Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of TiO2 Layer Fabricated by Magnetron Sputtering
3.2. SHJ Devices
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afzal, A.; Habib, A.; Ulhasan, I.; Shahid, M.; Rehman, A. Antireflective Self-Cleaning TiO2 Coatings for Solar Energy Harvesting Applications. Front. Mater. 2021, 8, 687059. [Google Scholar] [CrossRef]
- Salvaggio, M.G.; Passalacqua, R.; Abate, S.; Perathoner, S.; Centi, G.; Lanza, M.; Stassi, A. Functional nano-textured titania-coatings with self-cleaning and antireflective properties for photovoltaic surfaces. Sol. Energy 2016, 125, 227–242. [Google Scholar] [CrossRef]
- Gyanan; Mondal, S.; Kumar, A. Tunable dielectric properties of TiO2 thin film based MOS systems for application in microelectronics. Superlattices Microstruct. 2016, 100, 876–885. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Aboulouard, A.; Gultekin, B.; Can, M.; Erol, M.; Jouaiti, A.; Elhadadi, B.; Zafer, C.; Demic, S. Dye sensitized solar cells based on titanium dioxide nanoparticles synthesized by flame spray pyrolysis and hydrothermal sol-gel methods: A comparative study on photovoltaic performances. J. Mater. Res. Technol. 2020, 9, 1569–1577. [Google Scholar] [CrossRef]
- Dubey, R.S.; Jadkar, S.R.; Bhorde, A.B. Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells. ACS Omega 2021, 6, 3470–3482. [Google Scholar] [CrossRef] [PubMed]
- Lourduraj, S. Titanium Dioxide Versatile Solid Crystalline: An Overview. In Assorted Dimensional Reconfigurable Materials; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Poddar, N.P.; Mukherjee, S. Characterization of TiO2 thin films deposited by using dc magnetron sputtering. Carbon Sci. Technol. 2016, 8, 8. [Google Scholar]
- Alem, A.; Sarpoolaky, H. The effect of silver doping on photocatalytic properties of titania multilayer membranes. Solid State Sci. 2010, 12, 1469–1472. [Google Scholar] [CrossRef]
- Athira, K.; Merin, K.T.; Raguram, T.; Rajni, K.S. Synthesis and characterization of Mg doped TiO2 nanoparticles for photocatalytic applications. Mater. Today Proc. 2020, 33, 2321–2327. [Google Scholar] [CrossRef]
- Waghchaure, R.H.; Koli, P.B.; Adole, V.A.; Pawar, T.B.; Jagdale, B.S. Transition metals Fe3+, Ni2+ modified titanium dioxide (TiO2) film sensors fabricated by CPT method to sense some toxic environmental pollutant gases. J. Indian Chem. Soc. 2021, 98, 100126. [Google Scholar] [CrossRef]
- Seo, S.; Shin, S.; Kim, E.; Jeong, S.; Park, N.-G.; Shin, H. Amorphous TiO2 Coatings Stabilize Perovskite Solar Cells. ACS Energy Lett. 2021, 6, 3332–3341. [Google Scholar] [CrossRef]
- Homola, T.; Pospisil, J.; Shekargoftar, M.; Svoboda, T.; Hvojnik, M.; Gemeiner, P.; Weiter, M.; Dzik, P. Perovskite Solar Cells with Low-Cost TiO2 Mesoporous Photoanodes Prepared by Rapid Low-Temperature (70 °C) Plasma Processing. ACS Appl. Energy Mater. 2020, 3, 12009–12018. [Google Scholar] [CrossRef]
- Hsu, W.; Sutter-Fella, C.M.; Hettick, M.; Cheng, L.; Chan, S.; Chen, Y.; Zeng, Y.; Zheng, M.; Wang, H.P.; Chiang, C.C.; et al. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. Sci. Rep. 2015, 5, 16028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Nagamatsu, K.A.; Avasthi, S.; Sahasrabudhe, G.; Man, G.; Jhaveri, J.; Berg, A.H.; Schwartz, J.; Kahn, A.; Wagner, S.; Sturm, J.C. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 2015, 106, 123906. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-T.; Lin, F.-R.; Pei, Z. Solution-Processed Titanium Oxide for Rear Contact Improvement in Heterojunction Solar Cells. Energies 2020, 13, 4650. [Google Scholar] [CrossRef]
- Boccard, M.; Yang, X.; Weber, K.; Holman, Z.C. Passivation and carrier selectivity of TiO2 contacts combined with different passivation layers and electrodes for silicon solar cells. In Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 5–10 June 2016; pp. 2403–2407. [Google Scholar]
- He, J.; Ling, Z.; Gao, P.; Ye, J. TiO2 Films from the Low-Temperature Oxidation of Ti as Passivating-Contact Layers for Si Heterojunction Solar cells. Sol. RRL 2017, 1, 1700154. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Zhou, Y.; Wang, Q.; Zhang, Q.; Dong, G.; Liu, F.; Fan, Z.; Liu, Z.; Cai, Z.; et al. Lithography-free and dopant-free back-contact silicon heterojunction solar cells with solution-processed TiO2 as the efficient electron selective layer. Sol. Energy Mater. Sol. Cells 2019, 203, 110196. [Google Scholar] [CrossRef]
- Avasthi, S.; McClain, W.E.; Man, G.; Kahn, A.; Schwartz, J.; Sturm, J.C. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 2013, 102, 203901. [Google Scholar] [CrossRef] [Green Version]
- Matkivskyi, V.; Lee, Y.; Seo, H.S.; Lee, D.-K.; Park, J.-K.; Kim, I. Electronic-beam evaporation processed titanium oxide as an electron selective contact for silicon solar cells. Curr. Appl. Phys. 2021, 32, 98–105. [Google Scholar] [CrossRef]
- Masmitjà, G.; Ros, E.; Almache-Hernández, R.; Pusay, B.; Martín, I.; Voz, C.; Saucedo, E.; Puigdollers, J.; Ortega, P. Interdigitated back-contacted crystalline silicon solar cells fully manufactured with atomic layer deposited selective contacts. Sol. Energy Mater. Sol. Cells 2022, 240, 111731. [Google Scholar] [CrossRef]
- Saheed, M.S.M.; Mohamed, N.M.; Singh, B.S.M.; Perumal, V.; Saheed, M.S.M. DC magnetron sputtered TiO2 thin film as efficient hole blocking layer for perovskite solar cell. In Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Batu Ferringhi, Malaysia, 23–25 August 2017; pp. 46–49. [Google Scholar] [CrossRef]
- Chen, Z.; Dündar, I.; Oja Acik, I.; Mere, A. TiO2 thin films by ultrasonic spray pyrolysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 503, 012006. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, T.-h.; Wei, Q.-y.; Yu, S.-j.; Gao, H.; Guo, P.-c.; Li, J.-k.; Wang, Y.-x. Preparation of TiO2 electron transport layer by magnetron sputtering and its effect on the properties of perovskite solar cells. Energy Rep. 2022, 8, 3166–3175. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, Y.; Dai, Q.; Song, H. Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications. Sci. Rep. 2015, 5, 17684. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, J.; Xuan, W.; Song, X.; Xu, H.; Zhang, J.; Wu, J.; Jin, H.; Dong, S.; Luo, J. Comparison of sputtering and atomic layer deposition based ultra-thin alumina protective layers for high temperature surface acoustic wave devices. J. Mater. Res. Technol. 2021, 15, 4714–4724. [Google Scholar] [CrossRef]
- Rahman, K.H.; Kar, A.K. Effect of precursor concentration of microstructured titanium-di-oxide (TiO2) thin films and their photocatalytic activity. Mater. Res. Express 2019, 6, 096436. [Google Scholar] [CrossRef]
- López, R.; Gómez, R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2011, 61, 1–7. [Google Scholar] [CrossRef]
- Dave, V.; Dubey, P.; Gupta, H.O.; Chandra, R. Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Film. 2013, 549, 2–7. [Google Scholar] [CrossRef]
- Eufinger, K.; Janssen, E.N.; Poelman, H.; Poelman, D.; De Gryse, R.; Marin, G.B. The effect of argon pressure on the structural and photocatalytic characteristics of TiO2 thin films deposited by d.c. magnetron sputtering. Thin Solid Film. 2006, 515, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-H.; Rahman, K.H.; Wu, C.-C.; Chen, K.-C. A Review on the Pathways of the Improved Structural Characteristics and Photocatalytic Performance of Titanium Dioxide (TiO2) Thin Films Fabricated by the Magnetron-Sputtering Technique. Catalysts 2020, 10, 598. [Google Scholar] [CrossRef]
- Augustowski, D.; Kwaśnicki, P.; Dziedzic, J.; Rysz, J. Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance. Energies 2020, 13, 2690. [Google Scholar] [CrossRef]
- Hotový, I.; Pullmannová, A.; Predanocy, M.; Hotový, J.; Rehácek, V.; Kups, T.; Spiess, L. Structural and morphological investigations of TiO2 sputtered thin film. J. Electr. Eng. 2009, 60, 4. [Google Scholar]
- Shei, S.-C. Optical and Structural Properties of Titanium Dioxide Films from and Starting Materials Annealed at Various Temperatures. Adv. Mater. Sci. Eng. 2013, 2013, 545076. [Google Scholar] [CrossRef] [Green Version]
- Demaurex, B.; De Wolf, S.; Descoeudres, A.; Charles Holman, Z.; Ballif, C. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering. Appl. Phys. Lett. 2012, 101, 171604. [Google Scholar] [CrossRef] [Green Version]
- Le, A.H.T.; Dao, V.A.; Pham, D.P.; Kim, S.; Dutta, S.; Thi Nguyen, C.P.; Lee, Y.; Kim, Y.; Yi, J. Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes. Sol. Energy Mater. Sol. Cells 2019, 192, 36–43. [Google Scholar] [CrossRef]
- Yang, X.; Bi, Q.; Ali, H.; Davis, K.; Schoenfeld, W.V.; Weber, K. High-Performance TiO2-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells. Adv. Mater. 2016, 28, 5891–5897. [Google Scholar] [CrossRef]
- Li, S.; Pomaska, M.; Lambertz, A.; Duan, W.; Bittkau, K.; Qiu, D.; Yao, Z.; Luysberg, M.; Steuter, P.; Köhler, M.; et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule 2021, 5, 1535–1547. [Google Scholar] [CrossRef]
- Acharyya, S.; Sadhukhan, S.; Panda, T.; Ghosh, D.K.; Mandal, N.C.; Nandi, A.; Bose, S.; Das, G.; Maity, S.; Chaudhuri, P.; et al. Dopant-free materials for carrier-selective passivating contact solar cells: A review. Surf. Interfaces 2022, 28, 101687. [Google Scholar] [CrossRef]
Sample | Ar Flux (sccm) | Pressure (Pa) | RFP (W) | Deposition Time (min) | Rate (nm/min) |
---|---|---|---|---|---|
S1 | 5 | 0.17 | 50 | 60 | 0.70 |
S2 | 25 | 0.89 | 50 | 60 | 0.55 |
Sample | Ra (Å) | RMS (Å) | Image Surface Area Difference (%) |
---|---|---|---|
S1 | 94.7 | 119 | 0.088 |
S2 | 195 | 257 | 0.332 |
Sample | Ti (%at) | O (%at) | Ti:O Ratio |
---|---|---|---|
S1 | 0.33 | 4.82 | 0.07 |
S2 | 0.37 | 6.10 | 0.06 |
Regime | Deposition Time (min) | Estimated Thickness (nm) |
Low-pressure (0.17 Pa) | 1 | 0.7 |
3 | 2.2 | |
6 | 4.4 | |
High-pressure (0.89 Pa) | 1 | 0.6 |
3 | 1.7 | |
7 | 3.8 | |
14 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, S.; Torres, I.; Gandía, J.J. Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology. Nanomaterials 2022, 12, 2441. https://doi.org/10.3390/nano12142441
Fernández S, Torres I, Gandía JJ. Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology. Nanomaterials. 2022; 12(14):2441. https://doi.org/10.3390/nano12142441
Chicago/Turabian StyleFernández, Susana, Ignacio Torres, and José Javier Gandía. 2022. "Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology" Nanomaterials 12, no. 14: 2441. https://doi.org/10.3390/nano12142441
APA StyleFernández, S., Torres, I., & Gandía, J. J. (2022). Sputtered Ultrathin TiO2 as Electron Transport Layer in Silicon Heterojunction Solar Cell Technology. Nanomaterials, 12(14), 2441. https://doi.org/10.3390/nano12142441