materials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4241 KiB  
Review
Magnetorheological Elastomers: Fabrication, Characteristics, and Applications
by Sung Soon Kang, Kisuk Choi, Jae-Do Nam and Hyoung Jin Choi
Materials 2020, 13(20), 4597; https://doi.org/10.3390/ma13204597 - 15 Oct 2020
Cited by 65 | Viewed by 8163
Abstract
Magnetorheological (MR) elastomers become one of the most powerful smart and advanced materials that can be tuned reversibly, finely, and quickly in terms of their mechanical and viscoelastic properties by an input magnetic field. They are composite materials in which magnetizable particles are [...] Read more.
Magnetorheological (MR) elastomers become one of the most powerful smart and advanced materials that can be tuned reversibly, finely, and quickly in terms of their mechanical and viscoelastic properties by an input magnetic field. They are composite materials in which magnetizable particles are dispersed in solid base elastomers. Their distinctive behaviors are relying on the type and size of dispersed magnetic particles, the type of elastomer matrix, and the type of non-magnetic fillers such as plasticizer, carbon black, and crosslink agent. With these controllable characteristics, they can be applied to various applications such as vibration absorber, isolator, magnetoresistor, and electromagnetic wave absorption. This review provides a summary of the fabrication, properties, and applications of MR elastomers made of various elastomeric materials. Full article
(This article belongs to the Special Issue Advances in Elastomers)
Show Figures

Figure 1

18 pages, 1449 KiB  
Review
Review on the Biological Degradation of Polymers in Various Environments
by Silvia Kliem, Marc Kreutzbruck and Christian Bonten
Materials 2020, 13(20), 4586; https://doi.org/10.3390/ma13204586 - 15 Oct 2020
Cited by 104 | Viewed by 8396
Abstract
Biodegradable plastics can make an important contribution to the struggle against increasing environmental pollution through plastics. However, biodegradability is a material property that is influenced by many factors. This review provides an overview of the main environmental conditions in which biodegradation takes place [...] Read more.
Biodegradable plastics can make an important contribution to the struggle against increasing environmental pollution through plastics. However, biodegradability is a material property that is influenced by many factors. This review provides an overview of the main environmental conditions in which biodegradation takes place and then presents the degradability of numerous polymers. Polylactide (PLA), which is already available on an industrial scale, and the polyhydroxyalkanoates polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV), which are among the few plastics that have been proven to degrade in seawater, will be discussed in detail, followed by a summary of the degradability of further petroleum-, cellulose-, starch-, protein- and CO2-based biopolymers and some naturally occurring polymers. Full article
(This article belongs to the Special Issue Biodegradation or Biodeterioration of Non-metallic Materials)
Show Figures

Figure 1

26 pages, 4462 KiB  
Review
Effect of Fibers on Durability of Concrete: A Practical Review
by Suvash Chandra Paul, Gideon P.A.G. van Zijl and Branko Šavija
Materials 2020, 13(20), 4562; https://doi.org/10.3390/ma13204562 - 14 Oct 2020
Cited by 56 | Viewed by 6554
Abstract
This article reviews the literature related to the performance of fiber reinforced concrete (FRC) in the context of the durability of concrete infrastructures. The durability of a concrete infrastructure is defined by its ability to sustain reliable levels of serviceability and structural integrity [...] Read more.
This article reviews the literature related to the performance of fiber reinforced concrete (FRC) in the context of the durability of concrete infrastructures. The durability of a concrete infrastructure is defined by its ability to sustain reliable levels of serviceability and structural integrity in environmental exposure which may be harsh without any major need for repair intervention throughout the design service life. Conventional concrete has relatively low tensile capacity and ductility, and thus is susceptible to cracking. Cracks are considered to be pathways for gases, liquids, and deleterious solutes entering the concrete, which lead to the early onset of deterioration processes in the concrete or reinforcing steel. Chloride aqueous solution may reach the embedded steel quickly after cracked regions are exposed to de-icing salt or spray in coastal regions, which de-passivates the protective film, whereby corrosion initiation occurs decades earlier than when chlorides would have to gradually ingress uncracked concrete covering the steel in the absence of cracks. Appropriate inclusion of steel or non-metallic fibers has been proven to increase both the tensile capacity and ductility of FRC. Many researchers have investigated durability enhancement by use of FRC. This paper reviews substantial evidence that the improved tensile characteristics of FRC used to construct infrastructure, improve its durability through mainly the fiber bridging and control of cracks. The evidence is based on both reported laboratory investigations under controlled conditions and the monitored performance of actual infrastructure constructed of FRC. The paper aims to help design engineers towards considering the use of FRC in real-life concrete infrastructures appropriately and more confidently. Full article
Show Figures

Figure 1

20 pages, 9925 KiB  
Article
Durability of Structural Lightweight Concrete with Sintered Fly Ash Aggregate
by Lucyna Domagała
Materials 2020, 13(20), 4565; https://doi.org/10.3390/ma13204565 - 14 Oct 2020
Cited by 25 | Viewed by 3353
Abstract
The aim of this study was to present the problem of durability of structural lightweight concrete made of a sintered fly ash aggregate. The issue of durability was researched for 12 concrete series in terms of their water absorption, water permeability, and freeze-thaw [...] Read more.
The aim of this study was to present the problem of durability of structural lightweight concrete made of a sintered fly ash aggregate. The issue of durability was researched for 12 concrete series in terms of their water absorption, water permeability, and freeze-thaw resistance. Additionally, the microstructure of several concretes was analyzed with a scanning electron microscope (SEM). In the durability research, the influences of the following parameters were taken into consideration: The initial moisture content of sintered fly ash (mc = 0, 17–18, and 24–25%); the aggregate grading (4/8 and 6/12 mm); and the water-cement ratio (w/c = 0.55 and 0.37). As a result of various compositions, the concretes revealed different properties. The density ranged from 1470 to 1920 kg/m3, and the corresponding strength ranged from 25.0 to 83.5 MPa. The durability research results of tested lightweight concretes showed that, despite considerably higher water absorption, a comparable water permeability and comparable or better freeze-thaw resistance in relation to normal-weight concrete may be present. Nevertheless, the fundamental requirement of lightweight concrete to achieve good durability requires the aggregate’s initial moisture content to be limited and a sufficiently tight cement matrix to be selected. The volume share of the cement matrix and aggregate, the cement content, and even the concrete strength are of secondary importance. Full article
Show Figures

Figure 1

15 pages, 4644 KiB  
Article
Effects of Polyhedral Oligomeric Silsesquioxane (POSS) on Thermal and Mechanical Properties of Polysiloxane Foam
by Chunling Zhang, Jinrui Zhang, Tianlu Xu, Haofei Sima and Jiazi Hou
Materials 2020, 13(20), 4570; https://doi.org/10.3390/ma13204570 - 14 Oct 2020
Cited by 9 | Viewed by 2254
Abstract
The thermal and mechanical properties of polysiloxane foam are greatly improved by the addition of acrylolsobutyl polyhedral oligomeric silsesquioxane (MA0701, hereinafter referred to as MAPOSS), which has double bonds. The morphologies and properties of the polysiloxane composite foam were characterized. The average cell [...] Read more.
The thermal and mechanical properties of polysiloxane foam are greatly improved by the addition of acrylolsobutyl polyhedral oligomeric silsesquioxane (MA0701, hereinafter referred to as MAPOSS), which has double bonds. The morphologies and properties of the polysiloxane composite foam were characterized. The average cell diameter of the composite foams decreased, while the cell density increased with increasing MAPOSS. Meanwhile, MAPOSS can enhance thermal conductivity and thermal stability. Thermal conductivity increased by 25%, and the temperature at the maximum weight loss rate increased from 556 °C to 599 °C. In addition, MAPOSS also promoted heterogeneous nucleation by functioning as a nucleating agent, which can increase cell density to improve the mechanical properties. The compressive strength of the composite foam increased by 170% compared with that of pure foam. In the composite, MAPOSS increased the cross-linking density by acting as a physical cross-linking point and limited the movement of the segments. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

23 pages, 2562 KiB  
Review
3D Printing in Heterogeneous Catalysis—The State of the Art
by Elżbieta Bogdan and Piotr Michorczyk
Materials 2020, 13(20), 4534; https://doi.org/10.3390/ma13204534 - 13 Oct 2020
Cited by 38 | Viewed by 5419
Abstract
This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field [...] Read more.
This paper describes the process of additive manufacturing and a selection of three-dimensional (3D) printing methods which have applications in chemical synthesis, specifically for the production of monolithic catalysts. A review was conducted on reference literature for 3D printing applications in the field of catalysis. It was proven that 3D printing is a promising production method for catalysts. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts Synthesis and Characterization)
Show Figures

Figure 1

16 pages, 3642 KiB  
Article
Utilization of Carbide Slag by Wet Grinding as an Accelerator in Calcium Sulfoaluminate Cement
by Xianyue Gu, Hongbo Tan, Xingyang He, Olga Smirnova, Junjie Zhang and Zhongtao Luo
Materials 2020, 13(20), 4526; https://doi.org/10.3390/ma13204526 - 13 Oct 2020
Cited by 18 | Viewed by 2179
Abstract
In this study, wet-ground carbide slag (i.e., WGCS) was utilized as an accelerator in calcium sulfoaluminate cement (CSA) for obtaining considerably faster setting processes for some special engineering processes such as plugging projects and rapid repair engineering. The WGCS–CSA system was designed, in [...] Read more.
In this study, wet-ground carbide slag (i.e., WGCS) was utilized as an accelerator in calcium sulfoaluminate cement (CSA) for obtaining considerably faster setting processes for some special engineering processes such as plugging projects and rapid repair engineering. The WGCS–CSA system was designed, in which the replacement ratio of CSA by carbide slag was chosen as 4%, 8% and 12%. The setting time and compressive strength were measured, and the mechanism of the system hydration was studied in detail by means of calorimetry, XRD, thermogravimetry (TG) and SEM. The results showed that WGCS shortened the setting time of cement and significantly augmented the early strength. The addition of 8% of WGCS contributed to increasing the 2-h compressive strength from 4.2 MPa to 32.9 MPa. The decrease in the setting time and the increase in the initial strength were mainly attributed to the high initial pH value of the liquid phase and the high content of calcium ions in WGCS. Both these factors contributed to the ettringite formation and, at the same time, to the transformation of the morphology at a later time. Such results testify that WGCS can be used as an accelerator in the CSA system and also that it provides a novel approach to the reutilization of carbide slag. Full article
(This article belongs to the Special Issue Silicate Solid Waste Recycling)
Show Figures

Figure 1

32 pages, 3679 KiB  
Article
Machine Learning-Based Evaluation of Shear Capacity of Recycled Aggregate Concrete Beams
by Yong Yu, Xinyu Zhao, Jinjun Xu, Cheng Chen, Simret Tesfaye Deresa and Jintuan Zhang
Materials 2020, 13(20), 4552; https://doi.org/10.3390/ma13204552 - 13 Oct 2020
Cited by 30 | Viewed by 2826
Abstract
Recycled aggregate concrete (RAC) is a promising solution to address the challenges raised by concrete production. However, the current lack of pertinent design rules has led to a hesitance to accept structural members made with RAC. It would entail even more difficulties when [...] Read more.
Recycled aggregate concrete (RAC) is a promising solution to address the challenges raised by concrete production. However, the current lack of pertinent design rules has led to a hesitance to accept structural members made with RAC. It would entail even more difficulties when facing application scenarios where brittle failure is possible (e.g., beam in shear). In this paper, existing major shear design formulae established primarily for conventional concrete beams were assessed for RAC beams. Results showed that when applied to the shear test database compiled for RAC beams, those formulae provided only inaccurate estimations with surprisingly large scatter. To cope with this bias, machine learning (ML) techniques deemed as potential alternative predictors were resorted to. First, a Grey Relational Analysis (GRA) was carried out to rank the importance of the parameters that would affect the shear capacity of RAC beams. Then, two contemporary ML approaches, namely, the artificial neural network (ANN) and the random forest (RF), were leveraged to simulate the beams’ shear strength. It was found that both models produced even better predictions than the evaluated formulae. With this superiority, a parametric study was undertaken to observe the trends of how the parameters played roles in influencing the shear resistance of RAC beams. The findings indicated that, though less influential than the structural parameters such as shear span ratio, the effect of the replacement ratio of recycled aggregate (RA) was still significant. Nevertheless, the value of vc/(fc)1/2 (i.e., the shear contribution from RAC normalized with respect to the square root of its strength) predicted by the ML-based approaches appeared to be insignificantly affected by the replacement level. Given the existing inevitable large experimental scatter, more shear tests are certainly needed and, for safe application of RAC, using partial factors calibrated to consider the uncertainty is feasible when designing the shear strength of RAC beams. Some suggestions for future works are also given at the end of this paper. Full article
Show Figures

Figure 1

30 pages, 12941 KiB  
Article
Effect of Clinker Binder and Aggregates on Autogenous Healing in Post-Crack Flexural Behavior of Concrete Members
by Kwang-Myong Lee, Young-Cheol Choi, Byoungsun Park, Jinkyo F. Choo and Sung-Won Yoo
Materials 2020, 13(20), 4516; https://doi.org/10.3390/ma13204516 - 12 Oct 2020
Cited by 3 | Viewed by 2007
Abstract
Crack healing has been studied extensively to protect reinforced concrete structures from the ingress of harmful ions. Research examining the regain in the mechanical properties of self-healing composites has focused mostly on the computation of the healing ratio based on the measurement of [...] Read more.
Crack healing has been studied extensively to protect reinforced concrete structures from the ingress of harmful ions. Research examining the regain in the mechanical properties of self-healing composites has focused mostly on the computation of the healing ratio based on the measurement of the tensile and compressive strengths but with poor regard for the flexural performance. However, the regain in the flexural performance should also be investigated for design purposes. The present study performs flexural testing on reinforced concrete members using crushed clinker binder and aggregates as well as crystalline admixtures as healing agents. Healing ratios of 100% for crack widths smaller than 200 μm and 85% to 90% for crack widths of 250 μm were observed according to the admixing of clinker binder and aggregates. Water flow test showed that the members replacing binder by 100% of clinker achieved the best crack healing performance. The crack healing property of concrete improved to some extent the rebar yield load, the members’ ultimate load and energy absorption capacity and ductility index. The crack distribution density from the observed crack patterns confirmed the crack healing effect provided by clinker powder. The fine grain size of clinker made it possible to replace fine aggregates and longer healing time increased the crack healing effect. Full article
(This article belongs to the Special Issue Sustainable Construction Materials: From Paste to Concrete)
Show Figures

Figure 1

12 pages, 5444 KiB  
Article
Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
by Yi-Cheng Chen and Shih-Fu Ou
Materials 2020, 13(20), 4473; https://doi.org/10.3390/ma13204473 - 9 Oct 2020
Cited by 2 | Viewed by 2096
Abstract
In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a [...] Read more.
In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging lubricant and sintered at 850, 950 and 1050 °C for 1.5 h in an air atmosphere. The effects of the amounts of titanium powder and the sintering temperatures on the mechanical properties (hardness, wear resistance and compressive strength) of the composites were investigated. The results indicated that titanium gradually transformed into titanium nitride near the surface after sintering due to the carbothermal reduction reaction; this transformation was observed to significantly increase the hardness. In addition, an oxygen-rich film was observed to form between the titanium nitride particles and the nickel matrix. An optimum sintering temperature of 950 °C provides the composites (titanium–nickel weight ratios of 20:80) the best mechanical properties (wear resistance and compressive strength) among other groups. Furthermore, increasing the titanium content to 80% in the composite increased the hardness; however, the wear resistance and compressive strength decreased. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Show Figures

Figure 1

19 pages, 3159 KiB  
Review
The Importance of Ionic Liquids in the Modification of Starch and Processing of Starch-Based Materials
by Sylwia Ptak, Arkadiusz Zarski and Janusz Kapusniak
Materials 2020, 13(20), 4479; https://doi.org/10.3390/ma13204479 - 9 Oct 2020
Cited by 21 | Viewed by 3087
Abstract
The main applications of ionic liquids in chemistry and material research on one of the most important natural polymers—starch—are presented in this review. A brief characterization of ionic liquids and the advantages and disadvantages of using them in the modification and processing of [...] Read more.
The main applications of ionic liquids in chemistry and material research on one of the most important natural polymers—starch—are presented in this review. A brief characterization of ionic liquids and the advantages and disadvantages of using them in the modification and processing of polysaccharides is presented. The latest reports on the use of various ionic liquids as solvents or co-solvents; as media for synthesizing starch derivatives in oxidation, etherification, esterification, and transesterification, with particular emphasis on biocatalyzed reactions; and as plasticizers or compatibilizers in the processing of starch-based polymers have been investigated. The current trends, possibilities, and limitations of using this type of compound for the production of functional starch-based materials are presented. Full article
(This article belongs to the Special Issue Properties and Applications of Ionic Liquids)
Show Figures

Figure 1

21 pages, 5042 KiB  
Article
Metal Removal from Nickel-Containing Effluents Using Mineral–Organic Hybrid Adsorbent
by Inga Zinicovscaia, Nikita Yushin, Dmitrii Grozdov, Konstantin Vergel, Nadezhda Popova, Grigoriy Artemiev and Alexey Safonov
Materials 2020, 13(19), 4462; https://doi.org/10.3390/ma13194462 - 8 Oct 2020
Cited by 22 | Viewed by 2401
Abstract
Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral–organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing [...] Read more.
Nickel is one of the most dangerous environmental pollutants and its removal from wastewater is an important task. The capacity of a mineral–organic hybrid adsorbent, consisting of Shewanella xiamenensis biofilm and zeolite (clinoptilolite of the Chola deposit), to remove metal ions from nickel-containing batch systems under different experimental conditions was tested. The obtained biosorbent was characterized using neutron activation, SEM, and FTIR techniques. It was established that maximum removal of cations, up to 100%, was achieved at pH 6.0. Several mathematical models were applied to describe the equilibrium and kinetics data. The maximum adsorption capacity of the hybrid biosorbent, calculated using the Langmuir model, varied from 3.6 to 3.9 mg/g. Negative Gibbs energy values and positive ∆H° values indicate the spontaneous and endothermic character of the biosorption process. The effects of several parameters (pH and biosorbent dosage) on Ni(II) removal from real effluent, containing nickel with a concentration of 125 mg/L, were investigated. The optimal pH for Ni(II) removal was 5.0–6.0 and an increase of sorbent dosage from 0.5 to 2.0 led to an increase in Ni(II) removal from 17% to 27%. At two times effluent dilution, maximum Ni(II) removal of 26% was attained at pH 6.0 and sorbent dosage of 1.0 g. A 12-fold effluent dilution resulted in the removal of 72% of Ni(II) at the same pH and sorbent dosage values. The obtained hybrid biosorbent can be used for Ni(II) removal from industrial effluents with low Ni(II) concentrations. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters)
Show Figures

Figure 1

11 pages, 3310 KiB  
Article
Magneto-Fluorescent Hybrid Sensor CaCO3-Fe3O4-AgInS2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media
by Danil A. Kurshanov, Pavel D. Khavlyuk, Mihail A. Baranov, Aliaksei Dubavik, Andrei V. Rybin, Anatoly V. Fedorov and Alexander V. Baranov
Materials 2020, 13(19), 4373; https://doi.org/10.3390/ma13194373 - 30 Sep 2020
Cited by 9 | Viewed by 2977
Abstract
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method [...] Read more.
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field. Full article
(This article belongs to the Special Issue Photoactive Materials: Synthesis, Applications and Technology)
Show Figures

Figure 1

11 pages, 5098 KiB  
Article
Influence of Laser-Welding on Microstructure and Corrosion Properties of Twinning-Induced Plasticity (TWIP) Steel
by Chengcheng Xu, Youkang Zhang, Wanlei Liu, Ying Jin, Lei Wen and Dongbai Sun
Materials 2020, 13(19), 4315; https://doi.org/10.3390/ma13194315 - 28 Sep 2020
Cited by 7 | Viewed by 2161
Abstract
The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning [...] Read more.
The effect of welding speed on microstructure, mechanical properties, and corrosion properties of laser-assisted welded joints of a twinning-induced plasticity (TWIP) steel was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) analysis, electrochemical test, and micro-area scanning Kelvin probe test (SKP). The results reveal that the welded joints, with a fully austenitic structure, are obtained by laser welding. In addition, the preferred orientation of grains in fusion zone (FZ) increased with the increase of welding speed. Additionally, the coincidence site lattice (CSL) grain boundaries of FZ decreased with increasing welding speed. However, potentiodynamic polarization and SKP results demonstrated that the welding speed of 1.5 m/min renders superior corrosion resistance. It can also be inferred that the corrosion properties of the welded joints are related to the grain size and frequency of CSL grain boundary in FZ. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

12 pages, 5607 KiB  
Article
Synthesis and Formation Mechanism of Limestone-Derived Porous Rod Hierarchical Ca-based Metal–Organic Framework for Efficient CO2 Capture
by Po-Hsueh Chang, Hua-Pei Hsu, Szu-Chen Wu and Cheng-Hsiung Peng
Materials 2020, 13(19), 4297; https://doi.org/10.3390/ma13194297 - 26 Sep 2020
Cited by 12 | Viewed by 3515
Abstract
Limestone is a relatively abundant and low-cost material used for producing calcium oxide as a CO2 adsorbent. However, the CO2 capture capacity of limestone decreases rapidly after multiple carbonation/calcination cycles. To improve the CO2 capture performance, we developed a process [...] Read more.
Limestone is a relatively abundant and low-cost material used for producing calcium oxide as a CO2 adsorbent. However, the CO2 capture capacity of limestone decreases rapidly after multiple carbonation/calcination cycles. To improve the CO2 capture performance, we developed a process using limestone to transform the material into a rod Ca-based metal–organic framework (Ca-MOF) via a hydrothermal process with the assistance of acetic acid and terephthalic acid (H2BDC). The structural formation of rod Ca-MOF may result from the (200) face-oriented attachment growth of Ca-MOF sheets. Upon heat treatment, a highly stable porous rod network with a calcined Ca-MOF-O structure was generated with a pore distribution of 50–100 nm, which allowed the rapid diffusion of CO2 into the interior of the sorbent and enhanced the CO2 capture capacity with high multiple carbonation–calcination cycle stability compared to limestone alone at the intermediate temperature of 450 °C. The CO2 capture capacity of the calcined porous Ca-MOF-O network reached 52 wt% with a CO2 capture stability of 80% after 10 cycles. The above results demonstrated that rod Ca-MOF can be synthesized from a limestone precursor to form a porous network structure as a CO2 capture sorbent to improve CO2 capture performance at an intermediate temperature, thus suggesting its potential in environmental applications. Full article
(This article belongs to the Special Issue Porous Glass and Ceramics: From Preparation to Applications)
Show Figures

Figure 1

Back to TopTop