Previous Issue
Volume 8, June
 
 

Plasma, Volume 8, Issue 3 (September 2025) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 6922 KB  
Article
Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization
by Vladislav Maksimov, Adi Haim, Ron Grikshtas, Alexander Kostinskiy, Elhanan Magid, John G. Leopold and Yakov E. Krasik
Plasma 2025, 8(3), 35; https://doi.org/10.3390/plasma8030035 - 5 Sep 2025
Viewed by 156
Abstract
Time- and space-resolved radiation emitted by the plasma produced by a 0.8 ns duration at full width half maximum, ~600 MW maximum power microwave (~9.6 GHz) pulse traversing a hydrogen-, helium-, or air-filled circular waveguide, is studied. Gas ionization by microwaves is an [...] Read more.
Time- and space-resolved radiation emitted by the plasma produced by a 0.8 ns duration at full width half maximum, ~600 MW maximum power microwave (~9.6 GHz) pulse traversing a hydrogen-, helium-, or air-filled circular waveguide, is studied. Gas ionization by microwaves is an old subject but the regime investigated in the present experimental research, of very high-power microwaves and very short pulses using modern diagnostic tools, is new and follows a series of new studies performed so far only in our laboratory, revealing non-linear phenomena never observed before. In the present research, plasma radiation is observed along a slit made in a circular waveguide wall by either an intensified fast frame camera or a streak camera. Using calibrated input and output couplers, the transmission and reflection coefficients of the high-power microwaves were determined over a broad range of gas pressures, 0.1 kPa < P < 90 kPa. It was found that the intensity of the plasma light emission increases significantly after the high-power microwave pulse has left the waveguide. Depending on pressure, the radiation is either uniform along the slit, while the front of the emitted light follows the microwave pulse at a velocity close to its group velocity, or it remains in the vicinity of the input window, indicating that the plasma density is above critical density. It was also found that the radial distribution of radiation depends on pressure. At pressures <10 kPa, when the electron oscillatory energy reaches 20 keV close to the waveguide axis, light emission forms faster near the waveguide walls, where the ionization rate is maximal. Otherwise, when pressure is >80 kPa, light emission is most intense on the axis where the electron oscillatory energy is ~100 eV and the ionization rate is maximal. We also studied the UV radiation from the plasma, the duration of which was found to be longer than the duration of visible light emission. This indicates the existence of energetic electrons for tens of ns after the high-power microwave pulse has left the observation region. Considering that the emitted light intensity depends on the plasma density and temperature, the observed data may be used for a comparison with the results of collisional radiative models if the electron time and spatial energy distribution is known. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

15 pages, 2311 KB  
Article
Trypan Blue Image-Guided Removal of Surface-Based Bacterial Biofilms from Chicken Tissue Using Cold Atmospheric Pressure Plasma
by Michael Okebiorun, Dalton Miller, Kenneth A. Cornell and Jim Browning
Plasma 2025, 8(3), 34; https://doi.org/10.3390/plasma8030034 - 26 Aug 2025
Viewed by 457
Abstract
The study evaluates the efficacy of an image-guided CAP treatment method with a plasma device capable of rapid biofilm removal from chicken tissue. The plasma treatment operating configuration includes a gas mixture of Argon and H2O at a flowrate of 1.5 [...] Read more.
The study evaluates the efficacy of an image-guided CAP treatment method with a plasma device capable of rapid biofilm removal from chicken tissue. The plasma treatment operating configuration includes a gas mixture of Argon and H2O at a flowrate of 1.5 lpm. An X-Y stage was used to move the chicken sample below the stationary plasma scalpel at a speed of 0.1 mm/s. The discharge voltage and current were maintained between 3.2 and 3.7 kV (AC 20 kHz), and at 3 mA, respectively. The electrode gap and sample distance were set to 0.6 mm and 4 mm. This configuration facilitated effective biofilm removal, as confirmed by CFU analysis and 3D microscopic analysis showing a >99% reduction in biofilm post treatment with an etch rate of 2.2–5.8 µm/s and an impact width of up to 300 µm. The plasma scalpel electrode temperature reached 94.7 °C, while the targeted biofilm area was heated to 36.3 °C, suggesting non-thermal biofilm disruption. Three-dimensional microscopic analysis revealed biofilm thickness on chicken tissues ranging from 20 to 180 µm, comparable to biofilm loads on mammalian tissues. In conclusion, the study highlights the potential of CAP devices as a promising solution for biofilm debridement. Full article
Show Figures

Figure 1

14 pages, 1657 KB  
Article
Fluorine Plasma Functionalization of Borophene Nanoflakes
by Juan Casanova-Chafer, Pedro Atienzar and Carla Bittencourt
Plasma 2025, 8(3), 33; https://doi.org/10.3390/plasma8030033 - 22 Aug 2025
Viewed by 300
Abstract
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine [...] Read more.
Theoretical studies have indicated that borophene is a promising two-dimensional material characterized by remarkable chemical, mechanical, and electrical properties. Nonetheless, its practical applications in areas such as catalysis and gas sensing are hindered by the limited density of reactive sites in its pristine form. To address this limitation, the present study explores the controlled fluorination of borophene nanoflakes as a strategy to modify their surface chemistry and enhance the availability of active sites. Furthermore, it is anticipated that surface fluorination will improve hydrophobicity, which is crucial for reducing humidity-related interference in sensing applications. In this study, we report the successful functionalization of borophene nanoflakes with fluorine using a plasma arc discharge technique for the first time. Borophene nanolayers were synthesized via a sonochemical-assisted exfoliation method, yielding nanosheets with an average lateral dimension of approximately 100 nm. The fluorinated samples were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). A systematic investigation of plasma exposure durations demonstrated that fluorine was effectively introduced as a dopant while maintaining the crystallinity of the borophene lattice. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

13 pages, 3312 KB  
Article
MMMnet: A Neural Network Surrogate for Real-Time Transport Prediction Based on the Updated Multi-Mode Model
by Khadija Shabbir, Brian Leard, Zibo Wang, Sai Tej Paruchuri, Tariq Rafiq and Eugenio Schuster
Plasma 2025, 8(3), 32; https://doi.org/10.3390/plasma8030032 - 22 Aug 2025
Viewed by 314
Abstract
The Multi-Mode Model (MMM) is a physics-based anomalous transport model integrated into TRANSP for predicting electron and ion thermal transport, electron and impurity particle transport, and toroidal and poloidal momentum transport. While MMM provides valuable predictive capabilities, its computational cost, although manageable for [...] Read more.
The Multi-Mode Model (MMM) is a physics-based anomalous transport model integrated into TRANSP for predicting electron and ion thermal transport, electron and impurity particle transport, and toroidal and poloidal momentum transport. While MMM provides valuable predictive capabilities, its computational cost, although manageable for standard simulations, is too high for real-time control applications. MMMnet, a neural network-based surrogate model, is developed to address this challenge by significantly reducing computation time while maintaining high accuracy. Trained on TRANSP simulations of DIII-D discharges, MMMnet incorporates an updated version of MMM (9.0.10) with enhanced physics, including isotopic effects, plasma shaping via effective magnetic shear, unified correlation lengths for ion-scale modes, and a new physics-based model for the electromagnetic electron temperature gradient mode. A key advancement is MMMnet’s ability to predict all six transport coefficients, providing a comprehensive representation of plasma transport dynamics. MMMnet achieves a two-order-of-magnitude speed improvement while maintaining strong correlation with MMM diffusivities, making it well-suited for real-time tokamak control and scenario optimization. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

11 pages, 950 KB  
Article
Numerical Investigation on the Thomas–Fermi Model and Its Quantum and Exchange Corrections
by Yangyang Ma, Wenle Song, Junlei Zhao, Lei Wang, Shenghui Mu and Kun Wang
Plasma 2025, 8(3), 31; https://doi.org/10.3390/plasma8030031 - 7 Aug 2025
Viewed by 392
Abstract
The Thomas–Fermi model and its quantum and exchange corrections with mathematic manipulations and numerical approaches are primarily investigated. The reduced ideal electron chemical potential is adopted as the initial value for the iterative solution of the Thomas–Fermi model. A new transformation for the [...] Read more.
The Thomas–Fermi model and its quantum and exchange corrections with mathematic manipulations and numerical approaches are primarily investigated. The reduced ideal electron chemical potential is adopted as the initial value for the iterative solution of the Thomas–Fermi model. A new transformation for the quantum and exchange equations is proposed to apply the boundary conditions easily. Both the Thomas–Fermi equation and correction equations are solved with the Runge–Kutta algorithm. The mathematical difficulties in controlling the computing accuracy of the equations containing the Fermi–Dirac integral are settled. The equation of state, based on the Thomas–Fermi model with its quantum and exchange corrections, is constructed and compared with relevant data. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

24 pages, 8575 KB  
Article
Space Charge Structures on Spherical Hollow Electrodes
by Florin Enescu, Codrina Ionita, Dan Gheorghe Dimitriu and Roman Schrittwieser
Plasma 2025, 8(3), 30; https://doi.org/10.3390/plasma8030030 - 25 Jul 2025
Viewed by 340
Abstract
In this article, we present an overview of our investigations on the formation and behavior of space charge structures in an argon discharge plasma on gridded and smooth spherical hollow electrodes with and without orifices. Four experiments are described, in which we have [...] Read more.
In this article, we present an overview of our investigations on the formation and behavior of space charge structures in an argon discharge plasma on gridded and smooth spherical hollow electrodes with and without orifices. Four experiments are described, in which we have used the following: (1) one spherical gridded sphere with one orifice, (2) one hollow smooth stainless steel sphere with two opposing orifices, (3) two smooth polished stainless steel spherical electrodes without orifices, (4) two smooth polished stainless steel spherical electrodes with opposing orifices. The experiments were conducted at the University of Innsbruck in a stainless steel cylindrical chamber (the former Innsbruck DP machine—IDP), and at the Alexandru Ioan Cuza University of Iaşi (Romania) in a Pyrex Vacuum Chamber (PCH). As diagnostics, we have used mainly optical emission spectroscopy to determine electron temperature and density. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

19 pages, 7154 KB  
Article
A Heuristic Exploration of Zonal Flow-like Structures in the Presence of Toroidal Rotation in a Non-Inertial Frame
by Xinliang Xu, Yihang Chen, Yulin Zhou, Zhanhui Wang, Xueke Wu, Bo Li, Jiang Sun, Junzhao Zhang and Da Li
Plasma 2025, 8(3), 29; https://doi.org/10.3390/plasma8030029 - 22 Jul 2025
Viewed by 213
Abstract
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes [...] Read more.
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes (GAMs) and ZFs in rotating tokamak plasmas. While previous studies have linked centrifugal convection to plasma toroidal rotation, they often overlook the Coriolis effects or inconsistently incorporate non-inertial terms into magneto-hydrodynamic (MHD) equations. In this work, we derive self-consistent drift-ordered two-fluid equations from the collisional Vlasov equation in a non-inertial frame, and we modify the Hermes cold ion code to simulate the impact of rotation on GAMs and ZFs. Our simulations reveal that toroidal rotation enhances ZF amplitude and GAM frequency, with Coriolis convection playing a critical role in GAM propagation and the global structure of ZFs. Analysis of simulation outcomes indicates that centrifugal drift drives parallel velocity growth, while Coriolis drift facilitates radial propagation of GAMs. This work may provide valuable insights into momentum transport and flow shear dynamics in tokamaks, with implications for turbulence suppression and confinement optimization. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

14 pages, 2726 KB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 588
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

28 pages, 8047 KB  
Article
Hybrid Dielectric Barrier Discharge Reactor: Production of Reactive Oxygen–Nitrogen Species in Humid Air
by Dariusz Korzec, Florian Freund, Christian Bäuml, Patrik Penzkofer, Oliver Beier, Andreas Pfuch, Klaus Vogelsang, Frank Froehlich and Stefan Nettesheim
Plasma 2025, 8(3), 27; https://doi.org/10.3390/plasma8030027 - 6 Jul 2025
Viewed by 1193
Abstract
Reactive oxygen–nitrogen species (RONS) production in a Peltier-cooled hybrid dielectric barrier discharge (HDBD) reactor operated with humid air is characterized. Fourier-transform infrared spectroscopy (FTIR) is used to determine the RONS in the HDBD-produced gases. The presence of molecules O3, NO2 [...] Read more.
Reactive oxygen–nitrogen species (RONS) production in a Peltier-cooled hybrid dielectric barrier discharge (HDBD) reactor operated with humid air is characterized. Fourier-transform infrared spectroscopy (FTIR) is used to determine the RONS in the HDBD-produced gases. The presence of molecules O3, NO2, N2O, N2O5, and HNO3 is evaluated. The influence of HDBD reactor operation parameters on the FTIR result is discussed. The strongest influence of Peltier cooling on RONS chemistry is reached at conditions related to a high specific energy input (SEI): high voltage and duty cycle of plasma width modulation (PWM), and low gas flow. Both PWM and Peltier cooling can achieve a change in the chemistry from oxygen-based to nitrogen-based. N2O5 and HNO3 are detected at a low humidity of 7% in the reactor input air but not at humidity exceeding 90%. In addition to the FTIR analysis, the plasma-activated water (PAW) is investigated. PAW is produced by bubbling the HDBD plasma gas through 12.5 mL of distilled water in a closed-loop circulation at a high SEI. Despite the absence of N2O5 and HNO3 in the gas phase, the acidity of the PAW is increased. The pH value decreases on average by 0.12 per minute. Full article
(This article belongs to the Special Issue Processes in Atmospheric-Pressure Plasmas—2nd Edition)
Show Figures

Figure 1

18 pages, 995 KB  
Article
A Quasi-Spherical Fusion Reactor Burning Boron-11 Fuel
by Joel G. Rogers, Andrew A. Egly, Yoon S. Roh, Robert E. Terry and Frank J. Wessel
Plasma 2025, 8(3), 26; https://doi.org/10.3390/plasma8030026 - 30 Jun 2025
Viewed by 570
Abstract
In this study, particle-in-cell (PIC) simulation was used to validate a conceptual design for a quasi-spherical, net power, hydrogen-plus-boron-11-fueled fusion reactor incorporating high-temperature superconducting (HTS) magnets. By burning a fully thermalized plasma, our proposed MET6 reactor uses the principles of the 1980 magneto-electrostatic [...] Read more.
In this study, particle-in-cell (PIC) simulation was used to validate a conceptual design for a quasi-spherical, net power, hydrogen-plus-boron-11-fueled fusion reactor incorporating high-temperature superconducting (HTS) magnets. By burning a fully thermalized plasma, our proposed MET6 reactor uses the principles of the 1980 magneto-electrostatic trap design of Yushmanov to improve the classic Polywell design. Because the input power consumed by the reactor will barely balance the waste bremsstrahlung radiation, future research must focus on reducing the bremsstrahlung losses to reach practical net power levels. The first step to reducing bremsstrahlung, explored in this paper, is to tune the reactor parameters to reduce the energies of trapped electrons. We assume the quality factor Q can be approximated as the ratio of fusion power output divided by bremsstrahlung power loss. Thus, assuming the particles’ power loss is negligible compared to bremsstrahlung power loss, the resulting quality factor is estimated to be Q ≈ 1.3. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

Previous Issue
Back to TopTop