Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

17 pages, 5021 KiB  
Article
Composite Structural Supercapacitors: High-Performance Carbon Nanotube Supercapacitors through Ionic Liquid Localisation
by Benjamin Mapleback, Vu Dao, Lachlan Webb and Andrew Rider
Nanomaterials 2022, 12(15), 2558; https://doi.org/10.3390/nano12152558 - 25 Jul 2022
Cited by 6 | Viewed by 1956
Abstract
Composite structural supercapacitors (SSC) are an attractive technology for aerospace vehicles; however, maintaining strength whilst adding energy storage to composite structures has been difficult. Here, SSCs were manufactured using aerospace-grade composite materials and CNT mat electrodes. A new design methodology was explored where [...] Read more.
Composite structural supercapacitors (SSC) are an attractive technology for aerospace vehicles; however, maintaining strength whilst adding energy storage to composite structures has been difficult. Here, SSCs were manufactured using aerospace-grade composite materials and CNT mat electrodes. A new design methodology was explored where the supercapacitor electrolyte was localised within the composite structure, achieving good electrochemical performance within the active region, whilst maintaining excellent mechanical performance elsewhere. The morphologies of these localised SSC designs were characterised with synchrotron X-ray fluorescence microscopy and synchrotron X-ray micro-computed tomography and could be directly correlated with both electrochemical and mechanical performance. One configuration used an ionogel with an ionic liquid (IL) electrolyte, which assisted localisation and achieved 2640 mW h kg−1 at 8.37 W kg−1 with a corresponding short beam shear (SBS) strength of 71.5 MPa in the active area. A separate configuration with only IL electrolyte achieved 758 mW h kg−1 at 7.87 W kg−1 with SBS strength of 106 MPa in the active area. Both configurations provide a combined energy and strength superior to results previously reported in the literature for composite SSCs. Full article
Show Figures

Graphical abstract

16 pages, 3965 KiB  
Article
Silver Nanoparticles Densely Grafted with Nitroxides as a Recyclable Green Catalyst in the Selective Oxidation of Alcohols
by Agnieszka Krogul-Sobczak, Natalia Pisarek, Piotr Cieciórski and Elżbieta Megiel
Nanomaterials 2022, 12(15), 2542; https://doi.org/10.3390/nano12152542 - 24 Jul 2022
Cited by 4 | Viewed by 2556
Abstract
The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An [...] Read more.
The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An ideal green oxidation process should employ a highly active, selective and recyclable catalyst that can work with oxygen under mild conditions. This paper presents a successful application of densely grafted silver nanostructures with stable nitroxide radicals (N-AgNPs) as an effective, easily-recovered and regenerable catalyst for the selective oxidation of alcohols. The fabricated ultra-small and narrow dispersive silver nanoparticles have been fully characterised using physicochemical methods (TEM, DLS, XPS, TGA). N-AgNPs have been successfully applied to oxidise several model alcohols: benzyl alcohol, 4-pyridinemethanol, furfuryl alcohol, 1-phenyl ethanol, n-heptanol and allyl alcohol under mild conditions using oxygen as a stoichiometric oxidant. Notably, the fabricated nitroxide grafted silver nanoparticles (N-AgNPs) were reused more than ten times in the oxidation of a series of primary alcohols to corresponding aldehydes under mild conditions with very high yields and a selectivity close to 100%. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

12 pages, 3403 KiB  
Article
Synthesis and Electrochemical Performance of the Orthorhombic V2O5·nH2O Nanorods as Cathodes for Aqueous Zinc Batteries
by Xiaoping Tan, Gaoli Guo, Kaidi Wang and Huang Zhang
Nanomaterials 2022, 12(15), 2530; https://doi.org/10.3390/nano12152530 - 23 Jul 2022
Cited by 5 | Viewed by 1787
Abstract
Aqueous zinc-ion batteries offer the greatest promise as an alternative technology for low-cost and high-safety energy storage. However, the development of high-performance cathode materials and their compatibility with aqueous electrolytes are major obstacles to their practical applications. Herein, we report the synthesis of [...] Read more.
Aqueous zinc-ion batteries offer the greatest promise as an alternative technology for low-cost and high-safety energy storage. However, the development of high-performance cathode materials and their compatibility with aqueous electrolytes are major obstacles to their practical applications. Herein, we report the synthesis of orthorhombic V2O5·nH2O nanorods as cathodes for aqueous zinc batteries. As a result, the electrode delivers a reversible capacity as high as 320 mAh g−1 at 1.0 A g−1 and long-term cycling stability in a wide window of 0.2 to 1.8 V using a mild ZnSO4 aqueous electrolyte. The superior performance can be attributed to the improved stability of materials, inhibited electrolyte decomposition and facilitated charge transfer kinetics of such materials for aqueous zinc storage. Furthermore, a full cell using microsized Zn powder as an anode within capacity-balancing design exhibits high capacity and stable cycling performance, proving the feasibility of these materials for practical application. Full article
(This article belongs to the Topic Electrochemical Energy Storage Materials)
Show Figures

Graphical abstract

10 pages, 3465 KiB  
Article
Ferroelectricity and Piezoelectricity in 2D Van der Waals CuInP2S6 Ferroelectric Tunnel Junctions
by Tingting Jia, Yanrong Chen, Yali Cai, Wenbin Dai, Chong Zhang, Liang Yu, Wenfeng Yue, Hideo Kimura, Yingbang Yao, Shuhui Yu, Quansheng Guo and Zhenxiang Cheng
Nanomaterials 2022, 12(15), 2516; https://doi.org/10.3390/nano12152516 - 22 Jul 2022
Cited by 8 | Viewed by 3171
Abstract
CuInP2S6 (CIPS) is a novel two-dimensional (2D) van der Waals (vdW) ferroelectric layered material with a Curie temperature of TC~315 K, making it promising for great potential applications in electronic and photoelectric devices. Herein, the ferroelectric and electric properties of CIPS [...] Read more.
CuInP2S6 (CIPS) is a novel two-dimensional (2D) van der Waals (vdW) ferroelectric layered material with a Curie temperature of TC~315 K, making it promising for great potential applications in electronic and photoelectric devices. Herein, the ferroelectric and electric properties of CIPS at different thicknesses are carefully evaluated by scanning probe microscopy techniques. Some defects in some local regions due to Cu deficiency lead to a CuInP2S6–In4/3P2S6 (CIPS–IPS) paraelectric phase coexisting with the CIPS ferroelectric phase. An electrochemical strain microscopy (ESM) study reveals that the relaxation times corresponding to the Cu ions and the IPS ionospheres are not the same, with a significant difference in their response to DC voltage, related to the rectification effect of the ferroelectric tunnel junction (FTJ). The electric properties of the FTJ indicate Cu+ ion migration and propose that the current flow and device performance are dynamically controlled by an interfacial Schottky barrier. The addition of the ferroelectricity of CIPS opens up applications in memories and sensors, actuators, and even spin-orbit devices based on 2D vdW heterostructures. Full article
Show Figures

Figure 1

14 pages, 3456 KiB  
Article
Tunable Spin and Orbital Edelstein Effect at (111) LaAlO3/SrTiO3 Interface
by Mattia Trama, Vittorio Cataudella, Carmine Antonio Perroni, Francesco Romeo and Roberta Citro
Nanomaterials 2022, 12(14), 2494; https://doi.org/10.3390/nano12142494 - 20 Jul 2022
Cited by 6 | Viewed by 1736
Abstract
Converting charge current into spin current is one of the main mechanisms exploited in spintronics. One prominent example is the Edelstein effect, namely, the generation of a magnetization in response to an external electric field, which can be realized in systems with lack [...] Read more.
Converting charge current into spin current is one of the main mechanisms exploited in spintronics. One prominent example is the Edelstein effect, namely, the generation of a magnetization in response to an external electric field, which can be realized in systems with lack of inversion symmetry. If a system has electrons with an orbital angular momentum character, an orbital magnetization can be generated by the applied electric field, giving rise to the so-called orbital Edelstein effect. Oxide heterostructures are the ideal platform for these effects due to the strong spin–orbit coupling and the lack of inversion symmetries. Beyond a gate-tunable spin Edelstein effect, we predict an orbital Edelstein effect an order of magnitude larger then the spin one at the (111) LaAlO3/SrTiO3 interface for very low and high fillings. We model the material as a bilayer of t2g orbitals using a tight-binding approach, whereas transport properties are obtained in the Boltzmann approach. We give an effective model at low filling, which explains the non-trivial behaviour of the Edelstein response, showing that the hybridization between the electronic bands crucially impacts the Edelstein susceptibility. Full article
Show Figures

Figure 1

10 pages, 2481 KiB  
Article
Graphene-Encapsulated Silver Nanoparticles for Plasmonic Vapor Sensing
by Gábor Piszter, György Molnár, András Pálinkás and Zoltán Osváth
Nanomaterials 2022, 12(14), 2473; https://doi.org/10.3390/nano12142473 - 19 Jul 2022
Cited by 2 | Viewed by 1503
Abstract
Graphene-covered silver nanoparticles were prepared directly on highly oriented pyrolytic graphite substrates and characterized by atomic force microscopy. UV–Vis reflectance spectroscopy was used to measure the shift in the local surface plasmon resonance (LSPR) upon exposure to acetone, ethanol, 2-propanol, toluene, and water [...] Read more.
Graphene-covered silver nanoparticles were prepared directly on highly oriented pyrolytic graphite substrates and characterized by atomic force microscopy. UV–Vis reflectance spectroscopy was used to measure the shift in the local surface plasmon resonance (LSPR) upon exposure to acetone, ethanol, 2-propanol, toluene, and water vapor. The optical responses were found to be substance-specific, as also demonstrated by principal component analysis. Point defects were introduced in the structure of the graphene overlayer by O2 plasma. The LSPR was affected by the plasma treatment, but it was completely recovered using subsequent annealing. It was found that the presence of defects increased the response for toluene and water while decreasing it for acetone. Full article
Show Figures

Figure 1

10 pages, 2729 KiB  
Article
Role of Magnetic Nanoparticles Size and Concentration on Structural Changes and Corresponding Magneto-Optical Behavior of Nematic Liquid Crystals
by Peter Bury, Marek Veveričík, František Černobila, Natália Tomašovičová, Katarína Zakuťanská, Peter Kopčanský, Milan Timko and Markéta Jarošová
Nanomaterials 2022, 12(14), 2463; https://doi.org/10.3390/nano12142463 - 18 Jul 2022
Cited by 7 | Viewed by 1502
Abstract
The effect of magnetic nanoparticles size and concentration on nematic liquid crystal (NLC) behavior in a magnetic field was investigated. The magneto-optical investigation using measurements of the light transmission through the liquid crystal was used to study the structural changes induced by an [...] Read more.
The effect of magnetic nanoparticles size and concentration on nematic liquid crystal (NLC) behavior in a magnetic field was investigated. The magneto-optical investigation using measurements of the light transmission through the liquid crystal was used to study the structural changes induced by an applied weak magnetic field. Magnetic nanoparticles Fe3O4 of spherical shape with different size and volume concentration were added to NLC 4-cyano-40 -hexylbiphenyl (6CB) during its isotropic phase. In contrast to undoped liquid crystals, the distinctive different light transmission responses induced by a magnetic field in studied NLC samples were observed suggesting both structural changes and the orientational coupling between magnetic moments of nanoparticles and the director of the NLC. Experimental measurements were conducted, including investigation under linearly increasing and/or jumped magnetic field, respectively, as well as the investigation of time influence on structural changes to study their stability and switching time. The analysis of observed light transmission characteristics confirmed the role of concentration and size of magnetic nanoparticles on the resultant behavior of investigated NLC compounds. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles and on the important role of nanoparticles size on stability and switching properties. Obtained results are discussed within the context of previous ones. Full article
Show Figures

Figure 1

19 pages, 4418 KiB  
Article
Green Synthesis of FexOy Nanoparticles with Potential Antioxidant Properties
by Johar Amin Ahmed Abdullah, Mercedes Jiménez-Rosado, Víctor Perez-Puyana, Antonio Guerrero and Alberto Romero
Nanomaterials 2022, 12(14), 2449; https://doi.org/10.3390/nano12142449 - 17 Jul 2022
Cited by 24 | Viewed by 1737
Abstract
Iron oxide nanoparticles (FexOy-NPs) are currently being applied in numerous high-tech sectors, such as in chemical sectors for catalysis and in the medical sector for drug delivery systems and antimicrobial purposes, due to their specific, unique and magnetic properties. [...] Read more.
Iron oxide nanoparticles (FexOy-NPs) are currently being applied in numerous high-tech sectors, such as in chemical sectors for catalysis and in the medical sector for drug delivery systems and antimicrobial purposes, due to their specific, unique and magnetic properties. Nevertheless, their synthesis is under continuous investigation, as physicochemical methods are considered expensive and require toxic solvents. Thus, green nanotechnology has shown considerable promise in the eco-biogenesis of nanoparticles. In the current study, FexOy-NPs were synthesized by two different methods: via green synthesis through the use of polyphenols, which were extracted from Phoenix dactylifera L.; and via chemical synthesis, in which the reducing agent was a chemical (NaOH), and iron chloride was used as a precursor. Thus, polyphenol extraction and its ability to produce nanoparticles were evaluated based on the drying temperature used during the Phoenix dactylifera L. recollection, as well as the extraction solvent used. The results highlight the potential of polyphenols present in Phoenix dactylifera L. for the sustainable manufacture of FexOy-NPs. Finally, green and chemical syntheses were compared on the basis of physicochemical characteristics and functional properties. Full article
Show Figures

Figure 1

12 pages, 3672 KiB  
Article
Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology
by Susana Fernández, Ignacio Torres and José Javier Gandía
Nanomaterials 2022, 12(14), 2441; https://doi.org/10.3390/nano12142441 - 16 Jul 2022
Cited by 6 | Viewed by 1538
Abstract
This work presents the implementation of ultrathin TiO2 films, deposited at room temperature by radio-frequency magnetron sputtering, as electron-selective contacts in silicon heterojunction solar cells. The effect of the working pressure on the properties of the TiO2 layers and its subsequent [...] Read more.
This work presents the implementation of ultrathin TiO2 films, deposited at room temperature by radio-frequency magnetron sputtering, as electron-selective contacts in silicon heterojunction solar cells. The effect of the working pressure on the properties of the TiO2 layers and its subsequent impact on the main parameters of the device are studied. The material characterization revealed an amorphous structure regardless of the working pressure; a rougher surface; and a blue shift in bandgap in the TiO2 layer deposited at the highest-pressure value of 0.89 Pa. When incorporated as part of the passivated full-area electron contact in silicon heterojunction solar cell, the chemical passivation provided by the intrinsic a-Si:H rapidly deteriorates upon the sputtering of the ultra-thin TiO2 films, although a short anneal is shown to restore much of the passivation lost. The deposition pressure and film thicknesses proved to be critical for the efficiency of the devices. The film thicknesses below 2 nm are necessary to reach open-circuit values above 660 mV, regardless of the deposition pressure. More so, the fill-factor showed a strong dependence on deposition pressure, with the best values obtained for the highest deposition pressure, which we correlated to the porosity of the films. Overall, these results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO2 contact deposited by magnetron sputtering. These results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO2 contact. Full article
(This article belongs to the Special Issue Solar Cells Based on Titanium Dioxide Nanomaterials)
Show Figures

Figure 1

11 pages, 2852 KiB  
Article
Resilient Mechanical Metamaterial Based on Cellulose Nanopaper with Kirigami Structure
by Tadaoki Fujita, Daisuke Nakagawa, Kazuma Komiya, Shingo Ohira and Itsuo Hanasaki
Nanomaterials 2022, 12(14), 2431; https://doi.org/10.3390/nano12142431 - 15 Jul 2022
Cited by 5 | Viewed by 1922
Abstract
Nanopapers fabricated from cellulose nanofibers (CNFs) are flexible for bending while they are rather stiff against stretching, which is a common feature shared by conventional paper-based materials in contrast with typical elastomers. Cellulose nanopapers have therefore been expected to be adopted in flexible [...] Read more.
Nanopapers fabricated from cellulose nanofibers (CNFs) are flexible for bending while they are rather stiff against stretching, which is a common feature shared by conventional paper-based materials in contrast with typical elastomers. Cellulose nanopapers have therefore been expected to be adopted in flexible device applications, but their lack of stretching flexibility can be a bottleneck for specific situations. The high stretching flexibility of nanopapers can effectively be realized by the implementation of Kirigami structures, but there has never been discussion on the mechanical resilience where stretching is not a single event. In this study, we experimentally revealed the mechanical resilience of nanopapers implemented with Kirigami structures for stretching flexibility by iterative tensile tests with large strains. Although the residual strains are found to increase with larger maximum strains and a larger number of stretching cycles, the high mechanical resilience was also confirmed, as expected for moderate maximum strains. Furthermore, we also showed that the round edges of cut patterns instead of bare sharp ones significantly improve the mechanical resilience for harsh stretching conditions. Thus, the design principle of relaxing the stress focusing is not only important in circumventing fractures but also in realizing mechanical resilience. Full article
(This article belongs to the Special Issue New Trends in Metamaterials)
Show Figures

Graphical abstract

12 pages, 3340 KiB  
Article
Altering Terahertz Sound Propagation in a Liquid upon Nanoparticle Immersion
by Alessio De Francesco, Ferdinando Formisano, Luisa Scaccia, Eleonora Guarini, Ubaldo Bafile, Marco Maccarini, Dmytro Nykypanchuck, Alexei Suvorov, Yong Q. Cai, Scott T. Lynch and Alessandro Cunsolo
Nanomaterials 2022, 12(14), 2401; https://doi.org/10.3390/nano12142401 - 14 Jul 2022
Cited by 2 | Viewed by 1423
Abstract
One of the grand challenges of new generation Condensed Matter physicists is the development of novel devices enabling the control of sound propagation at terahertz frequency. Indeed, phonon excitations in this frequency window are the leading conveyor of heat transfer in insulators. Their [...] Read more.
One of the grand challenges of new generation Condensed Matter physicists is the development of novel devices enabling the control of sound propagation at terahertz frequency. Indeed, phonon excitations in this frequency window are the leading conveyor of heat transfer in insulators. Their manipulation is thus critical to implementing heat management based on the structural design. To explore the possibility of controlling the damping of sound waves, we used high spectral contrast Inelastic X-ray Scattering (IXS) to comparatively study terahertz acoustic damping in a dilute suspension of 50 nm nanospheres in glycerol and on pure glycerol. Bayesian inference-based modeling of measured spectra indicates that, at sufficiently large distances, the spectral contribution of collective modes in the glycerol suspension becomes barely detectable due to the enhanced damping, the weakening, and the slight softening of the dominant acoustic mode. Full article
Show Figures

Figure 1

10 pages, 2331 KiB  
Article
Self-Hybridized Exciton-Polaritons in Sub-10-nm-Thick WS2 Flakes: Roles of Optical Phase Shifts at WS2/Au Interfaces
by Anh Thi Nguyen, Soyeong Kwon, Jungeun Song, Eunseo Cho, Hyohyeon Kim and Dong-Wook Kim
Nanomaterials 2022, 12(14), 2388; https://doi.org/10.3390/nano12142388 - 13 Jul 2022
Cited by 2 | Viewed by 1686
Abstract
Exciton–polaritons (EPs) can be formed in transition metal dichalcogenide (TMD) multilayers sustaining optical resonance modes without any external cavity. The self-hybridized EP modes are expected to depend on the TMD thickness, which directly determines the resonance wavelength. Exfoliated WS2 flakes were prepared [...] Read more.
Exciton–polaritons (EPs) can be formed in transition metal dichalcogenide (TMD) multilayers sustaining optical resonance modes without any external cavity. The self-hybridized EP modes are expected to depend on the TMD thickness, which directly determines the resonance wavelength. Exfoliated WS2 flakes were prepared on SiO2/Si substrates and template-stripped ultraflat Au layers, and the thickness dependence of their EP modes was compared. For WS2 flakes on SiO2/Si, the minimum flake thickness to exhibit exciton–photon anticrossing was larger than 40 nm. However, for WS2 flakes on Au, EP mode splitting appeared in flakes thinner than 10 nm. Analytical and numerical calculations were performed to explain the distinct thickness-dependence. The phase shifts of light at the WS2/Au interface, originating from the complex Fresnel coefficients, were as large as π/2 at visible wavelengths. Such exceptionally large phase shifts allowed the optical resonance and resulting EP modes in the sub-10-nm-thick WS2 flakes. This work helps us to propose novel optoelectronic devices based on the intriguing exciton physics of TMDs. Full article
Show Figures

Graphical abstract

17 pages, 43911 KiB  
Article
Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy
by Elena Giusto, Ludmila Žárská, Darren Fergal Beirne, Arianna Rossi, Giada Bassi, Andrea Ruffini, Monica Montesi, Diego Montagner, Vaclav Ranc and Silvia Panseri
Nanomaterials 2022, 12(14), 2372; https://doi.org/10.3390/nano12142372 - 11 Jul 2022
Cited by 15 | Viewed by 3143
Abstract
Chemotherapeutics such as platinum-based drugs are commonly used to treat several cancer types, but unfortunately, their use is limited by several side effects, such as high degradation of the drug before entering the cells, off-target organ toxicity and development of drug resistance. An [...] Read more.
Chemotherapeutics such as platinum-based drugs are commonly used to treat several cancer types, but unfortunately, their use is limited by several side effects, such as high degradation of the drug before entering the cells, off-target organ toxicity and development of drug resistance. An interesting strategy to overcome such limitations is the development of nanocarriers that could enhance cellular accumulation in target cells in addition to decreasing associated drug toxicity in normal cells. Here, we aim to prepare and characterize a graphene-oxide-based 2D nanoplatform functionalised using highly branched, eight-arm polyethylene-glycol, which, owing to its high number of available functional groups, offers considerable loading capacity over its linear modalities and represents a highly potent nanodelivery platform as a versatile system in cancer therapy. The obtained results show that the GO@PEG carrier allows for the use of lower amounts of Pt drug compared to a Pt-free complex while achieving similar effects. The nanoplatform accomplishes very good cellular proliferation inhibition in osteosarcoma, which is strictly related to increased cellular uptake. This enhanced cellular internalization is also observed in glioblastoma, although it is less pronounced due to differences in metabolism compared to osteosarcoma. The proposed GO@PEG nanoplatform is also promising for the inhibition of migration, especially in highly invasive breast carcinoma (i.e., MDA-MB-231 cell line), neutralizing the metastatic process. The GO@PEG nanoplatform thus represents an interesting tool in cancer treatment that can be specifically tailored to target different cancers. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Biomedical Application)
Show Figures

Graphical abstract

11 pages, 3037 KiB  
Article
Strainer-Separable TiO2 on Halloysite Nanocomposite-Embedded Alginate Capsules with Enhanced Photocatalytic Activity for Degradation of Organic Dyes
by Jewon Lee, Sicheon Seong, Soyeong Jin, Jaeyong Kim, Youngdo Jeong and Jaegeun Noh
Nanomaterials 2022, 12(14), 2361; https://doi.org/10.3390/nano12142361 - 10 Jul 2022
Cited by 6 | Viewed by 1612
Abstract
Photocatalysis driven by natural sunlight is an attractive approach to removing pollutants from wastewater. Although TiO2–based photocatalysts using various support nano-materials with high catalytic activity and reusability have been developed for purifying wastewater, the centrifugal separation methods used for the nanocatalysts [...] Read more.
Photocatalysis driven by natural sunlight is an attractive approach to removing pollutants from wastewater. Although TiO2–based photocatalysts using various support nano-materials with high catalytic activity and reusability have been developed for purifying wastewater, the centrifugal separation methods used for the nanocatalysts limit their use for treating large amounts of water. Here, we prepared a TiO2 nano-catalyst supported on a halloysite nanotube (HNT)-encapsulated alginate capsule (TiO2@HNT/Alcap) to recapture the catalysts rapidly without centrifugation. The structure of TiO2@HNT/Alcap was characterized by X-ray diffraction, SEM, and TGA. In our system, the combination of HNTs and alginate capsules (Alcaps) improved the efficiency of adsorption of organic pollutants to TiO2, and their milli = meter scale structure allowed ultra-fast filtering using a strainer. The TiO2@HNT/Alcaps showed ~1.7 times higher adsorption of rhodamine B compared to empty alginate capsules and also showed ~10 and ~6 times higher degradation rate compared to the HNT/Alcaps and TiO2/Alcaps, respectively. Full article
(This article belongs to the Special Issue Synthesis of Nanocomposites and Catalysis Applications II)
Show Figures

Figure 1

14 pages, 4384 KiB  
Article
Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O
by Manuela Meloni, Luigi Stagi, Davide Sanna, Sebastiano Garroni, Laura Calvillo, Angela Terracina, Marco Cannas, Fabrizio Messina, Carlo Maria Carbonaro, Plinio Innocenzi and Luca Malfatti
Nanomaterials 2022, 12(14), 2351; https://doi.org/10.3390/nano12142351 - 9 Jul 2022
Cited by 3 | Viewed by 1631
Abstract
The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control [...] Read more.
The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challenging task. In this work, we present a strategy to embed a pre-formed fluorescent molecule, safranin O dye, into an amorphous carbonaceous dot obtained by citric acid carbonization. The dye is introduced in the melted solution of citric acid and after pyrolysis remains incorporated in a carbonaceous matrix to form red-emitting C-dots that are strongly resistant to photobleaching. Embedding dyes in amorphous C-dots represents an alternative method to optimize the emission in the whole visible spectrum. Full article
(This article belongs to the Special Issue Fluorescent Carbon Dots: Emerging Materials in Nanoscience)
Show Figures

Figure 1

16 pages, 3389 KiB  
Article
Phase-Field Modeling of Fused Silica Cone-Crack Vickers Indentation
by Zoran Tomić, Krešimir Jukić, Tomislav Jarak, Tamara Aleksandrov Fabijanić and Zdenko Tonković
Nanomaterials 2022, 12(14), 2356; https://doi.org/10.3390/nano12142356 - 9 Jul 2022
Cited by 2 | Viewed by 1460
Abstract
In this paper, a 3D phase-field model for brittle fracture is applied for analyzing the complex fracture patterns appearing during the Vickers indentation of fused silica. Although recent phase-field models for the fracture caused by the indentation loading have been verified by some [...] Read more.
In this paper, a 3D phase-field model for brittle fracture is applied for analyzing the complex fracture patterns appearing during the Vickers indentation of fused silica. Although recent phase-field models for the fracture caused by the indentation loading have been verified by some simpler academic axis-symmetric examples, a proper validation of such models is still missing. In addition, heavy computational costs, and a complicated compression stress field under the indenter, which demands different energy decompositions, have been identified as the most important impediments for the successful application of the phase-field method for such problems. An adaptive strategy is utilized for reducing the computational costs, and some modifications are introduced, which enable an accurate simulation of the Vickers indentation fracture. Here, the fracture initiation ring outside the contact zone is detected by using different energy decompositions, and the dominant cone-crack formation under the Vickers indenter is observed. Different contact conditions are investigated. The proposed model is validated by experimental measurements, and a quantitative and qualitative comparison between experimental and numerical results is conducted. Full article
(This article belongs to the Special Issue Recent Advances and Applications in Nanomechanics)
Show Figures

Figure 1

14 pages, 2911 KiB  
Article
Regulation Mechanism for Friction Coefficient of Poly(vinylphosphoric acid) (PVPA) Superlubricity System Based on Ionic Properties
by Mengmeng Liu, Lihui Wang, Caixia Zhang, Yanhong Cheng, Congbin Yang and Zhifeng Liu
Nanomaterials 2022, 12(13), 2308; https://doi.org/10.3390/nano12132308 - 5 Jul 2022
Cited by 2 | Viewed by 1534
Abstract
Adjustable lubrication aims to achieve active control of the relative motion of the friction interface, providing a new idea for intelligent operation. A new phenomenon of sudden changes of friction coefficient (COF) in the poly(vinylphosphoric acid) (PVPA) superlubricity system by mixing different lubricants, [...] Read more.
Adjustable lubrication aims to achieve active control of the relative motion of the friction interface, providing a new idea for intelligent operation. A new phenomenon of sudden changes of friction coefficient (COF) in the poly(vinylphosphoric acid) (PVPA) superlubricity system by mixing different lubricants, was found in this study. It was found that anions were the critical factor for the COF change. The change degrees of the COF were investigated by a universal micro tribometer (UMT). A quartz crystal microbalance (QCM)-D was used to analyze the adsorption quantity of anions on the PVPA surface. The hydratability of the PVPA interface was controlled by changing the anionic properties (the amount of charge and structure), thus regulating the COF. The adsorption difference of anions is an important reasoning of how anionic properties can regulate the hydratability. It was analyzed by molecular dynamics simulation. For anions carrying different numbers of charges or double bonds, the adsorption quantity of anions was mainly affected by the adsorption degree on the PVPA surface, while the adsorption quantity of anions with different molecular configuration was synergistically regulated by the adsorption degree and adsorption area of anions on the PVPA surface. This work can be used to develop smart surfaces for applications. Full article
(This article belongs to the Special Issue New Frontiers of Nanoscale Friction)
Show Figures

Figure 1

8 pages, 1348 KiB  
Article
Significant Modulation of Vortex Resonance Spectra in a Square-Shape Ferromagnetic Dot
by Shaojie Hu, Xiaomin Cui, Kang Wang, Satoshi Yakata and Takashi Kimura
Nanomaterials 2022, 12(13), 2295; https://doi.org/10.3390/nano12132295 - 4 Jul 2022
Viewed by 1497
Abstract
The resonance property of a magnetic vortex contained within a micron-sized square Py dot was detected using an amplitude-modulated magnetic field excitation technique. We found a significant modulation of the resonant spectra as the external magnetic field changes. The Lorentzian-like spectrum changes from [...] Read more.
The resonance property of a magnetic vortex contained within a micron-sized square Py dot was detected using an amplitude-modulated magnetic field excitation technique. We found a significant modulation of the resonant spectra as the external magnetic field changes. The Lorentzian-like spectrum changes from a peak to a dip via a transition of anti-Lorentzian-like spectra. By conducting the micromagnetic simulations, we confirmed that the transition behavior results from the unusual resistance change depending on the vortex core center position. Additionally, the power dependence of the anti-Lorentzian-like spectra revealed a fairly persistent coexistence of peak and dip. Thus, the tunable spectra suggest one way to develop an integratable radiofrequency microcircuits. Full article
(This article belongs to the Special Issue Advanced Spintronic and Electronic Nanomaterials)
Show Figures

Figure 1

10 pages, 1688 KiB  
Article
Nanoscale Structure of Langmuir–Blodgett Film of Bent-Core Molecules
by Fabrizio Corrado Adamo, Federica Ciuchi, Maria Penelope De Santo, Paola Astolfi, Isabelle Warner, Eric Scharrer, Michela Pisani, Francesco Vita and Oriano Francescangeli
Nanomaterials 2022, 12(13), 2285; https://doi.org/10.3390/nano12132285 - 2 Jul 2022
Cited by 1 | Viewed by 1520
Abstract
Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the [...] Read more.
Bent-core mesogens (BCMs) are a class of thermotropic liquid crystals featuring several unconventional properties. However, the interpretation and technological exploitation of their unique behavior have been hampered by the difficulty of controlling their anchoring at surfaces. To tackle this issue, we report the nanoscale structural characterization of BCM films prepared using the Langmuir–Blodgett technique. Even though BCMs are quite different from typical amphiphilic molecules, we demonstrate that stable molecular films form over water, which can then be transferred onto silicon substrates. The combination of Brewster angle microscopy, atomic force microscopy, and X-ray reflectivity measurements shows that the molecules, once transferred onto a solid substrate, form a bilayer structure with a bottom layer of flat molecules and an upper layer of upright molecules. These results suggest that Langmuir–Blodgett films of BCMs can provide a useful means to control the alignment of this class of liquid crystals. Full article
Show Figures

Figure 1

9 pages, 3259 KiB  
Article
Bandpass Filter Integrated Metalens Based on Electromagnetically Induced Transparency
by Dongzhi Shan, Jinsong Gao, Nianxi Xu, Hai Liu, Naitao Song, Qiao Sun, Yi Zhao, Yang Tang, Yansong Wang, Xiaoguo Feng and Xin Chen
Nanomaterials 2022, 12(13), 2282; https://doi.org/10.3390/nano12132282 - 2 Jul 2022
Cited by 7 | Viewed by 2014
Abstract
A bandpass filter integrated metalens based on electromagnetically induced transparency (EIT) for long-wavelength infrared (LWIR) imaging is designed in this paper. The bandwidth of the metalens, which is a diffractive optical element, decreases significantly with the increase of the aperture size to a [...] Read more.
A bandpass filter integrated metalens based on electromagnetically induced transparency (EIT) for long-wavelength infrared (LWIR) imaging is designed in this paper. The bandwidth of the metalens, which is a diffractive optical element, decreases significantly with the increase of the aperture size to a fixed f-number, which leads to the decline of imaging performance. The same material composition and preparation process of the metalens and the EIT metasurface in the long-wavelength infrared make it feasible that the abilities of focusing imaging and filtering are integrated into a metasurface device. With the purpose of validating the feasibility of this design method, we have designed a 300-μm-diameter integrated metalens whose f-number is 0.8 and the simulation was carried out. The introduction of EIT metasurface does not affect the focusing near the diffraction limit at the target wavelength, and greatly reduces the influence of stray light caused by non-target wavelength incident light. This bandpass filter integrated metalens design method may have a great potential in the field of LWIR compact optical systems. Full article
Show Figures

Figure 1

13 pages, 3842 KiB  
Article
Far-Field and Non-Intrusive Optical Mapping of Nanoscale Structures
by Guorong Guan, Aiqin Zhang, Xiangsheng Xie, Yan Meng, Weihua Zhang, Jianying Zhou and Haowen Liang
Nanomaterials 2022, 12(13), 2274; https://doi.org/10.3390/nano12132274 - 1 Jul 2022
Cited by 3 | Viewed by 1816
Abstract
Far-field high-density optics storage and readout involve the interaction of a sub-100 nm beam profile laser to store and retrieve data with nanostructure media. Hence, understanding the light–matter interaction responding in the far-field in such a small scale is essential for effective optical [...] Read more.
Far-field high-density optics storage and readout involve the interaction of a sub-100 nm beam profile laser to store and retrieve data with nanostructure media. Hence, understanding the light–matter interaction responding in the far-field in such a small scale is essential for effective optical information processing. We present a theoretical analysis and an experimental study for far-field and non-intrusive optical mapping of nanostructures. By a comprehensive analytical derivation for interaction between the modulated light and the target in a confocal laser scanning microscopy (CLSM) configuration, it is found that the CLSM probes the local density of states (LDOSs) in the far field rather than the sample geometric morphology. With a radially polarized (RP) light for illumination, the far-field mapping of LDOS at the optical resolution down to 74 nm is obtained. In addition, it is experimentally verified that the target morphology is mapped only when the far-field mapping of LDOS coincides with the geometric morphology, while light may be blocked from entering the nanostructures medium with weak or missing LDOS, hence invalidating high-density optical information storage and retrieval. In this scenario, nanosphere gaps as small as 33 nm are clearly observed. We further discuss the characterization for far-field and non-intrusive interaction with nanostructures of different geometric morphology and compare them with those obtainable with the projection of near-field LDOS and scanning electronic microscopic results. Full article
(This article belongs to the Special Issue New Challenges in Nanofilm and Nanowire Characterization)
Show Figures

Figure 1

18 pages, 5933 KiB  
Article
The Influence of Synthesis Method on the Local Structure and Electrochemical Properties of Li-Rich/Mn-Rich NMC Cathode Materials for Li-Ion Batteries
by Mylène Hendrickx, Andreas Paulus, Maria A. Kirsanova, Marlies K. Van Bael, Artem M. Abakumov, An Hardy and Joke Hadermann
Nanomaterials 2022, 12(13), 2269; https://doi.org/10.3390/nano12132269 - 30 Jun 2022
Cited by 3 | Viewed by 3010
Abstract
Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich [...] Read more.
Electrochemical energy storage plays a vital role in combating global climate change. Nowadays lithium-ion battery technology remains the most prominent technology for rechargeable batteries. A key performance-limiting factor of lithium-ion batteries is the active material of the positive electrode (cathode). Lithium- and manganese-rich nickel manganese cobalt oxide (LMR-NMC) cathode materials for Li-ion batteries are extensively investigated due to their high specific discharge capacities (>280 mAh/g). However, these materials are prone to severe capacity and voltage fade, which deteriorates the electrochemical performance. Capacity and voltage fade are strongly correlated with the particle morphology and nano- and microstructure of LMR-NMCs. By selecting an adequate synthesis strategy, the particle morphology and structure can be controlled, as such steering the electrochemical properties. In this manuscript we comparatively assessed the morphology and nanostructure of LMR-NMC (Li1.2Ni0.13Mn0.54Co0.13O2) prepared via an environmentally friendly aqueous solution-gel and co-precipitation route, respectively. The solution-gel (SG) synthesized material shows a Ni-enriched spinel-type surface layer at the {200} facets, which, based on our post-mortem high-angle annual dark-field scanning transmission electron microscopy and selected-area electron diffraction analysis, could partly explain the retarded voltage fade compared to the co-precipitation (CP) synthesized material. In addition, deviations in voltage fade and capacity fade (the latter being larger for the SG material) could also be correlated with the different particle morphology obtained for both materials. Full article
Show Figures

Graphical abstract

19 pages, 4359 KiB  
Article
Understanding of the Electrochemical Behavior of Lithium at Bilayer-Patched Epitaxial Graphene/4H-SiC
by Ivan Shtepliuk, Mikhail Vagin, Ziyauddin Khan, Alexei A. Zakharov, Tihomir Iakimov, Filippo Giannazzo, Ivan G. Ivanov and Rositsa Yakimova
Nanomaterials 2022, 12(13), 2229; https://doi.org/10.3390/nano12132229 - 29 Jun 2022
Cited by 2 | Viewed by 1799
Abstract
Novel two-dimensional materials (2DMs) with balanced electrical conductivity and lithium (Li) storage capacity are desirable for next-generation rechargeable batteries as they may serve as high-performance anodes, improving output battery characteristics. Gaining an advanced understanding of the electrochemical behavior of lithium at the electrode [...] Read more.
Novel two-dimensional materials (2DMs) with balanced electrical conductivity and lithium (Li) storage capacity are desirable for next-generation rechargeable batteries as they may serve as high-performance anodes, improving output battery characteristics. Gaining an advanced understanding of the electrochemical behavior of lithium at the electrode surface and the changes in interior structure of 2DM-based electrodes caused by lithiation is a key component in the long-term process of the implementation of new electrodes into to a realistic device. Here, we showcase the advantages of bilayer-patched epitaxial graphene on 4H-SiC (0001) as a possible anode material in lithium-ion batteries. The presence of bilayer graphene patches is beneficial for the overall lithiation process because it results in enhanced quantum capacitance of the electrode and provides extra intercalation paths. By performing cyclic voltammetry and chronoamperometry measurements, we shed light on the redox behavior of lithium at the bilayer-patched epitaxial graphene electrode and find that the early-stage growth of lithium is governed by the instantaneous nucleation mechanism. The results also demonstrate the fast lithium-ion transport (~4.7–5.6 × 10−7 cm2∙s−1) to the bilayer-patched epitaxial graphene electrode. Raman measurements complemented by in-depth statistical analysis and density functional theory calculations enable us to comprehend the lithiation effect on the properties of bilayer-patched epitaxial graphene and ascribe the lithium intercalation-induced Raman G peak splitting to the disparity between graphene layers. The current results are helpful for further advancement of the design of graphene-based electrodes with targeted performance. Full article
Show Figures

Figure 1

12 pages, 17526 KiB  
Article
Performance Enhancement of SPR Biosensor Using Graphene–MoS2 Hybrid Structure
by Haoyuan Cai, Mengwei Wang, Zhuohui Wu, Jing Liu and Xiaoping Wang
Nanomaterials 2022, 12(13), 2219; https://doi.org/10.3390/nano12132219 - 28 Jun 2022
Cited by 11 | Viewed by 2294
Abstract
We investigate a high-sensitivity surface plasmon resonance (SPR) biosensor consisting of a Au layer, four-layer MoS2, and monolayer graphene. The numerical simulations, by the transfer matrix method (TMM), demonstrate the sensor has a maximum sensitivity of 282°/RIU, which is approximately 2 [...] Read more.
We investigate a high-sensitivity surface plasmon resonance (SPR) biosensor consisting of a Au layer, four-layer MoS2, and monolayer graphene. The numerical simulations, by the transfer matrix method (TMM), demonstrate the sensor has a maximum sensitivity of 282°/RIU, which is approximately 2 times greater than the conventional Au-based SPR sensor. The finite difference time domain (FDTD) indicates that the presence of MoS2 film generates a strong surface electric field and enhances the sensitivity of the proposed SPR sensor. In addition, the influence of the number of MoS2 layers on the sensitivity of the proposed sensor is investigated by simulations and experiments. In the experiment, MoS2 and graphene films are transferred on the Au-based substrate by the PMMA-based wet transfer method, and the fabricated samples are characterized by Raman spectroscopy. Furthermore, the fabricated sensors with the Kretschmann configuration are used to detect okadaic acid (OA). The okadaic acid–bovine serum albumin bioconjugate (OA-BSA) is immobilized on the graphene layer of the sensors to develop a competitive inhibition immunoassay. The results show that the sensor has a very low limit of detection (LOD) of 1.18 ng/mL for OA, which is about 22.6 times lower than that of a conventional Au biosensor. We believe that such a high-sensitivity SPR biosensor has potential applications for clinical diagnosis and immunoassays. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

17 pages, 4886 KiB  
Article
Application of Micro/Nanoporous Fluoropolymers with Reduced Bioadhesion in Digital Microfluidics
by Andreas Goralczyk, Sagar Bhagwat, Fadoua Mayoussi, Niloofar Nekoonam, Kai Sachsenheimer, Peilong Hou, Frederik Kotz-Helmer, Dorothea Helmer and Bastian E. Rapp
Nanomaterials 2022, 12(13), 2201; https://doi.org/10.3390/nano12132201 - 27 Jun 2022
Cited by 3 | Viewed by 2327
Abstract
Digital microfluidics (DMF) is a versatile platform for conducting a variety of biological and chemical assays. The most commonly used set-up for the actuation of microliter droplets is electrowetting on dielectric (EWOD), where the liquid is moved by an electrostatic force on a [...] Read more.
Digital microfluidics (DMF) is a versatile platform for conducting a variety of biological and chemical assays. The most commonly used set-up for the actuation of microliter droplets is electrowetting on dielectric (EWOD), where the liquid is moved by an electrostatic force on a dielectric layer. Superhydrophobic materials are promising materials for dielectric layers, especially since the minimum contact between droplet and surface is key for low adhesion of biomolecules, as it causes droplet pinning and cross contamination. However, superhydrophobic surfaces show limitations, such as full wetting transition between Cassie and Wenzel under applied voltage, expensive and complex fabrication and difficult integration into already existing devices. Here we present Fluoropor, a superhydrophobic fluorinated polymer foam with pores on the micro/nanoscale as a dielectric layer in DMF. Fluoropor shows stable wetting properties with no significant changes in the wetting behavior, or full wetting transition, until potentials of 400 V. Furthermore, Fluoropor shows low attachment of biomolecules to the surface upon droplet movement. Due to its simple fabrication process, its resistance to adhesion of biomolecules and the fact it is capable of being integrated and exchanged as thin films into commercial DMF devices, Fluoropor is a promising material for wide application in DMF. Full article
(This article belongs to the Special Issue Functional Nanostructured Materials—from Synthesis to Applications)
Show Figures

Graphical abstract

20 pages, 4191 KiB  
Article
Efficient Removal of Methylene Blue and Ciprofloxacin from Aqueous Solution Using Flower-like, Nanostructured ZnO Coating under UV Irradiation
by Vasile Tiron, Mihai Alexandru Ciolan, Georgiana Bulai, Gabriela Mihalache, Florin Daniel Lipsa and Roxana Jijie
Nanomaterials 2022, 12(13), 2193; https://doi.org/10.3390/nano12132193 - 26 Jun 2022
Cited by 8 | Viewed by 2054
Abstract
Flower-like ZnO architectures assembled with many nanorods were successfully synthesized through Thermionic Vacuum Arc, operated both in direct current (DC-TVA) and a pulsed mode (PTVA), and coupled with annealing in an oxygen atmosphere. The prepared coatings were analysed by scanning-electron microscopy with energy-dispersive [...] Read more.
Flower-like ZnO architectures assembled with many nanorods were successfully synthesized through Thermionic Vacuum Arc, operated both in direct current (DC-TVA) and a pulsed mode (PTVA), and coupled with annealing in an oxygen atmosphere. The prepared coatings were analysed by scanning-electron microscopy with energy-dispersive X-ray-spectroscopy (SEM-EDX), X-ray-diffraction (XRD), and photoluminescence (PL) measurements. By simply modifying the TVA operation mode, the morphology and uniformity of ZnO nanorods can be tuned. The photocatalytic performance of synthesized nanostructured ZnO coatings was measured by the degradation of methylene-blue (MB) dye and ciprofloxacin (Cipro) antibiotic. The ZnO (PTVA) showed enhancing results regarding the photodegradation of target contaminants. About 96% of MB molecules were removed within 60 min of UV irradiation, with a rate constant of 0.058 min−1, which is almost nine times higher than the value of ZnO (DC-TVA). As well, ZnO (PTVA) presented superior photocatalytic activity towards the decomposition of Cipro, after 240 min of irradiation, yielding 96% degradation efficiency. Moreover, the agar-well diffusion assay performance against both Gram-positive and Gram-negative bacteria confirms the degradation of antibiotic molecules by the UV/ZnO (PTVA) approach, without the formation of secondary hazardous products during the photocatalysis process. Repeated cyclic usage of coatings revealed excellent reusability and operational stability. Full article
Show Figures

Figure 1

18 pages, 14678 KiB  
Article
In Vivo Evaluation of the Effects of Sintering Temperature on the Optical Properties of Dental Glass-Ceramics
by Kuo-Cheng Fan, Yu-Ling Lin, Hao-Wei Tsao, Hsuan Chen, Sheng-Yang Lee, Yu-Chen Cheng, Hsiao-Ping Huang and Wei-Chun Lin
Nanomaterials 2022, 12(13), 2187; https://doi.org/10.3390/nano12132187 - 25 Jun 2022
Cited by 7 | Viewed by 2343
Abstract
In prosthodontics, the ability of glass-ceramics to express the optical properties of natural teeth is an important goal of esthetic restorations. Dental restorations do not merely need to be similar in color to natural teeth; proper optical properties, such as opalescence, transparency, etc., [...] Read more.
In prosthodontics, the ability of glass-ceramics to express the optical properties of natural teeth is an important goal of esthetic restorations. Dental restorations do not merely need to be similar in color to natural teeth; proper optical properties, such as opalescence, transparency, etc., must be combined in order to achieve excellent esthetic effects. The optical properties of ceramic materials are mainly distinguished by different hues (e.g., A, B, C, and D) combined with translucency (e.g., high translucency (HT), medium translucency (MT), low translucency (LT), and medium opacity (MO)). However, there are many varieties of tooth color. Therefore, it is expected that glass-ceramics can change their nanocrystal size and porosity through different heat-treatment temperatures and times and, thereby, present different transparency effects. This study mainly analyzed the influence of changes in sintering temperature on the optical properties of glass-ceramics. The optical properties of glass-ceramics in the oral cavity were evaluated with human trials. We hypothesized that (1) the transparency of glass-ceramics can be changed by controlling the sintering temperature and (2) glass-ceramics modified by the sintering temperature can be suitable for clinical applications. Results showed that the transparency decreased, the nanoparticle size increased, the crystallinity increased, and the surface hardness decreased as the sintering temperature increased. High-brightness glass-ceramics have more-sensitive optical properties. Results of clinical trials showed that glass-ceramics whose transparency was changed by controlling the sintering temperature can be candidates for clinical applications. Based on the above results, the hypotheses of this study were supported. In the future, we will continue to explore the esthetic field of dental restorations. Full article
(This article belongs to the Special Issue Biocompatible Dental Nanomaterials: State of the Art and Perspectives)
Show Figures

Graphical abstract

17 pages, 3724 KiB  
Article
Microstructure and Electrical Conductivity of Electrospun Titanium Oxynitride Carbon Composite Nanofibers
by Gorazd Koderman Podboršek, Špela Zupančič, Rok Kaufman, Angelja Kjara Surca, Aleš Marsel, Andraž Pavlišič, Nejc Hodnik, Goran Dražić and Marjan Bele
Nanomaterials 2022, 12(13), 2177; https://doi.org/10.3390/nano12132177 - 24 Jun 2022
Cited by 1 | Viewed by 1847
Abstract
Titanium oxynitride carbon composite nanofibers (TiON/C-CNFs) were synthesised with electrospinning and subsequent heat treatment in ammonia gas. In situ four-probe electrical conductivity measurements of individual TiON/C-CNFs were performed. Additionally, the TiON/C-CNFs were thoroughly analysed with various techniques, such as X-ray and electron diffractions, [...] Read more.
Titanium oxynitride carbon composite nanofibers (TiON/C-CNFs) were synthesised with electrospinning and subsequent heat treatment in ammonia gas. In situ four-probe electrical conductivity measurements of individual TiON/C-CNFs were performed. Additionally, the TiON/C-CNFs were thoroughly analysed with various techniques, such as X-ray and electron diffractions, electron microscopies and spectroscopies, thermogravimetric analysis and chemical analysis to determine the crystal structure, morphology, chemical composition, and N/O at. ratio. It was found that nanofibers were composed of 2–5 nm sized titanium oxynitride (TiON) nanoparticles embedded in an amorphous carbon matrix with a small degree of porosity. The average electrical conductivity of a single TiON/C-CNF was 1.2 kS/m and the bulk electrical conductivity of the TiON/C-CNF fabric was 0.053 kS/m. From the available data, the mesh density of the TiON/C-CNF fabric was estimated to have a characteristic length of 1.0 µm and electrical conductivity of a single TiON/C-CNF was estimated to be from 0.45 kS/m to 19 kS/m. The electrical conductivity of the measured TiON/C-CNFs is better than that of amorphous carbon nanofibers and has ohmic behaviour, which indicates that it can effectively serve as a new type of support material for electrocatalysts, batteries, sensors or supercapacitors. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

11 pages, 1830 KiB  
Article
The Design of Aluminum-Matrix Composites Reinforced with AlCoCrFeNi High-Entropy Alloy Nanoparticles by First-Principles Studies on the Properties of Interfaces
by Yu Liu and Guangping Zheng
Nanomaterials 2022, 12(13), 2157; https://doi.org/10.3390/nano12132157 - 23 Jun 2022
Cited by 3 | Viewed by 1728
Abstract
The present work reports the interfacial behaviors and mechanical properties of AlCoCrFeNi high-entropy alloy (HEA) reinforced aluminum matrix composites (AMCs) based on first-principles calculations. It is found the stability of HEA-reinforced AMCs is strongly dependent on the local chemical compositions in the interfacial [...] Read more.
The present work reports the interfacial behaviors and mechanical properties of AlCoCrFeNi high-entropy alloy (HEA) reinforced aluminum matrix composites (AMCs) based on first-principles calculations. It is found the stability of HEA-reinforced AMCs is strongly dependent on the local chemical compositions in the interfacial regions, i.e., those regions containing more Ni atoms (>25%) or fewer Al atoms (<20%) render more stable interfaces in the HEA-reinforced AMCs. It is calculated that the interfacial energy of Al(001)/Al20Co19Cr19Fe19Ni19(001) interfaces varies from −0.242 eV/Å2 to −0.192 eV/Å2, suggesting that the formation of interfaces at (100) atomic plane is energetically favorable. For those constituent alloy elements presented at the interfaces, Ni could stabilize the interface whereas Al tends to deteriorate the stability of interface. It is determined that although the HEA-reinforced AMCs have less yield strength compared to aluminum, their Young’s modulus is enhanced from 69 GPa for pure Al to 134 GPa. Meanwhile, the meaningful plasticity under tension could also be improved, which are related to the chemical compositions at the interfaces. The results presented in this work could facilitate the designs of compositions and interfacial behaviors of HEA-reinforced AMCs for structural applications. Full article
Show Figures

Figure 1

13 pages, 6465 KiB  
Article
Formamidinium Lead Halide Perovskite Nanocomposite Scintillators
by Isabel H. B. Braddock, Maya Al Sid Cheikh, Joydip Ghosh, Roma E. Mulholland, Joseph G. O’Neill, Vlad Stolojan, Carol Crean, Stephen J. Sweeney and Paul J. Sellin
Nanomaterials 2022, 12(13), 2141; https://doi.org/10.3390/nano12132141 - 22 Jun 2022
Cited by 16 | Viewed by 2961
Abstract
While there is great demand for effective, affordable radiation detectors in various applications, many commonly used scintillators have major drawbacks. Conventional inorganic scintillators have a fixed emission wavelength and require expensive, high-temperature synthesis; plastic scintillators, while fast, inexpensive, and robust, have low atomic [...] Read more.
While there is great demand for effective, affordable radiation detectors in various applications, many commonly used scintillators have major drawbacks. Conventional inorganic scintillators have a fixed emission wavelength and require expensive, high-temperature synthesis; plastic scintillators, while fast, inexpensive, and robust, have low atomic numbers, limiting their X-ray stopping power. Formamidinium lead halide perovskite nanocrystals show promise as scintillators due to their high X-ray attenuation coefficient and bright luminescence. Here, we used a room-temperature, solution-growth method to produce mixed-halide FAPbX3 (X = Cl, Br) nanocrystals with emission wavelengths that can be varied between 403 and 531 nm via adjustments to the halide ratio. The substitution of bromine for increasing amounts of chlorine resulted in violet emission with faster lifetimes, while larger proportions of bromine resulted in green emission with increased luminescence intensity. By loading FAPbBr3 nanocrystals into a PVT-based plastic scintillator matrix, we produced 1 mm-thick nanocomposite scintillators, which have brighter luminescence than the PVT-based plastic scintillator alone. While nanocomposites such as these are often opaque due to optical scattering from aggregates of the nanoparticles, we used a surface modification technique to improve transmission through the composites. A composite of FAPbBr3 nanocrystals encapsulated in inert PMMA produced even stronger luminescence, with intensity 3.8× greater than a comparative FAPbBr3/plastic scintillator composite. However, the luminescence decay time of the FAPbBr3/PMMA composite was more than 3× slower than that of the FAPbBr3/plastic scintillator composite. We also demonstrate the potential of these lead halide perovskite nanocomposite scintillators for low-cost X-ray imaging applications. Full article
(This article belongs to the Special Issue New Advances for Halide Perovskite Materials and Applications)
Show Figures

Figure 1

15 pages, 1550 KiB  
Article
Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies
by Kiyanoush Goudarzi and Moonjoo Lee
Nanomaterials 2022, 12(13), 2132; https://doi.org/10.3390/nano12132132 - 21 Jun 2022
Viewed by 1442
Abstract
In this study, we design ultra-broadband optical absorbers, ultra-narrow optical waveguides, and ultra-small optical cavities comprising two-dimensional metallic photonic crystals that tolerate fabrication imperfections such as position and radius disorderings. The absorbers containing gold rods show an absorption amplitude of more than 90% [...] Read more.
In this study, we design ultra-broadband optical absorbers, ultra-narrow optical waveguides, and ultra-small optical cavities comprising two-dimensional metallic photonic crystals that tolerate fabrication imperfections such as position and radius disorderings. The absorbers containing gold rods show an absorption amplitude of more than 90% under 54% position disordering at 200<λ<530 nm. The absorbers containing silver rods show an absorptance of more than 90% under 54% position disordering at 200<λ<400 nm. B-type straight waveguides that contain four rows of silver rods exposed to air reveal normalized transmittances of 75% and 76% under 32% position and 60% radius disorderings, respectively. B-type L-shaped waveguides containing four rows of silver rods show 76% and 90% normalized transmittances under 32% position and 40% radius disorderings, respectively. B-type cavities containing two rings of silver rods reveal 70% and 80% normalized quality factors under 32% position and 60% radius disorderings, respectively. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

18 pages, 3252 KiB  
Article
Microwave-Assisted Synthesis of Zn2SnO4 Nanostructures for Photodegradation of Rhodamine B under UV and Sunlight
by Ana Rovisco, Maria Morais, Rita Branquinho, Elvira Fortunato, Rodrigo Martins and Pedro Barquinha
Nanomaterials 2022, 12(12), 2119; https://doi.org/10.3390/nano12122119 - 20 Jun 2022
Cited by 5 | Viewed by 2226
Abstract
The contamination of water resources by pollutants resulting from human activities represents a major concern nowadays. One promising alternative to solve this problem is the photocatalytic process, which has demonstrated very promising and efficient results. Oxide nanostructures are interesting alternatives for these applications [...] Read more.
The contamination of water resources by pollutants resulting from human activities represents a major concern nowadays. One promising alternative to solve this problem is the photocatalytic process, which has demonstrated very promising and efficient results. Oxide nanostructures are interesting alternatives for these applications since they present wide band gaps and high surface areas. Among the photocatalytic oxide nanostructures, zinc tin oxide (ZTO) presents itself as an eco-friendly alternative since its composition includes abundant and non-toxic zinc and tin, instead of critical elements. Moreover, ZTO nanostructures have a multiplicity of structures and morphologies possible to be obtained through low-cost solution-based syntheses. In this context, the current work presents an optimization of ZTO nanostructures (polyhedrons, nanoplates, and nanoparticles) obtained by microwave irradiation-assisted hydrothermal synthesis, toward photocatalytic applications. The nanostructures’ photocatalytic activity in the degradation of rhodamine B under both ultraviolet (UV) irradiation and natural sunlight was evaluated. Among the various morphologies, ZTO nanoparticles revealed the best performance, with degradation > 90% being achieved in 60 min under UV irradiation and in 90 min under natural sunlight. The eco-friendly production process and the demonstrated ability of these nanostructures to be used in various water decontamination processes reinforces their sustainability and the role they can play in a circular economy. Full article
Show Figures

Graphical abstract

12 pages, 2802 KiB  
Article
Artificial Synapse Consisted of TiSbTe/SiCx:H Memristor with Ultra-high Uniformity for Neuromorphic Computing
by Liangliang Chen, Zhongyuan Ma, Kangmin Leng, Tong Chen, Hongsheng Hu, Yang Yang, Wei Li, Jun Xu, Ling Xu and Kunji Chen
Nanomaterials 2022, 12(12), 2110; https://doi.org/10.3390/nano12122110 - 19 Jun 2022
Cited by 2 | Viewed by 1985
Abstract
To enable a-SiCx:H-based memristors to be integrated into brain-inspired chips, and to efficiently deal with the massive and diverse data, high switching uniformity of the a-SiC0.11:H memristor is urgently needed. In this study, we introduced a TiSbTe layer into [...] Read more.
To enable a-SiCx:H-based memristors to be integrated into brain-inspired chips, and to efficiently deal with the massive and diverse data, high switching uniformity of the a-SiC0.11:H memristor is urgently needed. In this study, we introduced a TiSbTe layer into an a-SiC0.11:H memristor, and successfully observed the ultra-high uniformity of the TiSbTe/a-SiC0.11:H memristor device. Compared with the a-SiC0.11:H memristor, the cycle-to-cycle coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors was reduced by 92.5% and 66.4%, respectively. Moreover, the device-to-device coefficient of variation in the high resistance state and the low resistance state of TiSbTe/a-SiC0.11:H memristors decreased by 93.6% and 86.3%, respectively. A high-resolution transmission electron microscope revealed that a permanent TiSbTe nanocrystalline conductive nanofilament was formed in the TiSbTe layer during the DC sweeping process. The localized electric field of the TiSbTe nanocrystalline was beneficial for confining the position of the conductive filaments in the a-SiC0.11:H film, which contributed to improving the uniformity of the device. The temperature-dependent I-V characteristic further confirmed that the bridge and rupture of the Si dangling bond nanopathway was responsible for the resistive switching of the TiSbTe/a-SiC0.11:H device. The ultra-high uniformity of the TiSbTe/a-SiC0.11:H device ensured the successful implementation of biosynaptic functions such as spike-duration-dependent plasticity, long-term potentiation, long-term depression, and spike-timing-dependent plasticity. Furthermore, visual learning capability could be simulated through changing the conductance of the TiSbTe/a-SiC0.11:H device. Our discovery of the ultra-high uniformity of TiSbTe/a-SiC0.11:H memristor devices provides an avenue for their integration into the next generation of AI chips. Full article
Show Figures

Figure 1

14 pages, 3632 KiB  
Article
Zn and Zn-Fe Nanostructures with Multifunctional Properties as Components for Food Packaging Materials
by Hafsae Lamsaf, Lina F. Ballesteros, Miguel A. Cerqueira, José A. Teixeira, Lorenzo M. Pastrana, Luís Rebouta, Sandra Carvalho and Sebastian Calderon
Nanomaterials 2022, 12(12), 2104; https://doi.org/10.3390/nano12122104 - 18 Jun 2022
Viewed by 1904
Abstract
Metallic and bimetallic nanostructures have shown interesting chromatic and antibacterial properties, and they can be used in various applications. In this work, zinc (Zn) and iron (Fe) nanostructures were produced with different morphologies: (i) pure Zn; (ii) Zn-Fe nanoalloys; (iii) Zn-Fe nanolayers (Zn-Fe [...] Read more.
Metallic and bimetallic nanostructures have shown interesting chromatic and antibacterial properties, and they can be used in various applications. In this work, zinc (Zn) and iron (Fe) nanostructures were produced with different morphologies: (i) pure Zn; (ii) Zn-Fe nanoalloys; (iii) Zn-Fe nanolayers (Zn-Fe NLs); and (iv) Zn nanolayers combined with Fe nanoparticles (Zn NLs + Fe NPs). The aim was to produce components for food packaging materials with active and intelligent properties, including oxygen absorption capacity, chromatic properties, and antibacterial properties. Thus, the morphology, structure, and chemical composition of the samples were characterized and correlated with their oxidation, chromatic, and antibacterial properties. The results revealed a relevant reduction in the coating’s opacity after oxidation varying from 100 to 10% depending on the morphology of the system. All coatings exhibited significant antibacterial activity against S. aureus, revealing a direct correlation with Zn content. The incorporation of Fe for all atomic arrangements showed a negative impact on the antibacterial effect against E. coli, decreasing to less than half the zone of inhibition for Zn-Fe NLs and Zn NLs + Fe NPs and suppressing the antibacterial effect for Zn-Fe alloy when compared with the pure Zn system. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

19 pages, 3362 KiB  
Article
Structural-Functional Changes in a Ti50Ni45Cu5 Alloy Caused by Training Procedures Based on Free-Recovery and Work-Generating Shape Memory Effect
by Mihai Popa, Nicoleta-Monica Lohan, Bogdan Pricop, Nicanor Cimpoeșu, Marieta Porcescu, Radu Ioachim Comăneci, Maria Cazacu, Firuța Borza and Leandru-Gheorghe Bujoreanu
Nanomaterials 2022, 12(12), 2088; https://doi.org/10.3390/nano12122088 - 17 Jun 2022
Cited by 4 | Viewed by 1800
Abstract
Active elements made of Ti50Ni45Cu5 shape memory alloy (SMA) were martensitic at room temperature (RT) after hot rolling with instant water quenching. These pristine specimens were subjected to two thermomechanical training procedures consisting of (i) free recovery shape [...] Read more.
Active elements made of Ti50Ni45Cu5 shape memory alloy (SMA) were martensitic at room temperature (RT) after hot rolling with instant water quenching. These pristine specimens were subjected to two thermomechanical training procedures consisting of (i) free recovery shape memory effect (FR-SME) and (ii) work generating shape memory effect (WG-SME) under constant stress as well as dynamic bending and RT static tensile testing (TENS). The structural-functional changes, caused by the two training procedures as well as TENS were investigated by various experimental techniques, including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray diffraction (XRD), and atomic force microscopy (AFM). Fragments cut from the active regions of trained specimens or from the elongated gauges of TENS specimens were analyzed by DSC, XRD, and AFM. The DSC thermograms revealed the shift in critical transformation temperatures and a diminution in specific absorbed enthalpy as an effect of training cycles. The DMA thermograms of pristine specimens emphasized a change of storage modulus variation during heating after the application of isothermal dynamical bending at RT. The XRD patterns and AMF micrographs disclosed the different evolution of martensite plate variants as an effect of FR-SME cycling and of being elongated upon convex surfaces or compressed upon concave surfaces of bent specimens. For illustrative reasons, the evolution of unit cell parameters of B19′ martensite, as a function of the number of cycles of FR-SME training, upon concave regions was discussed. AFM micrographs emphasized wider and shallower martensite plates on the convex region as compared to the concave one. With increasing the number of FR-SME training cycles, plates’ heights decreased by 84–87%. The results suggest that FR-SME training caused marked decreases in martensite plate dimensions, which engendered a decrease in specific absorbed enthalpy during martensite reversion. Full article
(This article belongs to the Special Issue Nanostructural Processing Effects in Shape Memory Alloys)
Show Figures

Figure 1

11 pages, 2158 KiB  
Article
Chain Formation during Hydrogen Loss and Reconstruction in Carbon Nanobelts
by Yuri Tanuma, Paul Dunk, Toru Maekawa and Chris P. Ewels
Nanomaterials 2022, 12(12), 2073; https://doi.org/10.3390/nano12122073 - 16 Jun 2022
Cited by 4 | Viewed by 1345
Abstract
Using laser-induced vaporisation to evaporate and ionise a source of curved polyaromatic hydrocarbons (carbon nanobelts), we show collision impacts between species cause mass loss and the resultant ions are catalogued via mass-spectrometry. These data are interpreted via a series of “in-silico”-simulated systematic hydrogen-loss [...] Read more.
Using laser-induced vaporisation to evaporate and ionise a source of curved polyaromatic hydrocarbons (carbon nanobelts), we show collision impacts between species cause mass loss and the resultant ions are catalogued via mass-spectrometry. These data are interpreted via a series of “in-silico”-simulated systematic hydrogen-loss studies using density functional theory modelling, sequentially removing hydrogen atoms using thermodynamic stability as a selection for subsequent dehydrogenation. Initial hydrogen loss results in the formation of carbyne chains and pentagon-chains while the nanobelt rings are maintained, giving rise to new circular strained dehydrobenzoannulene species. The chains subsequently break, releasing CH and C2. Alternative routes towards the formation of closed-cages (fullerenes) are identified but shown to be less stable than chain formation, and are not observed experimentally. The results provide important information on collision degradation routes of curved molecular carbon species, and notably serve as a useful guide to high-energy impact conditions observed in some astrochemical environments. Full article
(This article belongs to the Special Issue State-of-the-Art 2D and Carbon Nanomaterials in France)
Show Figures

Graphical abstract

20 pages, 5665 KiB  
Article
Controlling the Deposition Process of Nanoarchitectonic Nanocomposites Based on {Nb6−xTaxXi12}n+ Octahedral Cluster-Based Building Blocks (Xi = Cl, Br; 0 ≤ x ≤ 6, n = 2, 3, 4) for UV-NIR Blockers Coating Applications
by Clément Lebastard, Maxence Wilmet, Stéphane Cordier, Clothilde Comby-Zerbino, Luke MacAleese, Philippe Dugourd, Toru Hara, Naoki Ohashi, Tetsuo Uchikoshi and Fabien Grasset
Nanomaterials 2022, 12(12), 2052; https://doi.org/10.3390/nano12122052 - 15 Jun 2022
Cited by 3 | Viewed by 2107
Abstract
The antagonism between global energy needs and the obligation to slow global warming is a current challenge. In order to ensure sufficient thermal comfort, the automotive, housing and agricultural building sectors are major energy consumers. Solar control materials and more particularly, selective glazing [...] Read more.
The antagonism between global energy needs and the obligation to slow global warming is a current challenge. In order to ensure sufficient thermal comfort, the automotive, housing and agricultural building sectors are major energy consumers. Solar control materials and more particularly, selective glazing are part of the solutions proposed to reduce global energy consumption and tackle global warming. In this context, these works are focused on developing new highly ultraviolet (UV) and near-infrared (NIR) absorbent nanocomposite coatings based on K4[{Nb6-xTaxXi12}Xa6]. (X = Cl, Br, 0 ≤ x ≤ 6) transition metal cluster compounds. These compounds contain cluster-based active species that are characterized by their strong absorption of UV and NIR radiations as well as their good transparency in the visible range, which makes them particularly attractive for window applications. Their integration, by solution processes, into a silica-polyethylene glycol or polyvinylpyrrolidone matrices is discussed. Of particular interest is the control and the tuning of their optical properties during the integration and shaping processes. The properties of the solutions and films were investigated by complementary techniques (UV-Vis-NIR spectrometry, ESI-MS, SEM, HRTEM, etc.). Results of these works have led to the development of versatile solar control coatings whose optical properties are competitive with commercialized material. Full article
(This article belongs to the Special Issue Functional Nanocomposite Material Based on Metal Atom Clusters)
Show Figures

Graphical abstract

17 pages, 4813 KiB  
Article
Magnetic Nanoclusters Increase the Sensitivity of Lateral Flow Immunoassays for Protein Detection: Application to Pneumolysin as a Biomarker for Streptococcus pneumoniae
by María Salvador, José Luis Marqués-Fernández, Alexander Bunge, José Carlos Martínez-García, Rodica Turcu, Davide Peddis, María del Mar García-Suárez, María Dolores Cima-Cabal and Montserrat Rivas
Nanomaterials 2022, 12(12), 2044; https://doi.org/10.3390/nano12122044 - 14 Jun 2022
Cited by 8 | Viewed by 2381
Abstract
Lateral flow immunoassays for detecting biomarkers in body fluids are simple, quick, inexpensive point-of-care tests widely used in disease surveillance, such as during the coronavirus disease 2019 (COVID-19) pandemic. Improvements in sensitivity would increase their utility in healthcare, food safety, and environmental control. [...] Read more.
Lateral flow immunoassays for detecting biomarkers in body fluids are simple, quick, inexpensive point-of-care tests widely used in disease surveillance, such as during the coronavirus disease 2019 (COVID-19) pandemic. Improvements in sensitivity would increase their utility in healthcare, food safety, and environmental control. Recently, biofunctional magnetic nanoclusters have been used to selectively label target proteins, which allows their detection and quantification with a magneto-inductive sensor. This type of detector is easily integrated with the lateral flow immunoassay format. Pneumolysin is a cholesterol-dependent cytolysin and one of the most important protein virulence factors of pneumonia produced by Streptococcus pneumoniae. It is recognized as an important biomarker for diagnosis in urine samples. Pneumonia is the infectious disease that causes the most deaths globally, especially among children under five years and adults over 65 years, most of them in low- and middle-income countries. There especially, a rapid diagnostic urine test for pneumococcal pneumonia with high sensitivity and specificity would be helpful in primary care. In this work, a lateral flow immunoassay with magnetic nanoclusters conjugated to anti-pneumolysin antibodies was combined with two strategies to increase the technique’s performance. First, magnetic concentration of the protein before the immunoassay was followed by quantification by means of a mobile telephone camera, and the inductive sensor resulted in detection limits as low as 0.57 ng (telephone camera) and 0.24 ng (inductive sensor) of pneumolysin per milliliter. Second, magnetic relocation of the particles within the test strip after the immunoassay was completed increased the detected signal by 20%. Such results obtained with portable devices are promising when compared to non-portable conventional pneumolysin detection techniques such as enzyme-linked immunosorbent assays. The combination and optimization of these approaches would have excellent application in point-of-care biodetection to reduce antibiotic misuse, hospitalizations, and deaths from community-acquired pneumonia. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensing Applications)
Show Figures

Graphical abstract

16 pages, 7405 KiB  
Article
Characterization of ENM Dynamic Dose-Dependent MOA in Lung with Respect to Immune Cells Infiltration
by Angela Serra, Giusy del Giudice, Pia Anneli Sofia Kinaret, Laura Aliisa Saarimäki, Sarah Søs Poulsen, Vittorio Fortino, Sabina Halappanavar, Ulla Vogel and Dario Greco
Nanomaterials 2022, 12(12), 2031; https://doi.org/10.3390/nano12122031 - 13 Jun 2022
Cited by 5 | Viewed by 2274
Abstract
The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL) is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological changes. Toxicogenomic approaches help [...] Read more.
The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL) is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological changes. Toxicogenomic approaches help characterize the mechanism of action (MOA) of ENMs by investigating the differentially expressed genes (DEG). However, dissecting which molecular mechanisms and events are directly induced by the exposure is not straightforward. It is now generally accepted that direct effects follow a monotonic dose-dependent pattern. Here, we applied an integrated modeling approach to study the MOA of four ENMs by retrieving the DEGs that also show a dynamic dose-dependent profile (dddtMOA). We further combined the information of the dddtMOA with the dose dependency of four immune cell populations derived from BAL counts. The dddtMOA analysis highlighted the specific adaptation pattern to each ENM. Furthermore, it revealed the distinct effect of the ENM physicochemical properties on the induced immune response. Finally, we report three genes dose-dependent in all the exposures and correlated with immune deregulation in the lung. The characterization of dddtMOA for ENM exposures, both for apical endpoints and molecular responses, can further promote toxicogenomic approaches in a regulatory context. Full article
Show Figures

Graphical abstract

24 pages, 5227 KiB  
Article
Modulation of Pulmonary Toxicity in Metabolic Syndrome Due to Variations in Iron Oxide Nanoparticle-Biocorona Composition
by Li Xia, Saeed Alqahtani, Christina R. Ferreira, Uma K. Aryal, Katelyn Biggs and Jonathan H. Shannahan
Nanomaterials 2022, 12(12), 2022; https://doi.org/10.3390/nano12122022 - 11 Jun 2022
Cited by 2 | Viewed by 2203
Abstract
Nanoparticles (NPs) interact with biomolecules by forming a biocorona (BC) on their surface after introduction into the body and alter cell interactions and toxicity. Metabolic syndrome (MetS) is a prevalent condition and enhances susceptibility to inhaled exposures. We hypothesize that distinct NP-biomolecule interactions [...] Read more.
Nanoparticles (NPs) interact with biomolecules by forming a biocorona (BC) on their surface after introduction into the body and alter cell interactions and toxicity. Metabolic syndrome (MetS) is a prevalent condition and enhances susceptibility to inhaled exposures. We hypothesize that distinct NP-biomolecule interactions occur in the lungs due to MetS resulting in the formation of unique NP-BCs contributing to enhanced toxicity. Bronchoalveolar lavage fluid (BALF) was collected from healthy and MetS mouse models and used to evaluate variations in the BC formation on 20 nm iron oxide (Fe3O4) NPs. Fe3O4 NPs without or with BCs were characterized for hydrodynamic size and zeta potential. Unique and differentially associated proteins and lipids with the Fe3O4 NPs were identified through proteomic and lipidomic analyses to evaluate BC alterations based on disease state. A mouse macrophage cell line was utilized to examine alterations in cell interactions and toxicity due to BCs. Exposures to 6.25, 12.5, 25, and 50 μg/mL of Fe3O4 NPs with BCs for 1 h or 24 h did not demonstrate overt cytotoxicity. Macrophages increasingly associated Fe3O4 NPs following addition of the MetS BC compared to the healthy BC. Macrophages exposed to Fe3O4 NPs with a MetS-BC for 1 h or 24 h at a concentration of 25 μg/mL demonstrated enhanced gene expression of inflammatory markers: CCL2, IL-6, and TNF-α compared to Fe3O4 NPs with a healthy BC. Western blot analysis revealed activation of STAT3, NF-κB, and ERK pathways due to the MetS-BC. Specifically, the Jak/Stat pathway was the most upregulated inflammatory pathway following exposure to NPs with a MetS BC. Overall, our study suggests the formation of distinct BCs due to NP exposure in MetS, which may contribute to exacerbated inflammatory effects and susceptibility. Full article
(This article belongs to the Special Issue Advances in Nano-Bio Interactions: Nanosafety and Nanotoxicology)
Show Figures

Figure 1

11 pages, 2886 KiB  
Article
Hansen Solubility Parameter Analysis on Dispersion of Oleylamine-Capped Silver Nanoinks and their Sintered Film Morphology
by Satoshi Saita, Shin-ichi Takeda and Hideya Kawasaki
Nanomaterials 2022, 12(12), 2004; https://doi.org/10.3390/nano12122004 - 10 Jun 2022
Cited by 5 | Viewed by 3039
Abstract
Optimizing stabilizers and solvents is crucial for obtaining highly dispersed nanoparticle inks. Generally, nonpolar (hydrophobic) ligand-stabilized nanoparticles show superior dispersibility in nonpolar solvents, whereas polar ligand (hydrophilic)-stabilized nanoparticles exhibit high dispersibility in polar solvents. However, these properties are too qualitative to select optimum [...] Read more.
Optimizing stabilizers and solvents is crucial for obtaining highly dispersed nanoparticle inks. Generally, nonpolar (hydrophobic) ligand-stabilized nanoparticles show superior dispersibility in nonpolar solvents, whereas polar ligand (hydrophilic)-stabilized nanoparticles exhibit high dispersibility in polar solvents. However, these properties are too qualitative to select optimum stabilizers and solvents for stable nanoparticle inks, and researchers often rely on their experiences. This study presents a Hansen solubility parameter (HSP)-based analysis of the dispersibility of oleylamine-capped silver nanoparticle (OAm-Ag NP) inks for optimizing ink preparation. We determined the HSP sphere of the OAm-Ag NPs, defined as the center coordinate, and the interaction radius in 3D HSP space. The solvent’s HSP inside the HSP sphere causes high dispersibility of the OAm-Ag NPs in the solvent. In contrast, the HSPs outside the sphere resulted in low dispersibility in the solvent. Thus, we can quantitatively predict the dispersibility of the OAm-Ag NPs in a given solvent using the HSP approach. Moreover, the HSP sphere method can establish a correlation between the dispersibility of the particles in inks and the sintered film morphology, facilitating electronic application of the nanoparticle inks. The HSP method is also helpful for optimizing stabilizers and solvents for stable nanoparticle inks in printed electronics. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

17 pages, 3920 KiB  
Article
Automated Quantum Dots Purification via Solid Phase Extraction
by Malín G. Lüdicke, Jana Hildebrandt, Christoph Schindler, Ralph A. Sperling and Michael Maskos
Nanomaterials 2022, 12(12), 1983; https://doi.org/10.3390/nano12121983 - 9 Jun 2022
Cited by 3 | Viewed by 1757
Abstract
The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, [...] Read more.
The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types. Full article
Show Figures

Graphical abstract

17 pages, 1651 KiB  
Article
Change in Magnetic Anisotropy at the Surface and in the Bulk of FINEMET Induced by Swift Heavy Ion Irradiation
by Ernő Kuzmann, Sándor Stichleutner, Libor Machala, Jiří Pechoušek, René Vondrášek, David Smrčka, Lukáš Kouřil, Zoltán Homonnay, Michael I. Oshtrakh, András Mozzolai, Vladimir A. Skuratov, Mátyás Kudor, Bence Herczeg and Lajos Károly Varga
Nanomaterials 2022, 12(12), 1962; https://doi.org/10.3390/nano12121962 - 8 Jun 2022
Cited by 4 | Viewed by 1613
Abstract
57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The [...] Read more.
57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV 132Xe ions with a fluence of 1013 ion cm−2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects. Full article
(This article belongs to the Special Issue Novel RE-free Nanocomposite Magnets)
Show Figures

Graphical abstract

15 pages, 1652 KiB  
Article
Enhanced Antibacterial Activity through Silver Nanoparticles Deposited onto Carboxylated Graphene Oxide Surface
by Arturo Barjola, María Ángeles Tormo-Mas, Oscar Sahuquillo, Patricia Bernabé-Quispe, José Manuel Pérez and Enrique Giménez
Nanomaterials 2022, 12(12), 1949; https://doi.org/10.3390/nano12121949 - 7 Jun 2022
Cited by 8 | Viewed by 1848
Abstract
The strong bactericidal action of silver nanoparticles (AgNPs) is usually limited by their degree of aggregation. Deposition of AgNPs onto a graphene oxide (GO) surface to generate GO-Ag hybrids has been shown to be an effective method of controlling these aggregation problems. In [...] Read more.
The strong bactericidal action of silver nanoparticles (AgNPs) is usually limited by their degree of aggregation. Deposition of AgNPs onto a graphene oxide (GO) surface to generate GO-Ag hybrids has been shown to be an effective method of controlling these aggregation problems. In this sense, a novel carboxylated graphene oxide–silver nanoparticle (GOCOOH-Ag) material has been synthesized, and their antibacterial and biofilm formation inhibitions have been studied. AgNPs decorating the GOCOOH surface achieved an average size of 6.74 ± 0.25 nm, which was smaller than that of AgNPs deposited onto the GO surface. In addition, better distribution of AgNPs was achieved using carboxylated material. It is important to highlight the main role of the carboxylic groups in the nucleation and growth of the AgNPs that decorate the GO-based material surface. In vitro antibacterial activity and antibiofilm-forming action were tested against Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Both GO-Ag and GOCOOH-Ag reduced bacterial growth, analyzed by time–kill curves. However, the minimum inhibitory concentration and the minimum bactericidal concentration of GOCOOH-Ag were lower than those of GO-Ag for all strains studied, indicating that GOCOOH-Ag has better antibacterial activity. In addition, both nanomaterials prevent biofilm formation, with a higher reduction of biofilm mass and cell viability in the presence of GOCOOH-Ag. The carboxylation functionalization in GO-based materials can be applied to improve the bactericidal and antibiofilm-forming action of the AgNPs. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Figure 1

11 pages, 2751 KiB  
Article
Circular Optical Phased Arrays with Radial Nano-Antennas
by Qiankun Liu, Daniel Benedikovic, Tom Smy, Ahmad Atieh, Pavel Cheben and Winnie N. Ye
Nanomaterials 2022, 12(11), 1938; https://doi.org/10.3390/nano12111938 - 6 Jun 2022
Cited by 8 | Viewed by 2715
Abstract
On-chip optical phased arrays (OPAs) are the enabling technology for diverse applications, ranging from optical interconnects to metrology and light detection and ranging (LIDAR). To meet the required performance demands, OPAs need to achieve a narrow beam width and wide-angle steering, along with [...] Read more.
On-chip optical phased arrays (OPAs) are the enabling technology for diverse applications, ranging from optical interconnects to metrology and light detection and ranging (LIDAR). To meet the required performance demands, OPAs need to achieve a narrow beam width and wide-angle steering, along with efficient sidelobe suppression. A typical OPA configuration consists of either one-dimensional (1D) linear or two-dimensional (2D) rectangular arrays. However, the presence of grating sidelobes from these array configurations in the far-field pattern limits the aliasing-free beam steering, when the antenna element spacing is larger than half of a wavelength. In this work, we provide numerical analysis for 2D circular OPAs with radially arranged nano-antennas. The circular array geometry is shown to effectively suppress the grating lobes, expand the range for beam steering and obtain narrower beamwidths, while increasing element spacing to about 10 μm. To allow for high coupling efficiency, we propose the use of a central circular grating coupler to feed the designed circular OPA. Leveraging radially positioned nano-antennas and an efficient central grating coupler, our design can yield an aliasing-free azimuthal field of view (FOV) of 360°, while the elevation angle FOV is limited by the far-field beamwidth of the nano-antenna element and its array arrangement. With a main-to-sidelobe contrast ratio of 10 dB, a 110-element OPA offers an elevation FOV of 5° and an angular beamwidth of 1.14°, while an 870-element array provides an elevation FOV up to 20° with an angular beamwidth of 0.35°. Our analysis suggests that the performance of the circular OPAs can be further improved by integrating more elements, achieving larger aliasing-free FOV and narrower beamwidths. Our proposed design paves a new way for the development of on-chip OPAs with large 2D beam steering and high resolutions in communications and LIDAR systems. Full article
(This article belongs to the Special Issue Nanophotonics and Integrated Optics Devices)
Show Figures

Figure 1

31 pages, 13873 KiB  
Article
One A3B Porphyrin Structure—Three Successful Applications
by Ion Fratilescu, Anca Lascu, Bogdan Ovidiu Taranu, Camelia Epuran, Mihaela Birdeanu, Ana-Maria Macsim, Eugenia Tanasa, Eugeniu Vasile and Eugenia Fagadar-Cosma
Nanomaterials 2022, 12(11), 1930; https://doi.org/10.3390/nano12111930 - 5 Jun 2022
Cited by 9 | Viewed by 2779
Abstract
Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX [...] Read more.
Porphyrins are versatile structures capable of acting in multiple ways. A mixed substituted A3B porphyrin, 5-(3-hydroxy-phenyl)-10,15,20-tris-(3-methoxy-phenyl)-porphyrin and its Pt(II) complex, were synthesised and fully characterised by 1H- and 13C-NMR, TLC, UV-Vis, FT-IR, fluorescence, AFM, TEM and SEM with EDX microscopy, both in organic solvents and in acidic mediums. The pure compounds were used, firstly, as sensitive materials for sensitive and selective optical and fluorescence detection of hydroquinone with the best results in the range 0.039–6.71 µM and a detection limit of 0.013 µM and, secondly, as corrosion inhibitors for carbon–steel (OL) in an acid medium giving a best performance of 88% in the case of coverings with Pt-porphyrin. Finally, the electrocatalytic activity for the hydrogen and oxygen evolution reactions (HER and OER) of the free-base and Pt-metalated A3B porphyrins was evaluated in strong alkaline and acidic electrolyte solutions. The best results were obtained for the electrode modified with the metalated porphyrin, drop-casted on a graphite substrate from an N,N-dimethylformamide solution. In the strong acidic medium, the electrode displayed an HER overpotential of 108 mV, at i = −10 mA/cm2 and a Tafel slope value of 205 mV/dec. Full article
Show Figures

Graphical abstract

11 pages, 4405 KiB  
Article
Improving the Stability of Lithium Aluminum Germanium Phosphate with Lithium Metal by Interface Engineering
by Yue Zhang, Hanshuo Liu, Zhong Xie, Wei Qu and Jian Liu
Nanomaterials 2022, 12(11), 1912; https://doi.org/10.3390/nano12111912 - 3 Jun 2022
Cited by 2 | Viewed by 1956
Abstract
Lithium aluminum germanium phosphate (LAGP) solid electrolyte is receiving increasing attention due to its high ionic conductivity and low air sensitivity. However, the poor interface compatibility between lithium (Li) metal and LAGP remains the main challenge in developing all-solid-state lithium batteries (ASSLB) with [...] Read more.
Lithium aluminum germanium phosphate (LAGP) solid electrolyte is receiving increasing attention due to its high ionic conductivity and low air sensitivity. However, the poor interface compatibility between lithium (Li) metal and LAGP remains the main challenge in developing all-solid-state lithium batteries (ASSLB) with a long cycle life. Herein, this work introduces a thin aluminum oxide (Al2O3) film on the surface of the LAGP pellet as a physical barrier to Li/LAGP interface by the atomic layer deposition technique. It is found that this layer induces the formation of stable solid electrolyte interphase, which significantly improves the structural and electrochemical stability of LAGP toward metallic Li. As a result, the optimized symmetrical cell exhibits a long lifetime of 360 h with an areal capacity of 0.2 mAh cm−2 and a current density of 0.2 mA cm−2. This strategy provides new insights into the stabilization of the solid electrolyte/Li interface to boost the development of ASSLB. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

14 pages, 5632 KiB  
Article
Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink
by Feng Feng, Haofeng Hong, Xing Gao, Tian Ren, Yuan Ma and Pingfa Feng
Nanomaterials 2022, 12(11), 1908; https://doi.org/10.3390/nano12111908 - 2 Jun 2022
Cited by 4 | Viewed by 2001
Abstract
Silver nanoparticle (NP) inks have been widely used in the ink-jet printing field because of their excellent properties during low-temperature sintering. However, the organic dispersant used to prevent the aggregation and sedimentation of NPs can hinder the sintering process and result in the [...] Read more.
Silver nanoparticle (NP) inks have been widely used in the ink-jet printing field because of their excellent properties during low-temperature sintering. However, the organic dispersant used to prevent the aggregation and sedimentation of NPs can hinder the sintering process and result in the high resistivity of sintered films. In this study, silver thin films derived from silver NP ink with polyvinylpyrrolidone (PVP) dispersant were sintered in different atmospheres of pure nitrogen, air, and pure oxygen. The effect of the oxygen content in the sintering atmosphere on the thermal properties of the ink, the electrical resistivity and microstructure of the sintered films, and the amount of organic residue were studied by using differential scanning calorimetry, the four-point probe method, scanning electron microscopy, Fourier transform infrared spectroscopy, etc. The mechanism of optimizing the film resistivity by influencing the decomposition of the PVP dispersant and the microstructure evolution of the silver thin films through the sintering atmosphere was discussed. The results demonstrated that an oxygen-containing atmosphere could be effective for silver NPs in two ways. First, the oxygen content could enhance the diffusion ability of silver atoms, thus accelerating the stage transition of microstructural evolution at low temperatures. Second, the oxygen content could enable the PVP to decompose at a temperature much lower than in conditions of pure nitrogen, thus helping to finalize the densification of a silver film with a low resistivity of 2.47 μΩ·cm, which is approximately 1.5-fold that of bulk silver. Our findings could serve as a foundation for the subsequent establishment of ink-jet printing equipment and the optimization of the sintering process for printing silver patterns on flexible substrates. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Show Figures

Figure 1

13 pages, 1710 KiB  
Article
MPTHub: An Open-Source Software for Characterizing the Transport of Particles in Biorelevant Media
by Leandro Gabriel, Helena Almeida, Marta Avelar, Bruno Sarmento and José das Neves
Nanomaterials 2022, 12(11), 1899; https://doi.org/10.3390/nano12111899 - 1 Jun 2022
Cited by 2 | Viewed by 2339
Abstract
The study of particle transport in different environments plays an essential role in understanding interactions with humans and other living organisms. Importantly, obtained data can be directly used for multiple applications in fields such as fundamental biology, toxicology, or medicine. Particle movement in [...] Read more.
The study of particle transport in different environments plays an essential role in understanding interactions with humans and other living organisms. Importantly, obtained data can be directly used for multiple applications in fields such as fundamental biology, toxicology, or medicine. Particle movement in biorelevant media can be readily monitored using microscopy and converted into time-resolved trajectories using freely available tracking software. However, translation into tangible and meaningful parameters is time consuming and not always intuitive. We developed new software—MPTHub—as an open-access, standalone, user-friendly tool for the rapid and reliable analysis of particle trajectories extracted from video microscopy. The software was programmed using Python and allowed to import and analyze trajectory data, as well as to export relevant data such as individual and ensemble time-averaged mean square displacements and effective diffusivity, and anomalous transport exponent. Data processing was reliable, fast (total processing time of less than 10 s), and required minimal memory resources (up to a maximum of around 150 MB in random access memory). Demonstration of software applicability was conducted by studying the transport of different polystyrene nanoparticles (100–200 nm) in mucus surrogates. Overall, MPTHub represents a freely available software tool that can be used even by inexperienced users for studying the transport of particles in biorelevant media. Full article
Show Figures

Graphical abstract

10 pages, 4675 KiB  
Article
Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application
by Yajie Guo, Junfan Wang, Baohong Li, Yu Zhang, Shaozhi Deng and Jun Chen
Nanomaterials 2022, 12(11), 1882; https://doi.org/10.3390/nano12111882 - 31 May 2022
Cited by 5 | Viewed by 2069
Abstract
The cold cathode X-ray source has potential application in the field of radiotherapy, which requires a stable dose. In this study, a gated carbon nanotube cold cathode electron gun with high current stability was developed by using Insulated Gate Bipolar Transistor (IGBT) modulation, [...] Read more.
The cold cathode X-ray source has potential application in the field of radiotherapy, which requires a stable dose. In this study, a gated carbon nanotube cold cathode electron gun with high current stability was developed by using Insulated Gate Bipolar Transistor (IGBT) modulation, and its application in X-ray source was explored. Carbon nanotube (CNTs) films were prepared directly on stainless steel substrate by chemical vapor deposition and assembled with control gate and focus electrodes to form an electron gun. A maximum cathode current of 200 μA and approximately 53% transmission rate was achieved. An IGBT was used to modulate and stabilize the cathode current. High stable cathode current with fluctuation less than 0.5% has been obtained for 50 min continuous operation. The electron gun was used in a transmission target X-ray source and a stable X-ray dose rate was obtained. Our study demonstrates the feasibility of achieving high current stability from a gated carbon nanotube cold cathode electron source using IGBT modulation for X-ray source application. Full article
(This article belongs to the Special Issue The Research Related to Nanomaterial Cold Cathode)
Show Figures

Figure 1

Back to TopTop