Journal Description
Electricity
Electricity
is an international, peer-reviewed, open access journal on electrical engineering published quarterly online by MDPI.
- Open Access—free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, EBSCO and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 27.2 days after submission; acceptance to publication is undertaken in 5.9 days (median values for papers published in this journal in the first half of 2024).
- Journal Rank: CiteScore - Q2 (Electrical and Electronic Engineering)
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually.
- Extra Benefits: no space constraints, no color charges.
Latest Articles
Optimal Placement and Sizing of Battery Energy Storage Systems for Improvement of System Frequency Stability
Electricity 2024, 5(3), 662-683; https://doi.org/10.3390/electricity5030033 - 13 Sep 2024
Abstract
►
Show Figures
Modern power systems are growing in complexity due to the installation of large generators, long transmission lines, the addition of inertialess renewable energy resources (RESs) with zero inertia, etc., which can all severely degrade the system frequency stability. This can lead to under-/over-frequency
[...] Read more.
Modern power systems are growing in complexity due to the installation of large generators, long transmission lines, the addition of inertialess renewable energy resources (RESs) with zero inertia, etc., which can all severely degrade the system frequency stability. This can lead to under-/over-frequency load shedding, damage to turbine blades, and affect frequency-sensitive loads. In this study, we propose a methodology to improve the two critical frequency stability indices, i.e., the frequency nadir and the rate of change of frequency (RoCoF), by formulating an optimization problem. The size and placement location of battery energy storage systems (BESSs) are considered to be the constraints for the proposed optimization problem. Thereafter, the optimization problem is solved using the three metaheuristic optimization algorithms: the particle swarm optimization, firefly, and bat algorithm. The best performing algorithm is then selected to find the optimal sizing and placement location of the BESSs. The analyses are all performed on the IEEE 9-bus and IEEE 39-bus test systems. Several scenarios which consider multiple generator outages, increased/decreased loading conditions, and the addition of RESs are also considered for both test systems in this study. The obtained results show that under all scenarios, the proposed method can enhance system frequency compared to the existing method and without BESSs. The proposed method can be easily upscaled for a larger electrical network for obtaining the optimized BESS size and location for the improvement of the system frequency stability.
Full article
Open AccessArticle
Comparison of Reactive Power Compensation Methods in an Industrial Electrical System with Power Quality Problems
by
Salim Adolfo Giha Yidi, Vladimir Sousa Santos, Kelly Berdugo Sarmiento, John E. Candelo-Becerra and Jorge de la Cruz
Electricity 2024, 5(3), 642-661; https://doi.org/10.3390/electricity5030032 - 6 Sep 2024
Abstract
►▼
Show Figures
This paper compares concentrated and distributed reactive power compensation to improve the power factor at the point of common connection (PCC) of an industrial electrical system (IES) with harmonics. The electrical system under study has a low power factor, voltage variation, and harmonics
[...] Read more.
This paper compares concentrated and distributed reactive power compensation to improve the power factor at the point of common connection (PCC) of an industrial electrical system (IES) with harmonics. The electrical system under study has a low power factor, voltage variation, and harmonics caused by motors operating at low loads and powered by variable-speed drives. The designed compensation system mitigates harmonics and reduces electrical losses with the shortest payback period. Four solutions were compared, considering concentrated and distributed compensation with capacitor banks and harmonic filters. Although the cost of investment in concentrated compensation is lower than that of distributed compensation, a higher reduction in electrical losses and a lower payback period are obtained with distributed compensation. Although the lowest payback period was obtained with distributed compensation with capacitor banks (0.4 years), it is not recommended in the presence of harmonics because the effects of current harmonics significantly reduce the useful life of these elements. For this reason, distributed compensation with harmonic filters obtained a payback period of 0.6 years, and it was proposed as the best solution. These results should be considered in projects aimed at power factor compensation in IESs with harmonics. The concentrated compensation of the capacitor bank at the PCC is proposed because of the lower investment cost and ease of installation. However, the advantages of distributed compensation with harmonic filters have not been evaluated. An energy efficiency approach is used to analyze the impact of the location methods of the power factor compensation equipment on the electrical losses of the IES.
Full article
Figure 1
Open AccessArticle
Harnessing Field-Programmable Gate Array-Based Simulation for Enhanced Predictive Control for Voltage Regulation in a DC-DC Boost Converter
by
Sara J. Ríos, Elio Sánchez G., Andrés Intriago and Síxifo Falcones
Electricity 2024, 5(3), 622-641; https://doi.org/10.3390/electricity5030031 - 6 Sep 2024
Abstract
►▼
Show Figures
This paper presents the design of a predictive controller for a boost converter and validation through real-time simulation. First, the boost converter was mathematically modeled, and then the electronic components were designed to meet the operation requirements. Subsequently, a model-based predictive controller (MBPC)
[...] Read more.
This paper presents the design of a predictive controller for a boost converter and validation through real-time simulation. First, the boost converter was mathematically modeled, and then the electronic components were designed to meet the operation requirements. Subsequently, a model-based predictive controller (MBPC) and a digital PI (Proportional–Integral) controller were designed, and their performance was compared using MATLAB/SIMULINK®. The controls were further verified by implementing test benches based on an FPGA (Field-Programmable Gate Array) with an OPAL-RT real-time simulator, which included the RT-LAB and RT-eFPGAsim simulation packages. These tests were successfully carried out, and the methodology used for this design was validated. The results showed a better response obtained with MBPC, both in terms of stabilization time and lower overvoltage.
Full article
Figure 1
Open AccessArticle
Impact of Weather Conditions on Reliability Indicators of Low-Voltage Cable Lines
by
Kornelia Banasik and Andrzej Łukasz Chojnacki
Electricity 2024, 5(3), 606-621; https://doi.org/10.3390/electricity5030030 - 4 Sep 2024
Abstract
This article examines the impact of meteorological conditions represented by ambient temperature, ambient humidity, wind speed, and daily precipitation sum on the reliability of low-voltage cable lines. Cable line reliability is crucial to the stability and safety of power systems. Failure of cable
[...] Read more.
This article examines the impact of meteorological conditions represented by ambient temperature, ambient humidity, wind speed, and daily precipitation sum on the reliability of low-voltage cable lines. Cable line reliability is crucial to the stability and safety of power systems. Failure of cable lines can lead to power outages. This can cause serious economic and social consequences, as well as threaten human safety, especially in the public sector and critical infrastructure. In addition, any interruption of cable lines generates costs related to repairs, operational losses, and possible contractual penalties. This is why it is so important to investigate the causes of power equipment failures. Many power system failures are caused by weather factors. The main purpose of this article is to quantify the actual impact of weather conditions on the performance and reliability of power equipment in distribution networks. Reliability indicators (failure rate, failure duration, restoration rate, and failure coefficient) for low-voltage cable lines were calculated as a function of weather conditions. Empirical values of the indicators were determined based on many years of observations of power lines operating in the Polish power system. An analysis of the conformity of their empirical distribution with the assumed theoretical model was also conducted. By quantifying the impact of specific weather factors on the operation of power equipment, it becomes possible to identify the ranges in which failures are most likely.
Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the ESCI Coverage)
►▼
Show Figures
Figure 1
Open AccessArticle
Innovative Approaches in Residential Solar Electricity: Forecasting and Fault Detection Using Machine Learning
by
Shruti Kalra, Ruby Beniwal, Vinay Singh and Narendra Singh Beniwal
Electricity 2024, 5(3), 585-605; https://doi.org/10.3390/electricity5030029 - 24 Aug 2024
Abstract
Recent advancements in residential solar electricity have revolutionized sustainable development. This paper introduces a methodology leveraging machine learning to forecast solar panels’ power output based on weather and air pollution parameters, along with an automated model for fault detection. Innovations in high-efficiency solar
[...] Read more.
Recent advancements in residential solar electricity have revolutionized sustainable development. This paper introduces a methodology leveraging machine learning to forecast solar panels’ power output based on weather and air pollution parameters, along with an automated model for fault detection. Innovations in high-efficiency solar panels and advanced energy storage systems ensure reliable electricity supply. Smart inverters and grid-tied systems enhance energy management. Government incentives and decreasing installation costs have increased solar power accessibility. The proposed methodology, utilizing machine learning techniques, achieved an R-squared value of 0.95 and a Mean Squared Error of 0.02 in forecasting solar panel power output, demonstrating high accuracy in predicting energy production under varying environmental conditions. By improving operational efficiency and anticipating power output, this approach not only reduces carbon footprints but also promotes energy independence, contributing to the global transition towards sustainability.
Full article
(This article belongs to the Topic Intelligent, Flexible, and Effective Operation of Smart Grids with Novel Energy Technologies and Equipment)
►▼
Show Figures
Figure 1
Open AccessArticle
Design and Techno-Economic Analysis of Hybrid Power Systems for Rural Areas: A Case Study of Bingöl
by
Ferhat Aydın and Dursun Öztürk
Electricity 2024, 5(3), 562-584; https://doi.org/10.3390/electricity5030028 - 23 Aug 2024
Abstract
►▼
Show Figures
Today, many factors, especially the increasing world population and developing technology, increase the energy needs of people and societies day by day. The fact that fossil resources are both in danger of depletion and have negative environmental impacts has directed countries to new
[...] Read more.
Today, many factors, especially the increasing world population and developing technology, increase the energy needs of people and societies day by day. The fact that fossil resources are both in danger of depletion and have negative environmental impacts has directed countries to new resources. The study focuses on the effective use of renewable energy sources (RES) and the evaluation of waste to meet the electricity and heat energy needs of Yiğit Harman Village, located in the Solhan district of Bingöl Province. For this purpose, a renewable-energy-based combined heat and power system (CHP) was designed using HOMER Pro software (version 3.14.2, Homer Energy LLC, Boulder, CO, USA). Solar, wind, biomass, and hydrogen energy sources were used, considering the resources of the region. Using the designed model, the entire electricity energy requirement and half of the heat energy were completely met by the region’s available RESs. In addition to the technical analysis, economic and environmental analyses were also conducted, and LCOE, NPC, and CO2 emission values were obtained as 0.271 USD/kWh, USD 739,772, and 37,958 kg/yr, respectively. These results indicate that with an investment of approximately USD 7000 per household, the electrical and thermal energy needs for 25 years can be met.
Full article
Figure 1
Open AccessArticle
Performance Analysis of a 50 MW Solar PV Installation at BUI Power Authority: A Comparative Study between Sunny and Overcast Days
by
Rahimat Oyiza Yakubu, Muzan Williams Ijeoma, Hammed Yusuf, Abdulazeez Alhaji Abdulazeez, Peter Acheampong and Michael Carbajales-Dale
Electricity 2024, 5(3), 546-561; https://doi.org/10.3390/electricity5030027 - 22 Aug 2024
Abstract
Ghana, being blessed with abundant solar resources, has strategically invested in solar photovoltaic (PV) technologies to diversify its energy mix and reduce the environmental impacts of traditional energy technologies. The 50 MW solar PV installation by the Bui Power Authority (BPA) exemplifies the
[...] Read more.
Ghana, being blessed with abundant solar resources, has strategically invested in solar photovoltaic (PV) technologies to diversify its energy mix and reduce the environmental impacts of traditional energy technologies. The 50 MW solar PV installation by the Bui Power Authority (BPA) exemplifies the nation’s dedication to utilizing clean energy for sustainable growth. This study seeks to close the knowledge gap by providing a detailed analysis of the system’s performance under different weather conditions, particularly on days with abundant sunshine and those with cloudy skies. The research consists of one year’s worth of monitoring data for the climatic conditions at the facility and AC energy output fed into the grid. These data were used to analyze PV performance on each month’s sunniest and cloudiest days. The goal is to aid in predicting the system’s output over the next 365 days based on the system design and weather forecast and identify opportunities for system optimization to improve grid dependability. The results show that the total amount of AC energy output fed into the grid each month on the sunniest day varies between 229.3 MWh in December and 278.0 MWh in November, while the total amount of AC energy output fed into the grid each month on the cloudiest day varies between 16.1 MWh in August and 192.8 MWh in February. Also, the percentage variation in energy produced between the sunniest and cloudiest days within a month ranges from 16.9% (December) to 94.1% (August). The reference and system yield analyses showed that the PV plant has a high conversion efficiency of 91.3%; however, only the sunniest and overcast days had an efficiency of 38% and 92%, respectively. The BPA plant’s performance can be enhanced by using this analysis to identify erratic power generation on sunny days and schedule timely maintenance to keep the plant’s performance from deteriorating. Optimizing a solar PV system’s design, installation, and operation can significantly improve its AC energy output, performance ratio, and capacity factor on sunny and cloudy days. The study reveals the necessity of hydropower backup during cloudy days, enabling BPA to calculate the required hydropower for a consistent grid supply. Being able to predict the daily output of the system allows BPA to optimize dispatch strategies and determine the most efficient mix of solar and hydropower. It also assists BPA in identifying areas of the solar facility that require optimization to improve grid reliability.
Full article
(This article belongs to the Topic Advanced Operation, Control, and Planning of Intelligent Energy Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
The Role of Renewable Energy Policy and R&D in Renewables Diffusion
by
Sebastian Zapata, Mauricio Uriona-Maldonado and Milton M. Herrera
Electricity 2024, 5(3), 526-545; https://doi.org/10.3390/electricity5030026 - 20 Aug 2024
Abstract
►▼
Show Figures
This paper explores how investments in research and development (R&D) and government policies impact the growth of renewable energy in Brazil, Chile, and Colombia up to 2040. The study presents four scenarios to understand how different levels of R&D investment and the presence
[...] Read more.
This paper explores how investments in research and development (R&D) and government policies impact the growth of renewable energy in Brazil, Chile, and Colombia up to 2040. The study presents four scenarios to understand how different levels of R&D investment and the presence or absence of supportive policies affect the spread of renewable technologies such as solar and wind energy. The scenarios range from an optimistic one with high R&D funding and strong policy support to a worst-case scenario with low R&D efforts and weak policies. The findings emphasize the importance of solid government backing and strategic R&D investments in promoting renewable energy and increasing the number of green patents. On the other hand, scenarios with limited policy support and R&D funding show much slower growth, highlighting the challenges posed by economic constraints and tough market conditions. The study shows that strong renewable energy policies could boost renewable energy adoption by 100% to 200%. Overall, this research adds to the discussion on sustainable energy policies and provides useful insights for policymakers and stakeholders to develop strategies that maximize the potential of renewable energy in the region.
Full article
Figure 1
Open AccessArticle
Modeling the Dynamics of Supercapacitors by Means of Riemann–Liouville Integral Definition
by
Ventura Avila-Rodriguez, Federico Leon-Zerpa, Jose Juan Quintana-Hernandez and Alejandro Ramos-Martin
Electricity 2024, 5(3), 491-525; https://doi.org/10.3390/electricity5030025 - 13 Aug 2024
Abstract
►▼
Show Figures
The application of fractional calculus to obtain dynamic models for supercapacitors represents an alternative approach to obtaining simpler and more accurate models. This paper presents a model for the supercapacitor in the time domain, based on the use of the fractional or non-integer
[...] Read more.
The application of fractional calculus to obtain dynamic models for supercapacitors represents an alternative approach to obtaining simpler and more accurate models. This paper presents a model for the supercapacitor in the time domain, based on the use of the fractional or non-integer order integral. This fractional model is compared with the conventional simple model, which is typically used in industrial applications. This fractional integral-based model provides satisfactory fits in relation to the number of parameters used in the model. Furthermore, an interpretation of the effect of the application of fractional integration is presented for constant current charging and discharging processes at constant current, using the Riemann–Liouville definition for the non-integer order integral. Supercapacitors are devices that exhibit non-linear behavior, with a distinct charging and discharging operation. There are several methods of dynamic analysis for the characterization of supercapacitors. The information extracted from these methods is essential for understanding the behavior of supercapacitors and, thus, ensuring that processes involving supercapacitors are as efficient as possible. This paper presents a dynamic analysis based on charge and discharge operations with constant currents. The conclusion is that the fractional model provides fairly accurate fits.
Full article
Figure 1
Open AccessArticle
Renewable Electricity and Green Hydrogen Integration for Decarbonization of “Hard-to-Abate” Industrial Sectors
by
Alessandro Franco and Michele Rocca
Electricity 2024, 5(3), 471-490; https://doi.org/10.3390/electricity5030024 - 25 Jul 2024
Abstract
This paper investigates hydrogen’s potential to accelerate the energy transition in hard-to-abate sectors, such as steel, petrochemicals, glass, cement, and paper. The goal is to assess how hydrogen, produced from renewable sources, can foster both industrial decarbonization and the expansion of renewable energy
[...] Read more.
This paper investigates hydrogen’s potential to accelerate the energy transition in hard-to-abate sectors, such as steel, petrochemicals, glass, cement, and paper. The goal is to assess how hydrogen, produced from renewable sources, can foster both industrial decarbonization and the expansion of renewable energy installations, especially solar and wind. Hydrogen’s dual role as a fuel and a chemical agent for process innovation is explored, with a focus on its ability to enhance energy efficiency and reduce CO2 emissions. Integrating hydrogen with continuous industrial processes minimizes the need for energy storage, making it a more efficient solution. Advances in electrolysis, achieving efficiencies up to 60%, and storage methods, consuming about 10% of stored energy for compression, are discussed. Specifically, in the steel sector, hydrogen can replace carbon as a reductant in the direct reduced iron (DRI) process, which accounts for around 7% of global steel production. A next-generation DRI plant producing one million tons of steel annually would require approximately 3200 MW of photovoltaic capacity to integrate hydrogen effectively. This study also discusses hydrogen’s role as a co-fuel in steel furnaces. Quantitative analyses show that to support typical industrial plants, hydrogen facilities of several hundred to a few thousand MW are necessary. “Virtual” power plants integrating with both the electrical grid and energy-intensive systems are proposed highlighting hydrogen’s critical role in industrial decarbonization and renewable energy growth.
Full article
(This article belongs to the Topic Integration of Renewable Energy)
►▼
Show Figures
Figure 1
Open AccessArticle
Dynamic Consensus-Based ADMM Strategy for Economic Dispatch with Demand Response in Power Grids
by
Bhuban Dhamala, Kabindra Pokharel and Nava Raj Karki
Electricity 2024, 5(3), 449-470; https://doi.org/10.3390/electricity5030023 - 8 Jul 2024
Abstract
This paper introduces a dynamic consensus-based economic dispatch (ED) algorithm utilizing the Alternating Direction Method of Multipliers (ADMM) to optimize real-time pricing and generation/demand decisions within a decentralized energy management framework. The increasing complexity of modern energy markets, driven by the proliferation of
[...] Read more.
This paper introduces a dynamic consensus-based economic dispatch (ED) algorithm utilizing the Alternating Direction Method of Multipliers (ADMM) to optimize real-time pricing and generation/demand decisions within a decentralized energy management framework. The increasing complexity of modern energy markets, driven by the proliferation of Distributed Energy Resources (DER) and variable demands from hybrid electric vehicles, necessitates a departure from traditional centralized dispatch methods. This research proposes a novel ADMM-based solution tailored for non-responsive and responsive demand units that integrates demand response mechanisms to adaptively manage real-time fluctuations while enhancing security and privacy through distributed data management. The testing of the algorithm on the IEEE 39 bus system under various load conditions over 24 h demonstrated the algorithm’s effectiveness in handling traditional and renewable energy sources, particularly highlighting the economic benefits of shifting controllable loads to periods of low-cost renewable availability. The findings underscore the algorithm’s potential to reduce energy costs, enhance energy efficiency, and offer a scalable solution across diverse grid systems, contributing significantly to advancing global energy policy and sustainable management practices.
Full article
(This article belongs to the Special Issue Electricity in 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Hardware-in-the-Loop Emulation of a SEPIC Multiplier Converter in a Photovoltaic System
by
Johnny Posada Contreras and Julio C. Rosas-Caro
Electricity 2024, 5(3), 426-448; https://doi.org/10.3390/electricity5030022 - 5 Jul 2024
Cited by 1
Abstract
This article presents the development and execution of a Single-Ended Primary-Inductor Converter (SEPIC) multiplier within a Hardware-in-the-Loop (HIL) emulation environment tailored for photovoltaic (PV) applications. Utilizing the advanced capabilities of the dSPACE 1104 platform, this work establishes a dynamic data exchange mechanism between
[...] Read more.
This article presents the development and execution of a Single-Ended Primary-Inductor Converter (SEPIC) multiplier within a Hardware-in-the-Loop (HIL) emulation environment tailored for photovoltaic (PV) applications. Utilizing the advanced capabilities of the dSPACE 1104 platform, this work establishes a dynamic data exchange mechanism between a variable voltage power supply and the SEPIC multiplier converter, enhancing the efficiency of solar energy harnessing. The proposed emulation model was crafted to simulate real-world solar energy capture, facilitating the evaluation of control strategies under laboratory conditions. By emulating realistic operational scenarios, this approach significantly accelerates the innovation cycle for PV system technologies, enabling faster validation and refinement of emerging solutions. The SEPIC multiplier converter is a new topology based on the traditional SEPIC with the capability of producing a larger output voltage in a scalable manner. This initiative sets a new benchmark for conducting PV system research, offering a blend of precision and flexibility in testing supervisory strategies, thereby streamlining the path toward technological advancements in solar energy utilization.
Full article
(This article belongs to the Topic Advances in Power Science and Technology)
►▼
Show Figures
Figure 1
Open AccessArticle
Average Modeling of High Frequency AC Link Three-Port DC/DC/DC Converters
by
Eduardo Vasquez Mayen and Emmanuel De Jaeger
Electricity 2024, 5(2), 397-425; https://doi.org/10.3390/electricity5020021 - 17 Jun 2024
Abstract
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in
[...] Read more.
The current transition towards renewable energies has led to an increased utilization of Photovoltaic (PV) sources and battery energy storage systems to complement the PV panels. To facilitate energy transfer among PVs, batteries, and loads, multiple converters are required. Thus, this transformation in the energy system has resulted in an increase in converter-interfaced elements. Within this context, three-port converters allow for replacing multiple converters with a single one. These three-port converters use a high-frequency AC resonant link for the bidirectional transfer of energy across the different ports. This architecture uses multiple switches and has a variable operating frequency. These characteristics make the simulation of these converters computationally heavy. Thus, averaged models are required, especially for simulating multiple converters connected in parallel or composing a microgrid. In this paper, an averaged model for this type of converter is developed. The methodology is first demonstrated and applied to a two-port DC/DC converter, and subsequently extended to the three-port DC/DC/DC version. Afterwards, control strategies for three-port DC/DC/DC converters are proposed based on the elements connected to their ports. The developed model for three-port DC/DC/DC converters is then implemented in an islanded DC microgrid to demonstrate their parallel operation. The proposed developed averaged models and the test DC microgrid are implemented in MATLAB/Simulink.
Full article
(This article belongs to the Special Issue Optimal Planning, Integration and Control of Smart Microgrid Systems with Renewable Energy)
►▼
Show Figures
Figure 1
Open AccessArticle
The Implementation and Evaluation of Virtualized Protection Intelligent Electronic Devices into a Virtual Substation
by
Dennis Rösch, Kevin Schäfer and Steffen Nicolai
Electricity 2024, 5(2), 385-396; https://doi.org/10.3390/electricity5020020 - 13 Jun 2024
Abstract
This paper presents an investigation into the virtualization of substation protection IED functions using a sophisticated co-simulation environment that integrates virtual intelligent electronic devices (vIEDs) with a real-time power grid simulation. Anchored by the IEC 61850 protocol, this study constructs a virtualized IED
[...] Read more.
This paper presents an investigation into the virtualization of substation protection IED functions using a sophisticated co-simulation environment that integrates virtual intelligent electronic devices (vIEDs) with a real-time power grid simulation. Anchored by the IEC 61850 protocol, this study constructs a virtualized IED framework, emphasizing the encapsulation of protection schemes using the example of different types of overcurrent protection within a containerized vIED. Using open-source software, this study aims to replicate the communication and functional aspects of physical IEDs. This study uses a co-simulation environment that couples virtualized network components with a real-time power grid simulation to validate the vIEDs against real substation hardware. Simulation results from induced short-circuit events confirm the operational congruence of the vIEDs with their physical counterparts, demonstrating their potential to serve as cost-effective and adaptable testbeds for substation automation. This paper concludes that virtualized IEDs represent a cost-effective, flexible alternative for substation automation testing, with future research directed towards increasing the functional complexity and real-world applicability of these virtual systems.
Full article
(This article belongs to the Special Issue Electricity in 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Virtual Power Plants: Challenges, Opportunities, and Profitability Assessment in Current Energy Markets
by
Zahid Ullah, Arshad Arshad and Azam Nekahi
Electricity 2024, 5(2), 370-384; https://doi.org/10.3390/electricity5020019 - 12 Jun 2024
Abstract
The arrival of virtual power plants (VPPs) marks important progress in the energy sector, providing optimistic solutions to the increasing need for energy flexibility, resilience, and improved energy systems’ integration. VPPs harness several characteristics to bring together distributed energy resources (DERs), resulting in
[...] Read more.
The arrival of virtual power plants (VPPs) marks important progress in the energy sector, providing optimistic solutions to the increasing need for energy flexibility, resilience, and improved energy systems’ integration. VPPs harness several characteristics to bring together distributed energy resources (DERs), resulting in economic gains and improved power grid reliability. Nevertheless, VPPs encounter major challenges when it comes to engaging in energy markets, mainly because there is no all-encompassing policy and regulatory framework specifically designed to accommodate their unique characteristics. This underscores the necessity for research endeavours to develop more advanced methods and structures for the long-term viability of VPPs. To address this concern, the study advocates for the implementation of a multi-aspect framework (MAF) as a systematic approach to thoroughly examine each aspect of virtual power plants (VPPs). A STEEP (social, technological, environmental, economic, and political) analytical tool is utilized to evaluate the challenges, opportunities, and benefits of a VPP in the existing energy markets. The proposed approach highlights important factors and actions that need to be taken to tackle the challenges related to VPP’ entry into energy markets. This study suggests that further support is required to promote the fast and widespread adoption of long-term VPP implementations. For this reason, a more favourable policy and regulatory framework based on social, technological, economic, environmental, and policy considerations is necessary to realize the genuine contributions of VPPs.
Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
►▼
Show Figures
Figure 1
Open AccessArticle
Enhancing Distribution Grid Efficiency and Congestion Management through Optimal Battery Storage and Power Flow Modeling
by
Víctor Taltavull-Villalonga, Eduard Bullich-Massagué, Antonio E. Saldaña-González and Andreas Sumper
Electricity 2024, 5(2), 351-369; https://doi.org/10.3390/electricity5020018 - 9 Jun 2024
Abstract
The significant growth in demand for electricity has led to increasing congestion on distribution networks. The challenge is twofold: it is needed to expand and modernize our grid to meet this increased demand but also to implement smart grid technologies to improve the
[...] Read more.
The significant growth in demand for electricity has led to increasing congestion on distribution networks. The challenge is twofold: it is needed to expand and modernize our grid to meet this increased demand but also to implement smart grid technologies to improve the efficiency and reliability of electricity distribution. In order to mitigate these congestions, novel approaches by using flexibility sources such as battery energy storage can be used. This involves the use of battery storage systems to absorb excess energy at times of low demand and release it at peak times, effectively balancing the load and reducing the stress on the grid. In this paper, two optimal power flow formulations are discussed: the branch flow model (non-convex) and the relaxed bus injection model (convex). These formulations determine the optimal operation of the flexibility sources, i.e., battery energy storage, with the objective of minimizing power losses while avoiding congestions. Furthermore, a comparison of the performance of these two formulations is performed, analyzing the objective function results and the flexibility operation. For this purpose, a real Spanish distribution network with its corresponding load data for seven days has been used.
Full article
(This article belongs to the Special Issue Electricity in 2024)
►▼
Show Figures
Figure 1
Open AccessReview
Electricity Theft Detection and Prevention Using Technology-Based Models: A Systematic Literature Review
by
Potego Maboe Kgaphola, Senyeki Milton Marebane and Robert Toyo Hans
Electricity 2024, 5(2), 334-350; https://doi.org/10.3390/electricity5020017 - 7 Jun 2024
Cited by 2
Abstract
►▼
Show Figures
Electricity theft comes with various disadvantages for power utilities, governments, businesses, and the general public. This continues despite the various solutions employed to detect and prevent it. Some of the disadvantages of electricity theft include revenue loss and load shedding, leading to a
[...] Read more.
Electricity theft comes with various disadvantages for power utilities, governments, businesses, and the general public. This continues despite the various solutions employed to detect and prevent it. Some of the disadvantages of electricity theft include revenue loss and load shedding, leading to a disruption in business operations. This study aimed to conduct a systematic literature review to identify what technology solutions have been offered to solve electricity theft and the effectiveness of those solutions by considering peer-reviewed empirical studies. The systematic literature review was undertaken following the guidelines for conducting a literature review in computer science to assess potential bias. A total of 11 journal articles published from 2012 to 2022 in SCOPUS, Science Direct, and Web of Science were analysed to reveal solutions, the type of theft addressed, and the success and limitations of the solutions. The findings show that the focus in research is channelled towards solving electricity theft in Smart Grids (SGs) and Advanced Metering Infrastructure (AMI); moreover, there is a neglect in the recent literature on finding solutions that can prevent electricity theft in countries that do not have SG and AMI installed. Although the results reported in this study are confined to the analysed research papers, the leading limitation in the selected studies, lack of real-life data for dishonest users. This study’s contribution is to show what technology solutions are prevalent in solving electricity theft in recent years and the effectiveness of such solutions.
Full article
Figure 1
Open AccessArticle
Combined Light and Data Driving Stages without Capacitors for Energy Transformation
by
Michael Windisch, Felix A. Himmelstoss, Monica Leba, Olimpiu Stoicuta and Helmut L. Votzi
Electricity 2024, 5(2), 313-333; https://doi.org/10.3390/electricity5020016 - 5 Jun 2024
Abstract
Three LED drivers which can be used for illumination, but whose main task is the transmission of information (data) via the light of the LEDs, are explored in this paper. The converter circuits need no capacitors for the energy transformation and avoid an
[...] Read more.
Three LED drivers which can be used for illumination, but whose main task is the transmission of information (data) via the light of the LEDs, are explored in this paper. The converter circuits need no capacitors for the energy transformation and avoid an inrush current. The lack of necessity of electrolytic capacitors reduces cost and space. Dimming the illumination is also easy to achieve. The control concept of the converters and the generation of pulsing of the LEDs for transmitting the information (data) are explained. The converters can also be expanded to more stages to drive more LEDs with different types of information. All three converters are explained in detail; all presented circuits are built up and simulated with LTSpice. Several data transmission concepts are applied and demonstrated through simulations.
Full article
(This article belongs to the Special Issue Electricity in 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
A Single-Buyer Model of Imbalance Cost Pass-Through Pricing Forecasting in the Malaysian Electricity Supply Industry
by
Fatin Khairunnisa Khairuddin, Farah Anishah Zaini, Mohamad Fani Sulaima, Nur Hazahsha Shamsudin and Mohd Shahrin Abu Hanifah
Electricity 2024, 5(2), 295-312; https://doi.org/10.3390/electricity5020015 - 11 May 2024
Abstract
►▼
Show Figures
The imbalance cost pass-through (ICPT) is a flexible component of the incentive-based regulation (IBR) that empowers power producers to adjust tariffs in response to variable fuel prices, thereby enhancing the economic resilience of electricity generation. In Malaysia, the Energy Commission has conducted biannual
[...] Read more.
The imbalance cost pass-through (ICPT) is a flexible component of the incentive-based regulation (IBR) that empowers power producers to adjust tariffs in response to variable fuel prices, thereby enhancing the economic resilience of electricity generation. In Malaysia, the Energy Commission has conducted biannual reviews of fuel and other generation costs. Any cost savings or increases identified during these reviews will be passed on to customers in the form of rebates or surcharges. Meanwhile, if an increment in the ICPT price signal can be provided to electricity providers and consumers, early preparation for operation budgeting can be realised, and energy management program development can be properly prepared. Due to this reason, this study proposes ICPT price forecasting for the electricity market in Peninsular Malaysia that will benefit the stakeholders. The study aims to construct an ICPT-related baseline model for the peninsular generation data by employing three forecasting methods. The forecasting performance is analysed using the mean absolute percentage error (MAPE). In light of our findings, the ARIMA method is one of the most accurate forecasting methods for fuel prices compared to the moving average (MA) and LSSVM methods. The observed price differences between the ARIMA and LSSVM models for ICPT are minimal. The ICPT price for July–December 2022 and January–June 2023 is MYR 0.21/kWh for the ARIMA and MYR 0.18/kWh for LSSVM, which are close to the actual TNB’s ICPT tariff. As for forecasting, the ICPT price is expected to drop in the next announcement. The findings of this study may have a positive impact on the sustainability of the energy sector in Malaysia.
Full article
Figure 1
Open AccessArticle
Evaluating Preparedness and Overcoming Challenges in Electricity Trading: An In-Depth Analysis Using the Analytic Hierarchy Process and a Case Study Exploration
by
Suraj Regmi, Abhinav Rayamajhi, Ramhari Poudyal and Sanjeev Adhikari
Electricity 2024, 5(2), 271-294; https://doi.org/10.3390/electricity5020014 - 11 May 2024
Cited by 1
Abstract
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging
[...] Read more.
The economy of South Asia is experiencing growth, yet it faces constraints due to heavy reliance on fossil fuels and frequent power outages. Access to diverse energy sources, particularly electricity, is crucial for sustaining this growth. One feasible solution involves neighbouring countries engaging in the trade of renewable electrical energy. Hydropower stands as one of the many energy sources available in South Asia. However, sectorial constraints pose significant challenges to energy trade initiatives. This study utilises the Analytic Hierarchy Process (AHP) to evaluate Nepal’s readiness and identify obstacles to its cross-border energy trade with India and Bangladesh. A comprehensive analysis of these obstacles is imperative for formulating effective strategies and policies. Additionally, this study offers recommendations for enhancing preparedness and resolving issues related to energy trading, which may apply to similar cross-border situations. This study ranks energy trading obstacles with neighbouring nations using the AHP, offering key insights for stakeholders and policymakers. Using a non-probabilistic purposeful sampling technique, 25 expert respondents from the energy sector and prominent academicians were selected as part of the data collection procedure. At every level of the interview process, their perspectives were invaluable in guaranteeing a thorough and rigorous investigation.
Full article
(This article belongs to the Topic Electricity Demand-Side Management, 2nd Volume)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Electricity, Electronics, Energies, Materials, Sustainability
High Voltage Engineering
Topic Editors: Ayman El-Hag, Issouf Fofana, Behzad Kordi, Refat Ghunem, Ali NaderianDeadline: 30 September 2024
Topic in
Applied Sciences, Batteries, Electricity, Electronics, Sensors, WEVJ, Technologies, Chips
Advanced Wireless Charging Technology
Topic Editors: Chong Zhu, Kailong LiuDeadline: 31 October 2024
Topic in
Energies, Sustainability, Processes, Electricity
District Heating and Cooling Systems
Topic Editors: Ahmad Arabkoohsar, Meisam SadiDeadline: 20 December 2024
Topic in
Electricity, Electronics, Energies, Processes, Sustainability
Integration of Renewable Energy
Topic Editors: Xiandong Ma, Mohamed Benbouzid, Sinisa Durovic, Hao ChenDeadline: 31 December 2024
Conferences
Special Issues
Special Issue in
Electricity
Recent Advances in Power and Smart Grids
Guest Editor: Yang HanDeadline: 31 October 2024
Special Issue in
Electricity
Planning, Operation and Control of Power Systems with Large Amounts of Variable Renewable Generation
Guest Editor: Emilio Gomez-LazaroDeadline: 31 December 2024
Special Issue in
Electricity
Advances in Operation, Optimization, and Control of Smart Grids
Guest Editors: Murilo E.C. Bento, Hugo MoraisDeadline: 31 January 2025
Special Issue in
Electricity
Feature Papers to Celebrate the ESCI Coverage
Guest Editor: Andreas SumperDeadline: 28 February 2025
Topical Collections
Topical Collection in
Electricity
Optimal Operation and Planning of Smart Power Distribution Networks
Collection Editor: Pavlos S. Georgilakis