving mesh method applied to the simulation of streamer discharges. J. Phys. D Appl. Phys. 2007, 40, 6559. [Google Scholar] [CrossRef]
- Wang, L.; Bao, H.; Ding, D.; Chen, R. Numerical Simulation of Streamer Discharge Modeled by Drift-Diffusion Equations Based on SETD Method. IEEE Trans. Plasma Sci. 2022, 50, 525–533. [Google Scholar] [CrossRef]
- Georghiou, G.E.; Morrow, R.; Metaxas, A.C. The theory of short-gap breakdown of needle point-plane gaps in air using finite-difference and finite-element methods. J. Phys. D Appl. Phys. 1999, 32, 1370. [Google Scholar] [CrossRef]
- Hui, J.; Guan, Z.; Wang, L.; Li, Q. Variation of the Dynamics of Positive Streamer with Pressure and Humidity in Air. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 382–389. [Google Scholar] [CrossRef]
- Bian, X.; Zhu, J.; Yang, W.; Wan, S.; Qi, L.; Li, X.; Li, H. The role of low air pressure in the variation of negative corona-generated space charge in a rod to plane electrode. High Volt. 2018, 3, 126–132. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Bazelyan, E.M. Temperature and density effects on the properties of a long positive streamer in air. J. Phys. D Appl. Phys. 1996, 29, 2873. [Google Scholar] [CrossRef]
- Aleksandrov, N.L.; Bazelyan, M.; Novitskii, D.A. Influence of moisture on the properties of long streamers in air. Tech. Phys. Lett. 1998, 24, 367–368. [Google Scholar] [CrossRef]
- Zalesak, S.T. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 1979, 31, 335–362. [Google Scholar] [CrossRef]
- Steinle, P.; Morrow, R. An implicit flux-corrected transport algorithm. J. Comput. Phys. 1989, 80, 61–71. [Google Scholar] [CrossRef]
- Morrow, R. An Implicit Flux-Corrected Transport Algorithm Used for Gas Discharge Calculations. Plasma 2025, 8, 7. [Google Scholar] [CrossRef]
- Komuro, A.; Yoshino, A.; Wei, Z.; Ono, R. Effects of oxygen concentration on streamer propagation and ozone production in a single-filament streamer discharge at atmospheric pressure. J. Phys. D Appl. Phys. 2023, 56, 185201. [Google Scholar] [CrossRef]
- Baohong, G. Simulating Positive and Negative Streamer Discharges in Air and in Strongly Attaching Gases. Ph.D. Thesis, Research TU/e/Graduation TU/e, Eindhoven University of Technology, Eindhoven, The Netherlands, 2023. Available online: https://research.tue.nl/files/312984148/20231207_Guo_hf.pdf (accessed on 18 May 2025).
- Morrow, R. Theory of electrical corona in SF6. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 382, 57–65. [Google Scholar] [CrossRef]
- Davies, A. Computation of ionisation growth at high current densities. Proc. Inst. Electr. Eng. 1975, 122, 765–768. [Google Scholar] [CrossRef]
- Jayasinghe, H.; Arevalo, L.; Morrow, R.; Cooray, V. Reduced order model for a streamer discharge in air. In Proceedings of the 37th International Conference on Lightning Protection, Dresden, Germany, 1–7 September 2024; p. 870. [Google Scholar]
- Book, D.L.; Boris, J.P.; Hain, K. Flux-corrected transport II: Generalizations of the method. J. Comput. Phys. 1975, 18, 248–283. [Google Scholar] [CrossRef]
- Morrow, R.; Cram, L. Flux-corrected transport and diffusion on a non-uniform mesh. J. Comput. Phys. 1985, 57, 129–136. [Google Scholar] [CrossRef]
- Morrow, R. Numerical solution of hyperbolic equations for electron drift in strongly non-uniform electric fields. J. Comput. Phys. 1981, 43, 1–15. [Google Scholar] [CrossRef]
- Penney, G.W.; Hummert, G.T. Photoionization Measurements in Air, Oxygen, and Nitrogen. J. Appl. Phys. 1970, 41, 572–577. [Google Scholar] [CrossRef]
- Morrow, R. Theory of Positive Corona in SF6 Due to a Voltage Impulse. IEEE Trans. Plasma Sci. 1991, 19, 86–94. [Google Scholar] [CrossRef]
- Morrow, R. Space-charge effects in high-density plasmas. J. Comput. Phys. 1982, 46, 454–461. [Google Scholar] [CrossRef]
- Morrow, R. Numerical modelling of time-dependent electrical breakdown in non-uniform electric fields. In Proceedings of the 18th International Conference on Phenomena in Ionised Gases, Swansea, UK, 13–17 July 1987; p. 268. [Google Scholar]
- Kulikovsky, A.A. The role of photoionization in positive streamer dynamics. J. Phys. D Appl. Phys. 2000, 33, 1514. [Google Scholar] [CrossRef]
- Naidis, G.V. Effects of photoionization characteristics on parameters of positive streamers. Plasma Res. Express 2018, 1, 017001. [Google Scholar] [CrossRef]
- Wei, Z.; Komuro, A.; Ono, R. The influence of individual evaluation of electron-impact ionization, attachment, and photoionization rates on positive streamer propagation. Plasma Processes Polym. 2024, 21, 2300113. [Google Scholar] [CrossRef]
- Starikovskiy, A.Y.; Aleksandrov, N.L. How pulse polarity and photoionization control streamer discharge development in long air gaps. Plasma Sources Sci. Technol. 2020, 29, 075004. [Google Scholar] [CrossRef]
- Pavan, C.; Martinez-Sanchez, M.; Guerra-Garcia, C. Investigations of positive streamers as quasi-steady structures using reduced order models. Plasma Sources Sci. Technol. 2020, 29, 095004. [Google Scholar] [CrossRef]
Streamer Case | Implicit FDM with | Explicit FDM with |
---|---|---|
FCT (mins) | FCT (mins) | |
Case 1 | 20 | 90 |
Case 2 | 250 | 380 |
Number of Sets of Image Charges in Each Side of Electrode | Maximum Error (%) of Case 1 | Maximum Error (%) of Case 2 | ||
---|---|---|---|---|
Implicit | Explicit | Implicit | Explicit | |
1 | 0.64 | 0.66 | 0.75 | 0.69 |
2 | 0.37 | 0.4 | 0.55 | 0.60 |
3 | 0.14 | 0.13 | 0.18 | 0.21 |
4 | 0.087 | 0.084 | 0.054 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasinghe, H.; Arevalo, L.; Morrow, R.; Cooray, V. Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction. Plasma 2025, 8, 21. https://doi.org/10.3390/plasma8020021
Jayasinghe H, Arevalo L, Morrow R, Cooray V. Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction. Plasma. 2025; 8(2):21. https://doi.org/10.3390/plasma8020021
Chicago/Turabian StyleJayasinghe, Hasupama, Liliana Arevalo, Richard Morrow, and Vernon Cooray. 2025. "Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction" Plasma 8, no. 2: 21. https://doi.org/10.3390/plasma8020021
APA StyleJayasinghe, H., Arevalo, L., Morrow, R., & Cooray, V. (2025). Modeling Streamer Discharge in Air Using Implicit and Explicit Finite Difference Methods with Flux Correction. Plasma, 8(2), 21. https://doi.org/10.3390/plasma8020021