Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Stage Air Cleaner Technology
2.2. Energy Performance of Air Cleaning Stages
2.3. Measurement of Aerosol Particle Concentration and Size Distribution
2.4. Ozone Measurement
2.5. Bacterial Strains and Culture Conditions
2.6. Generation of NaCl Aerosol and Bioaerosol
2.7. Bioaerosol Sampling and Sample Processing
2.8. The Experimental Design
- Concentration of bacteria for bioaerosol generation 1·× 109 ± 1·× 108 cfu/mL;
- Power of the bipolar ionizer 19.6 W (+14 kV 0.6 mA, −14 kV, 0.8 mA, direct input power 55 W);
- Power of the NTP—19.75 W (15.8 kV, 1.25 mA, direct input power 51 W);
- Optical power of UV-C (5 lamps)—70 W (direct input power 200 W);
- Power of ESP—34.5 W (15 kV, 0.6 mA, direct input power 55 W);
- Air temperature in laboratory—21 ± 2 °C and relative humidity—45 ± 5%.
3. Results and Discussion
3.1. Energy Performance of Separate Stages and Entire Air Cleaning Sequence
3.2. The Removal of Particulate Matter in Various Stages
3.2.1. Particle Losses Due to Non-Ionization-Related Effects
3.2.2. Particle Losses Due to Ionization Effects
3.2.3. Particle Collection in ESP
3.3. Bacteria Inactivation Efficiency
3.3.1. The NTP Stage
3.3.2. The UV-C Stage
3.3.3. BI Stage
3.3.4. Combined Air Cleaner Stages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chuang, C.Y.; Hsu, Y.F.; Hung, P.C.; Dai, Y.T.; Yang, S. Evaluation of the Inactivating Ability of Carbon-Nanotube Coated Plasma Treatment on Bioaerosols for Indoor Air Cleaning. Coatings 2022, 12, 1497. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Bragoszewska, E.; Bogacka, M.; Pikoń, K. Efficiency and Eco-Costs of Air Purifiers in Terms of Improving Microbiological Indoor Air Quality in Dwellings-A Case Study. Atmosphere 2019, 10, 742. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A State–of–the-Art Review on Indoor Air Pollution and Strategies for Indoor Air Pollution Control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A Review of Indoor Air Treatment Technologies. Rev. Environ. Sci. Biotechnol. 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Ratliff, K.M.; Oudejans, L.; Archer, J.; Calfee, W.; Gilberry, J.U.; Hook, D.A.; Schoppman, W.E.; Yaga, R.W.; Brooks, L.; Ryan, S. Large-Scale Evaluation of Microorganism Inactivation by Bipolar Ionization and Photocatalytic Devices. Build. Environ. 2023, 227, 109804. [Google Scholar] [CrossRef]
- Kanesaka, I.; Katsuse, A.K.; Takahashi, H.; Kobayashi, I. Evaluation of a Bipolar Ionization Device in Inactivation of Antimicrobial-Resistant Bacteria, Yeast, Aspergillus Spp. and Human Coronavirus. J. Hosp. Infect. 2022, 126, 16–20. [Google Scholar] [CrossRef]
- Szczotko, M.; Orych, I.; Mąka, Ł.; Solecka, J. A Review of Selected Types of Indoor Air Purifiers in Terms of Microbial Air Contamination Reduction. Atmosphere 2022, 13, 800. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Casazza, A.; Ragazzi, M. Non-Thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: A Review. Water Air Soil. Pollut. 2017, 228, 388. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Calheiros, C.S.C.; Villanueva, F.; Alonso-Cuevilla, N.P.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality: A Review of Cleaning Technologies. Environments 2022, 9, 118. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kang, D.-H. UVC LED Irradiation Effectively Inactivates Aerosolized Viruses, Bacteria, and Fungi in a Chamber-Type Air Disinfection System. Appl. Environ. Microbiol. 2018, 84, e00944-18. [Google Scholar] [CrossRef]
- Watanabe, K.; Yanagi, U.; Shiraishi, Y.; Harada, K.; Ogino, F.; Asano, K. Bacterial Communities in Various Parts of Air-Conditioning Units in 17 Japanese Houses. Microorganisms 2022, 10, 2246. [Google Scholar] [CrossRef]
- Ciuzas, D.; Prasauskas, T.; Krugly, E.; Jurelionis, A.; Seduikyte, L.; Martuzevicius, D. Indoor Air Quality Management by Combined Ventilation and Air Cleaning: An Experimental Study. Aerosol Air Qual. Res. 2016, 16, 2550–2559. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, Y.; Chen, C.; Liu, J.; Chen, M.; Shangguan, W. Removal of Air Pollutant by a Spike-Tubular Electrostatic Device: Multi-Stage Direct Current Corona Discharge Enhanced Electrostatic Precipitation and Oxidation Ability. Process Saf. Environ. Prot. 2022, 165, 347–356. [Google Scholar] [CrossRef]
- Krugly, E.; Pitak, O.; Ciuzas, D.; Tichonovas, M.; Stasiulaitiene, I.; Urniezaite, I.; Kliucininkas, L.; Martuzevicius, D. VOC Removal from Ventilation Air by Gas-to-Particle Conversion: Towords the Enhancement of Process Efficiency. Build. Environ. 2022, 209, 108647. [Google Scholar] [CrossRef]
- Krugly, E.; Pitak, O.; Ciuzas, D.; Tichonovas, M.; Stasiulaitiene, I.; Prasauskas, T.; Kliucininkas, L.; Martuzevicius, D. Removal of VOCs from Wood Processing Ventilation Air by Advanced Oxidation Gas-to-Particle Prototype System. Process Saf. Environ. Prot. 2022, 161, 520–527. [Google Scholar] [CrossRef]
- Ebrahimifakhar, A.; Poursadegh, M.; Hu, Y.; Yuill, D.P.; Luo, Y. A Systematic Review and Meta-Analysis of Field Studies of Portable Air Cleaners: Performance, User Behavior, and by-Product Emissions. Sci. Total Environ. 2024, 912, 168786. [Google Scholar] [CrossRef]
- Nunayon, S.S.; Zhang, H.H.; Chan, V.; Kong, R.Y.C.; Lai, A.C.K. Study of Synergistic Disinfection by UVC and Positive/Negative Air Ions for Aerosolized Escherichia Coli, Salmonella Typhimurium, and Staphylococcus Epidermidis in Ventilation Duct Flow. Indoor Air 2022, 32, e12957. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, X.; Zhang, P.; Wang, S.; Yang, J.; Li, J. Cost-Effective Instant Air Disinfection for Building Ventilation System by a Combination of UV and Micro-Static Electricity. Chem. Eng. J. 2023, 454, 140231. [Google Scholar] [CrossRef]
- Yu, K.P.; Lee, G.W.M.; Lin, S.Y.; Huang, C.P. Removal of Bioaerosols by the Combination of a Photocatalytic Filter and Negative Air Ions. J. Aerosol Sci. 2008, 39, 377–392. [Google Scholar] [CrossRef]
- Lim, S.W.Y.; Ow, S.Y.; Sutarlie, L.; Lee, Y.Y.; Suwardi, A.; Tan, C.K.I.; Cheong, W.C.D.; Loh, X.J.; Su, X. Bioaerosol Inactivation by a Cold Plasma Ionizer Coupled with an Electrostatic Precipitator. Microorganisms 2024, 12, 1923. [Google Scholar] [CrossRef]
- Cattai, F.; D’Orazio, A.; Sbardella, G. A Systematic Review on the Application of Ultraviolet Germicidal Irradiation to HVAC Systems. Energies 2023, 16, 7569. [Google Scholar] [CrossRef]
- Johnson, M.S.; Nilsson, E.J.K.; Svensson, E.A.; Langer, S. Gas-Phase Advanced Oxidation for Effective, Efficient in Situ Control of Pollution. Environ. Sci. Technol. 2014, 48, 8768–8776. [Google Scholar] [CrossRef]
- Adnew, G.A.; Meusinger, C.; Bork, N.; Gallus, M.; Kyte, M.; Rodins, V.; Rosenørn, T.; Johnson, M.S. Gas-Phase Advanced Oxidation as an Integrated Air Pollution Control Technique Abbreviations: BTEX DMEA. AIMS Environ. Sci. 2016, 3, 141–158. [Google Scholar] [CrossRef]
- Alvarenga, M.O.P.; Dias, J.M.M.; Lima, B.J.L.A.; Gomes, A.S.L.; Monteiro, G.Q.M. The Implementation of Portable Air-Cleaning Technologies in Healthcare Settings—A Scoping Review. J. Hosp. Infect. 2023, 132, 93–103. [Google Scholar] [CrossRef]
- Kurnitski, J.; Boerstra, A.; Franchimon, F.; Mazzarella, L.; Hogeling, J.; Hovorka, F.; Seppänen, O. REHVA COVID-19 Guidance Document 2020; REHVA: Brussels, Belgium, 2020. [Google Scholar]
- Zhang, H.; Ahmadi, G. Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows. J. Fluid. Mech. 2000, 406, 55–80. [Google Scholar] [CrossRef]
- Wallin, O.; Malmstrom, T.G. Particle Deposition Models for Ventilation Air Ducts. HVAC R Res. 1995, 1, 194–217. [Google Scholar] [CrossRef]
- McMurry, P.H.; Rader, D.J. Aerosol Wall Losses in Electrically Charged Chambers. Aerosol Sci. Technol. 1985, 4, 249–268. [Google Scholar] [CrossRef]
- Stein, R.L.; Ryback, W.H.; Sparks, A.W. Deposition of Aerosol in a Plastic Chamber. J. Colloid Interface Sci. 1973, 42, 441–447. [Google Scholar] [CrossRef]
- Molchanov, O.; Krpec, K.; Horák, J.; Kuboňová, L.; Hopan, F. Comparison of Methods for Evaluating Particle Charges in the Electrostatic Precipitation of Fly-Ash from Small-Scale Solid Fuel Combustion. Sep. Purif. Technol. 2020, 248, 117057. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, S.; Tan, L.; Xu, M.; Zhang, H.; Zhang, D. Study on Mechanism and Characteristics of Particle Charging in Electrostatic Precipitator. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 032109. [Google Scholar] [CrossRef]
- De Oliveira, A.E.; Guerra, V.G. Electrostatic Precipitation of Nanoparticles and Submicron Particles: Review of Technological Strategies. Process Saf. Environ. Prot. 2021, 153, 422–438. [Google Scholar] [CrossRef]
- Wen, T.Y.; Krichtafovitch, I.; Mamishev, A.V. Numerical Study of Electrostatic Precipitators with Novel Particle-Trapping Mechanism. J. Aerosol Sci. 2016, 95, 95–103. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, C.; Liu, S.; Guo, Y.; Liang, C.; Wang, Y.; Hu, D.; Gao, X. A Combined Wet Electrostatic Precipitator for Efficiently Eliminating Fine Particle Penetration. Fuel Process. Technol. 2018, 180, 122–129. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Xing, Y.; Tran, T.M.P.; Le, T.C.; Tsai, C.J. Novel Wire-on-Plate Electrostatic Precipitator (WOP-EP) for Controlling Fine Particle and Nanoparticle Pollution. Environ. Sci. Technol. 2015, 49, 8683–8690. [Google Scholar] [CrossRef]
- Winter, T.; Winter, J.; Polak, M.; Kusch, K.; Mäder, U.; Sietmann, R.; Ehlbeck, J.; Van Hijum, S.; Weltmann, K.D.; Hecker, M.; et al. Characterization of the Global Impact of Low Temperature Gas Plasma on Vegetative Microorganisms. Proteomics 2011, 11, 3518–3530. [Google Scholar] [CrossRef]
- Alkawareek, M.Y.; Gorman, S.P.; Graham, W.G.; Gilmore, B.F. Potential Cellular Targets and Antibacterial Efficacy of Atmospheric Pressure Non-Thermal Plasma. Int. J. Antimicrob. Agents 2014, 43, 154–160. [Google Scholar] [CrossRef]
- Patange, A.; Boehm, D.; Ziuzina, D.; Cullen, P.J.; Gilmore, B.; Bourke, P. High Voltage Atmospheric Cold Air Plasma Control of Bacterial Biofilms on Fresh Produce. Int. J. Food Microbiol. 2019, 293, 137–145. [Google Scholar] [CrossRef]
- Lunov, O.; Zablotskii, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, E.; Dejneka, A.; Kubinová, Š. The Interplay between Biological and Physical Scenarios of Bacterial Death Induced by Non-Thermal Plasma. Biomaterials 2016, 82, 71–83. [Google Scholar] [CrossRef]
- Begum, A.; Rasel Pervez, M.; Pervez, M.R.; Begum, A.; Laroussi, M. Plasma Based Sterilization: Overview and the Stepwise Inactivation Process of Microbial by Non-Thermal Atmospheric Pressure Plasma Jet. Int. J. Eng. Technol. 2014, 14, 7–16. [Google Scholar]
- Wong, K.S.; Chew, N.S.L.; Low, M.; Tan, M.K. Plasma-Activated Water: Physicochemical Properties, Generation Techniques, and Applications. Processes 2023, 11, 2213. [Google Scholar] [CrossRef]
- Mohamed, H.; Nayak, G.; Rendine, N.; Wigdahl, B.; Krebs, F.C.; Bruggeman, P.J.; Miller, V. Non-Thermal Plasma as a Novel Strategy for Treating or Preventing Viral Infection and Associated Disease. Front. Phys. 2021, 9, 109429. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Cheung, A.C.T.; Wong, M.M.L.; Li, W.S. Evaluation of Cold Plasma Inactivation Efficacy against Different Airborne Bacteria in Ventilation Duct Flow. Build. Environ. 2016, 98, 39–46. [Google Scholar] [CrossRef]
- Timmermann, E.; Prehn, F.; Schmidt, M.; Höft, H.; Brandenburg, R.; Kettlitz, M. Indoor Air Purification by Dielectric Barrier Discharge Combined with Ionic Wind: Physical and Microbiological Investigations. J. Phys. D Appl. Phys. 2018, 51, 164003. [Google Scholar] [CrossRef]
- Prehn, F.; Timmermann, E.; Kettlitz, M.; Schaufler, K.; Günther, S.; Hahn, V. Inactivation of Airborne Bacteria by Plasma Treatment and Ionic Wind for Indoor Air Cleaning. Plasma Process. Polym. 2020, 17, 2000027. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, Y.; Sun, K.; Chen, Q.; Shen, F.; Zhang, J.; Yao, M.; Zhu, T.; Fang, J. Rapid Inactivation of Biological Species in the Air Using Atmospheric Pressure Nonthermal Plasma. Environ. Sci. Technol. 2012, 46, 3360–3368. [Google Scholar] [CrossRef]
- Bisag, A.; Isabelli, P.; Laurita, R.; Bucci, C.; Capelli, F.; Dirani, G.; Gherardi, M.; Laghi, G.; Paglianti, A.; Sambri, V.; et al. Cold Atmospheric Plasma Inactivation of Aerosolized Microdroplets Containing Bacteria and Purified SARS-CoV-2 RNA to Contrast Airborne Indoor Transmission. Plasma Process. Polym. 2020, 17, 2000154. [Google Scholar] [CrossRef]
- Cutler, T.D.; Zimmerman, J.J. Ultraviolet Irradiation and the Mechanisms Underlying Its Inactivation of Infectious Agents. Anim. Health Res. Rev./Conf. Res. Work. Anim. Diseases 2011, 12, 15–23. [Google Scholar] [CrossRef]
- Snelling, W.J.; Afkhami, A.; Turkington, H.L.; Carlisle, C.; Cosby, S.L.; Hamilton, J.W.J.; Ternan, N.G.; Dunlop, P.S.M. Efficacy of Single Pass UVC Air Treatment for the Inactivation of Coronavirus, MS2 Coliphage and Staphylococcus Aureus Bioaerosols. J. Aerosol Sci. 2022, 164, 106003. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Nunayon, S.S.; Chan, V.; Lai, A.C.K. Disinfection Efficacy of Ultraviolet Germicidal Irradiation on Airborne Bacteria in Ventilation Ducts. Indoor Air 2018, 28, 806–817. [Google Scholar] [CrossRef]
- Zhang, H.; Lai, A.C.K. Evaluation of Single-Pass Disinfection Performance of Far-UVC Light on Airborne Microorganisms in Duct Flows. Environ. Sci. Technol. 2022, 56, 17849–17857. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T. Inactivation Mechanisms of Non-Thermal Plasma on Microbes: A Review. Food Control 2017, 75, 83–91. [Google Scholar] [CrossRef]
- Baselga, M.; Alba, J.J.; Schuhmacher, A.J. Impact of Needle-Point Bipolar Ionization System in the Reduction of Bioaerosols in Collective Transport. Sci. Total Environ. 2023, 855, 158965. [Google Scholar] [CrossRef]
- Angel, D.M.; Zulli, A.; Peccia, J. Bipolar Ionization-Mediated Airborne Virus Inactivation and Deposition Rates. Build. Environ. 2024, 262, 111794. [Google Scholar] [CrossRef]
- Lee, S.G.; Hyun, J.; Hwa Lee, S.; Hwang, J. One-Pass Antibacterial Efficacy of Bipolar Air Ions against Aerosolized Staphylococcus Epidermidis in a Duct Flow. J. Aerosol Sci. 2014, 69, 71–81. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, Y.; Huang, G.; Lai, A.C.K. Numerical and Experimental Study on Airborne Disinfection by Negative Ions in Air Duct Flow. Build. Environ. 2018, 127, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Nunayon, S.S.; Zhang, H.H.; Jin, X.; Lai, A.C. Experimental Evaluation of Positive and Negative Air Ions Disinfection Efficacy under Different Ventilation Duct Conditions. Build. Environ. 2019, 158, 295–301. [Google Scholar] [CrossRef]
- Lu, Y.H.; Wu, H.; Zhang, H.H.; Li, W.S.; Lai, A.C.K. Synergistic Disinfection of Aerosolized Bacteria and Bacteriophage by Far-UVC (222-Nm) and Negative Air Ions. J. Hazard. Mater. 2023, 441, 129876. [Google Scholar] [CrossRef]
Experiment No. | Active Air Cleaner Stage | Airflow Rate, m3/h | Airflow Velocity, m/s | Energy Density, J/m3 | Air Residence Time, s | Ozone Concentration Before O3 Catalyst, ppm |
---|---|---|---|---|---|---|
1 | NTP (plasmolysis) | 50 | 0.11 | 1422 | 1.27 | 6.20 |
200 | 0.44 | 355 | 0.32 | 2.25 | ||
400 | 0.88 | 177 | 0.16 | 0.82 | ||
600 | 1.32 | 118 | 0.11 | 0.50 | ||
2 | UV-C (photolysis) | 50 | 0.03 | 5040 | 2.54 | 0 |
200 | 0.12 | 1260 | 0.64 | 0 | ||
400 | 0.25 | 630 | 0.32 | 0 | ||
600 | 0.37 | 420 | 0.21 | 0 | ||
3 | BI (ionization) | 50 | 0.03 | 1411 | 3.71 | 1.70 |
200 | 0.12 | 352 | 0.93 | 0.56 | ||
400 | 0.25 | 176 | 0.46 | 0.44 | ||
600 | 0.37 | 117 | 0.31 | 0.33 | ||
4 | NTP + UV-C + BI * | 50 | - | 7873 | 7.52 | 7.30 |
200 | - | 1968 | 1.88 | 1.74 | ||
400 | - | 984 | 0.94 | 1.10 | ||
600 | - | 656 | 0.63 | 0.80 |
Reference | Type of Plasma-Based Device | Target Microorganisms | SEI, J/L | Ozone Concentration, ppm (O3 Exposure, ppm·s) | Exposure Time, s | Inactivation Efficiency, % |
---|---|---|---|---|---|---|
Present study | NTP | Escherichia coli | 0.12–1.42 | 0.5–6.2 (0.06–7.87) | 0.11–1.27 | 69.07–99.02 |
Lactobacillus casei | 67.95–99.84 | |||||
[44] | NTP | Escherichia coli | 0.01–0.05 * | 0.096 (0.004–0.013) | 0.04–0.14 * | 31–70 |
Pseudomonas alcaligenes | 34–55 | |||||
Staphylococcus epidermidis | 20–62 | |||||
Micrococcus luteus | 0.01 * | Negligible | ||||
Serratia marcescens | Negligible | |||||
[46] | NTP with ionic wind | Escherichia coli K12 DSM 11250/NCTC 10538 | 0.1–0.9 | 5–10 (0.1–0.4) | 0.02–0.04 * | 31–89 |
Multi-drug-resistant Escherichia coli 21181 | 0.04 * | 40 | ||||
Multi-drug-resistant Escherichia coli 21182 | 36 | |||||
[45] | NTP with ionic wind | Escherichia coli K-12 DSM 11250/NCTC 10538 | 0.2–5.4 ** | 0.36 (0.025) | 0.07 * | 70–90 |
NTP | 15 (1.05) | 10–25 | ||||
[47] | NTP | Bacillus subtilis cells | 115.2 * | - | 0.12 | 98.4 |
Pseudomonas fluorescens | 100 | |||||
Environmental bacteria | 50.88 * | 0.06 | >95 | |||
Environmental fungi | 85–98 | |||||
[48] | NTP | Staphylococcus epidermidis | 1723 * | - | 0.18 | 100 |
Reference | Type of UV | UV Wavelength nm | Target Microorganisms | SEI, J/L | Exposure Time, s | Inactivation Efficacy, % |
---|---|---|---|---|---|---|
Present study | Mercury-based UV lamp | 254 | Escherichia coli | 0.42–5.04 * | 0.21–2.54 | 36.36–95.88 |
Lactobacillus casei | 44.03–99.32 | |||||
[51] | Mercury-based UV lamp | - | Serratia marcescens (ATCC 6911) | 0.04–0.08 * | 0.23–0.47 * | 81–99.9 ** |
Pseudomonas alcaligenes (ATCC 14909) | 98–99.8 ** | |||||
Escherichia coli (ATCC 10536) | 99–99.6 ** | |||||
Salmonella enterica (ATCC 536 4 8) | 77–99.5 ** | |||||
Staphylococcus epidermidis (ATCC 12228) | 76.1–99.7 ** | |||||
[50] | Mercury-based UV lamp | 254 | Staphylococcus aureus (ATCC 29213) | 2.63–13.16 * | 0.29–0.57 | 61.1–99.998 |
[52] | Mercury-based lamp and Kr-Cl excimer lamp | 254 (mercury) and 222 (Kr-Cl) | Escherichia coli (ATCC 15557) | 0.19–7.14 * | 0.175–1 | 29–50 ** |
Pseudomonas alcaligenes (P. alcaligenes) (ATCC 14909) | 25–68 ** | |||||
Serratia marcescens (S. marcescens) (ATCC 6911) | 26–59 ** | |||||
Staphylococcus epidermidis (S. epidermidis) (ATCC 12228) | 22–37 ** |
Reference | Type of Ionizer | Target Microorganisms | SEI, J/L | Ozone Concentration, ppm (O3 Exposure, ppm·s) | Exposure Time, s | Inactivation Efficiency, % |
---|---|---|---|---|---|---|
Present study | Bipolar ionizer | Escherichia coli | 0.12–1.41 | 0.33–1.7 (0.102–6.307) | 0.31–3.71 | 15.9–81.7 |
Lactobacillus casei | 17.0–99.6 | |||||
[56] | Positive and negative ionizers | Staphylococcus epidermidis (ATCC 14990) | - | <0.025 (0.005–0.05) | 0.2–2 | 50–85 |
[58] | Positive ionizer | Escherichia coli (ATCC 10536) | - | 0.0007 (<0.001) | 0.14–0.3 * | 44.03–88.54 |
Salmonella typhimurium (ATCC 53648) | 38.69–49.02 | |||||
Staphylococcus epidermidis (ATCC 12228) | 19.77–35.12 | |||||
Negative ionizer | Escherichia coli (ATCC 10536) | 0.0013 (<0.001) | 35.37–62.85 | |||
Salmonella typhimurium (ATCC 53648) | 30.03–54.15 | |||||
Staphylococcus epidermidis (ATCC 12228) | 30.17–42.93 | |||||
[57] | Negative ionizer | Serratia marcescens (ATCC 6911) | - | 0.068 (0.01–0.02) | 0.14–0.3 * | 17.1–31.53 |
Staphylococcus epidermidis (ATCC 12228) | 7.7–12.17 |
Reference | Single/Multi-Pass | Combined Technologies | Target Microorganisms | SEI, J/L | Ozone Concentration, ppm (O3 Exposure, ppm·s) | Exposure Time, s | Inactivation Efficiency, % |
---|---|---|---|---|---|---|---|
Present study | Single pass | NTP + UV-C + Bipolar ionizer | Escherichia coli | 0.66–7.87 | 0.8–7.3 (0.504–54.896) | 0.63–7.52 | 93.07–99.19 |
Lactobacillus casei | 94.60–100 | ||||||
[18] | Single pass | UV + positive/negative ionizers | Escherichia coli (ATCC 10536) | - | 0.00073–0.00127 (0.002–0.004) | 3 * | 85.55–90.67 |
S. typhimurium (ATCC 53648) | 69.10–75.45 | ||||||
S. epidermidis (ATCC 12228) | 82.62–38.34 | ||||||
[19] | Single pass | UV (254, 185 + 254 nm) + microelectrostatic device | Staphylococcus albus (S. albus, CGMCC1.3374) | 0.18–0.83 * | - | 0.05–0.42 | 49.8–99 |
Bacillus subtilis var. niger (B. subtilis var. niger, CGMCC1.3343) | 52.9–93.1 | ||||||
Escherichia coli (CGMCC1.2385) | >99 | ||||||
[20] | Single pass | Negative air ionization + photocatalytic oxidation | Escherichia coli (BCRC 10675) | 19.2 * | - | - | 30.4–36.4 |
Candida famata (BCRC 22304) fungi | 43.3–59.8 | ||||||
[59] | Multi-pass | UV (222 nm) + negative air ions | Escherichia coli C3000 (ATCC 15597) | - | 0.003–0.0035 (0.63–0.735) | 210 | 99.53 |
Staphylococcus epidermidis (ATCC 12228) | 95.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masionis, J.; Čiužas, D.; Krugly, E.; Tichonovas, M.; Prasauskas, T.; Martuzevičius, D. Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner. Plasma 2025, 8, 22. https://doi.org/10.3390/plasma8020022
Masionis J, Čiužas D, Krugly E, Tichonovas M, Prasauskas T, Martuzevičius D. Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner. Plasma. 2025; 8(2):22. https://doi.org/10.3390/plasma8020022
Chicago/Turabian StyleMasionis, Justinas, Darius Čiužas, Edvinas Krugly, Martynas Tichonovas, Tadas Prasauskas, and Dainius Martuzevičius. 2025. "Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner" Plasma 8, no. 2: 22. https://doi.org/10.3390/plasma8020022
APA StyleMasionis, J., Čiužas, D., Krugly, E., Tichonovas, M., Prasauskas, T., & Martuzevičius, D. (2025). Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner. Plasma, 8(2), 22. https://doi.org/10.3390/plasma8020022