Journal Description
Wind
Wind
is an international, peer-reviewed, open access journal on wind-related technologies, environmental and sustainability studies published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus, and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 25 days after submission; acceptance to publication is undertaken in 9.6 days (median values for papers published in this journal in the second half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Journal Cluster of Energy and Fuels: Energies, Batteries, Hydrogen, Biomass, Electricity, Wind, Fuels, Gases, Solar, ESA and Methane.
Impact Factor:
1.7 (2024);
5-Year Impact Factor:
1.6 (2024)
Latest Articles
A Model Downscaling Study of Wind Park Exposure to Extreme Weather: The Case of Storm “Ylva” in Arctic Norway
Wind 2026, 6(1), 6; https://doi.org/10.3390/wind6010006 - 2 Feb 2026
Abstract
►
Show Figures
Wind energy has the potential to become an important source of energy for remote Arctic regions. However, there are risks associated with the exposure of coastal wind parks to extremely strong winds caused by storms and polar lows. Extreme winds can either enhance
[...] Read more.
Wind energy has the potential to become an important source of energy for remote Arctic regions. However, there are risks associated with the exposure of coastal wind parks to extremely strong winds caused by storms and polar lows. Extreme winds can either enhance or reduce wind energy production. The outcomes largely depend on the coastal landscape surrounding the wind park. To address these questions, we conducted a series of simulations using the Weather Research and Forecasting (WRF) model. This study focuses on one of the strongest wind events along the western Norwegian coast—the landfall of the storm “Ylva” (24–27 November 2017). The study employs terrain-resolving downscaling by zooming in on the area of the Kvitfjell–Raudfjell wind park, Norway. The terrain-resolving WRF simulations reveal stronger winds at turbine hub height (80 m to 100 m above the ground level) in the coastal area. However, it was previously overlooked that the landfall of an Atlantic storm, which approaches this area from the southwest, brings the strongest winds from southeast directions, i.e., from the land. This creates geographically extensive and vertically deep wind-sheltered areas along the coast. Wind speeds at hub height in these sheltered areas are reduced, while they remain extreme over wind-channeling sea fjords. The novelty and applied value of this study is that it reveals an overlooked opportunity for optimal wind park siting. The coastal wind parks can take advantage of both sustained westerly winds during normal weather conditions and wind sheltering during extreme storm conditions. We found that the Kvitfjell–Raudfjell location is nearly optimal with respect to the extreme winds of “Ylva.”
Full article
Open AccessArticle
An Efficient Hybrid Evolutionary Algorithm for Enhanced Wind Energy Capture
by
Muhammad Rashid, Abdur Raheem, Rabia Shakoor, Muhammad I. Masud, Zeeshan Ahmad Arfeen and Touqeer Ahmed Jumani
Wind 2026, 6(1), 5; https://doi.org/10.3390/wind6010005 - 29 Jan 2026
Abstract
An optimal topographical arrangement of wind turbines (WTs) is essential for increasing the total power production of a wind farm (WF). This work introduces PSO-GA, a newly formulated algorithm based on the hybrid of Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA)
[...] Read more.
An optimal topographical arrangement of wind turbines (WTs) is essential for increasing the total power production of a wind farm (WF). This work introduces PSO-GA, a newly formulated algorithm based on the hybrid of Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA) method, to provide the best possible and reliable WF layout (WFL) for enhanced output power. Because GA improves on PSO-found solutions while PSO investigates several regions; therefore, hybrid PSO-GA can effectively handle issues involving multiple local optima. In the first phase of the framework, PSO improves the original variables; in the second phase, the variables are changed for improved fitness. The goal function takes into account both the power production of the WF and the cost per power while analyzing the wake loss using the Jenson wake model. To evaluate the robustness of this strategy, three case studies are analyzed. The algorithm identifies the best possible position of turbines and strictly complies with industry-standard separation distances to prevent extreme wake interference. This comparative study on the past layout improvement process models demonstrates that the proposed hybrid algorithm enhanced performance with a significant power improvement of 0.03–0.04% and a 24–27.3% reduction in wake loss. The above findings indicate that the proposed PSO-GA can be better than the other innovative methods, especially in the aspects of quality and consistency of the solution.
Full article
(This article belongs to the Special Issue O&M and Innovative Solutions Bringing Scale and Speed to Wind Energy Engineering)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Enhancing Wind Farm Siting with the Combined Use of Multicriteria Decision-Making Methods
by
Dimitra Triantafyllidou and Dimitra G. Vagiona
Wind 2026, 6(1), 4; https://doi.org/10.3390/wind6010004 - 16 Jan 2026
Abstract
►▼
Show Figures
The purpose of this study is to determine the optimal location for siting an onshore wind farm on the island of Skyros, thereby maximizing performance and minimizing the project’s environmental impacts. Seven evaluation criteria are defined across various sectors, including environmental and economic
[...] Read more.
The purpose of this study is to determine the optimal location for siting an onshore wind farm on the island of Skyros, thereby maximizing performance and minimizing the project’s environmental impacts. Seven evaluation criteria are defined across various sectors, including environmental and economic sectors, and six criteria weighting methods are applied in combination with four multicriteria decision-making (MCDM) ranking methods for suitable areas, resulting in twenty-four ranking models. The alternatives considered in the analysis were defined through the application of constraints imposed by the Specific Framework for Spatial Planning and Sustainable Development for Renewable Energy Sources (SFSPSD RES), complemented by exclusion criteria documented in the international literature, as well as a minimum area requirement ensuring the feasibility of installing at least four wind turbines within the study area. The correlations between their results are then assessed using the Spearman coefficient. Geographic information systems (GISs) are utilized as a mapping tool. Through the application of the methodology, it emerges that area A9, located in the central to northern part of Skyros, is consistently assessed as the most suitable site for the installation of a wind farm based on nine models combining criteria weighting and MCDM methods, which should be prioritized as an option for early-stage wind farm siting planning. The results demonstrate an absolute correlation among the subjective weighting methods, whereas the objective methods do not appear to be significantly correlated with each other or with the subjective methods. The ranking methods with the highest correlation are PROMETHEE II and ELECTRE III, while those with the lowest are TOPSIS and VIKOR. Additionally, the hierarchy shows consistency across results using weights from AHP, BWM, ROC, and SIMOS. After applying multiple methods to investigate correlations and mitigate their disadvantages, it is concluded that when experts in the field are involved, it is preferable to incorporate subjective multicriteria analysis methods into decision-making problems. Finally, it is recommended to use more than one MCDM method in order to reach sound decisions.
Full article

Figure 1
Open AccessArticle
Exploratory Analysis of Wind Resource and Doppler LiDAR Performance in Southern Patagonia
by
María Florencia Luna, Rafael Beltrán Oliva and Jacobo Omar Salvador
Wind 2026, 6(1), 3; https://doi.org/10.3390/wind6010003 - 15 Jan 2026
Abstract
►▼
Show Figures
Southern Patagonia in Argentina possesses a world-class wind resource; however, its remote location challenges long-term monitoring. This study presents the first long-term Doppler LiDAR-based wind characterization in the region, analyzing six months of high-resolution data at a 100 m hub height. Power for
[...] Read more.
Southern Patagonia in Argentina possesses a world-class wind resource; however, its remote location challenges long-term monitoring. This study presents the first long-term Doppler LiDAR-based wind characterization in the region, analyzing six months of high-resolution data at a 100 m hub height. Power for the LiDAR is provided by a hybrid system combining photovoltaic (PV) and grid sources, with remote monitoring. The results reveal two distinct seasonal regimes identified through a multi-model statistical framework (Weibull, Lognormal, and non-parametric Kernel Density Estimation: a high-energy summer with concentrated westerly flows and pronounced diurnal cycles (Weibull scale parameter A ≈ 11.9 m/s), and a more stable autumn with a broad wind direction spectrum (shape parameter k ≈ 2.86). Energy output, simulated using Windographer v5.3.12 (Academic License) for a Vestas V117-3.3 MW turbine, shows close alignment (~15% difference) with the operational Bicentenario I & II wind farm (Jaramillo, AR), validating the site’s wind energy potential. This study confirms the viability of utility-scale wind power generation in Southern Patagonia and establishes Doppler LiDAR as a reliable tool for high-resolution wind resource assessment in remote, high-wind environments.
Full article

Figure 1
Open AccessArticle
Range-Wide Aerodynamic Optimization of Darrieus Vertical Axis Wind Turbines Using CFD and Surrogate Models
by
Giusep Baca, Gabriel Santos and Leandro Salviano
Wind 2026, 6(1), 2; https://doi.org/10.3390/wind6010002 - 12 Jan 2026
Abstract
►▼
Show Figures
The depletion of fossil fuel resources and the growing need for sustainable energy solutions have increased interest in vertical axis wind turbines (VAWTs), which offer advantages in urban and variable-wind environments but often exhibit limited performance at low tip speed ratios (TSRs). This
[...] Read more.
The depletion of fossil fuel resources and the growing need for sustainable energy solutions have increased interest in vertical axis wind turbines (VAWTs), which offer advantages in urban and variable-wind environments but often exhibit limited performance at low tip speed ratios (TSRs). This study optimizes VAWT aerodynamic behavior across a wide TSR range by varying three geometric parameters: maximum thickness position ( ), relative thickness (m), and pitch angle ( ). A two-dimensional computational fluid dynamics (CFD) framework, combined with the Metamodel of Optimal Prognosis (MOP), was used to build surrogate models, perform sensitivity analyses, and identify optimal profiles through gradient-based optimization of the integrated – curve. The Joukowsky transformation was employed for efficient geometric parameterization while maintaining aerodynamic adaptability. The optimized airfoils consistently outperformed the baseline NACA 0021, yielding up to a 14.4% improvement at and an average increase of 10.7% across all evaluated TSRs. Flow-field analysis confirmed reduced separation, smoother pressure gradients, and enhanced torque generation. Overall, the proposed methodology provides a robust and computationally efficient framework for multi-TSR optimization, integrating Joukowsky-based parameterization with surrogate modeling to improve VAWT performance under diverse operating conditions.
Full article

Figure 1
Open AccessArticle
Towards Resilient Grid Integration of Wind Power: A Comparative Study of Nine Numerical Approaches Across Six Cities in Palestine
by
Ahmed Badawi, Wasel Ghanem, Nasser Ismail, Alhareth Zyoud, I. M. Elzein and Ashraf Al-Rimawi
Wind 2026, 6(1), 1; https://doi.org/10.3390/wind6010001 - 22 Dec 2025
Abstract
This research presents a detailed assessment of the wind power potential in six Palestinian cities—Bethlehem, Jericho, Jenin, Nablus, Ramallah, and Tulkarm—utilizing daily wind speed data from the years 2015 to 2021. The primary goal of this study is to formulate a robust, data-driven
[...] Read more.
This research presents a detailed assessment of the wind power potential in six Palestinian cities—Bethlehem, Jericho, Jenin, Nablus, Ramallah, and Tulkarm—utilizing daily wind speed data from the years 2015 to 2021. The primary goal of this study is to formulate a robust, data-driven framework for the strategic placement of turbines and the economical production of energy in areas with limited wind resources. A critical aspect of this research is the application of nine numerical methods, including the Maximum Likelihood Method (MLM) and the Energy Pattern Factor Method (EPF), to analyze the wind data. These methods were employed to estimate the shape and scale parameters of the Probability Distribution Function (PDF) that represents the Weibull distribution for various shape factor values. The accuracy of the numerical methods was validated through five statistical tools, including the Root Mean Square Error (RMSE) and Chi-square tests ( ). The Weibull parameters obtained from the numerical techniques indicated shape factors ranging from 1.27 to 1.96 and scale factors between 1.16 and 3.21 m/s. The energy output was calculated based on the swept area of the wind turbine, following Betz’s limit. The estimated annual energy production per square meter in the six cities is as follows: Ramallah—123 kWh/m2, Bethlehem—24.42 kWh/m2, Jenin—31.12 kWh/m2, Nablus—22 kWh/m2, Tulkarm—15.5 kWh/m2, and Jericho—10.36 kWh/m2. A 5 kW small-scale wind turbine was utilized to evaluate the technical feasibility, sustainability, and economic viability of small-scale wind energy applications. The anticipated energy output from the proposed wind turbine is 2054 kWh, with an estimated payback period of approximately 11.6 years.
Full article
(This article belongs to the Special Issue O&M and Innovative Solutions Bringing Scale and Speed to Wind Energy Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Design of Low-Power Vertical-Axis Wind Turbine Based on Parametric Method
by
F. Díaz-Canul, J. O. Aguilar, N. Rosado-Hau, E. Simá and O. A. Jaramillo
Wind 2025, 5(4), 35; https://doi.org/10.3390/wind5040035 - 10 Dec 2025
Abstract
►▼
Show Figures
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity
[...] Read more.
The parametric design of a low-power (<1 kW) H-type vertical-axis wind turbine tailored to the wind conditions of the Yucatán Peninsula is presented. Nine airfoils were evaluated using the Double Multiple Streamtube method and Qblade Lifting-Line Theory numerical simulations, considering variations in solidity (σ = 0.20–0.30), aspect ratio (Ar = H/R = 2.6–3.0), number of blades (2–5), and a swept-area constraint of 4 m2. The parametric study shows that fewer blades increase Cp, although a three-blade rotor improves start-up torque, vibration mitigation, and load smoothing. The recommended configuration—three blades, Ar = 2.6, σ = 0.30 and S1046 (or NACA 0018) operated near λ ≈ 3.75—balances efficiency and start-up performance. For the representative mean wind velocity of 5 m/s, typical of the Yucatán Peninsula, the VAWT achieves a maximum output of 136 W at 220 rpm. Under higher-wind conditions observed in specific sites within the region, the predicted maximum output increases to 932 W at 380 rpm.
Full article

Graphical abstract
Open AccessArticle
Enhancing Dynamic Voltage Stability of Wind Farm Based Microgrids Using FACTS Devices and Flexible Control Strategy
by
Huzaifah Zahid, Muhammad Rashad and Naveed Ashraf
Wind 2025, 5(4), 34; https://doi.org/10.3390/wind5040034 - 1 Dec 2025
Abstract
►▼
Show Figures
Voltage instability and power quality degradation represent critical barriers to the reliable operation of modern wind farm-based microgrids. As the share of distributed wind generation continues to grow, fluctuating wind speeds and variable reactive power demands increasingly challenge grid stability. This study proposes
[...] Read more.
Voltage instability and power quality degradation represent critical barriers to the reliable operation of modern wind farm-based microgrids. As the share of distributed wind generation continues to grow, fluctuating wind speeds and variable reactive power demands increasingly challenge grid stability. This study proposes an adaptive decentralized framework integrating a Dynamic Distribution Static Compensator (DSTATCOM) with an Artificial Neuro-Fuzzy Inference System (ANFIS)-based control strategy to enhance dynamic voltage and frequency stability in wind farm microgrids. Unlike conventional centralized STATCOM configurations, the proposed system employs parallel wind turbine modules that can be selectively switched based on voltage feedback to maintain optimal grid conditions. Each turbine is connected to a capacitive circuit for real-time voltage monitoring, while the ANFIS controller adaptively adjusts compensation signals to ensure minimal voltage deviation and reduced harmonic distortion. The framework was modeled and validated in the MATLAB/Simulink R2023a environment using the Simscape Power Systems toolbox. Simulation results demonstrated superior transient response, voltage recovery, and power factor correction compared with traditional PI and fuzzy-based controllers, achieving a total harmonic distortion below 2.5% and settling times under 0.5 s. The findings confirm that the proposed decentralized DSTATCOM–ANFIS approach provides an effective, scalable, and cost-efficient solution for maintaining dynamic stability and high power quality in wind farm based microgrids.
Full article

Figure 1
Open AccessArticle
Integrated CFD and ANN Approach for Predicting Blade Deformation and Aerodynamic Response
by
Hudhaifa Hamzah, Ali Alkhabbaz, Aisha Koprulu, Laith M. Jasim, Ibrahim K. Alzubaidi, Abdulelah Hameed Yaseen, Ho-Seong Yang and Young-Ho Lee
Wind 2025, 5(4), 33; https://doi.org/10.3390/wind5040033 - 1 Dec 2025
Abstract
►▼
Show Figures
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the
[...] Read more.
The growing demand for renewable energy has amplified the need for efficient and reliable wind turbine technologies, where understanding aerodynamic performance and aeroelastic behavior plays a critical role. In this study, a high-fidelity computational fluid dynamics (CFD) model was developed to analyze the aerodynamic loads and structural responses of a 2 kW horizontal-axis wind turbine, while an artificial neural network (ANN) was trained using CFD-generated data to predict power output and aeroelastic characteristics. The work combines ANN predictions and CFD simulations to determine the feasibility of machine learning as a surrogate model, which is much less expensive in terms of computational costs and time, with no negative effects on the accuracy. Findings indicate ANN predictions are closely comparable to CFD results with under 5–7% deviation at optimal blade pitch angles, which was shown to be very reliable in capturing nonlinear aerodynamic trends at different wind speeds and blade pitch angles. In addition, the obtained result emphasizes the example of the trade-off between aerodynamic efficiency and structural safety, where the largest power coefficient (0.42) was achieved at pitch and the tip deflections were reduced by almost 60% as the pitch was raised to . Such results substantiate the usefulness of ANN-based methods in the rapid aerodynamic and aeroelastic simulation of wind turbines and provide a prospective direction for effectively designed wind power generation and optimization.
Full article

Figure 1
Open AccessArticle
Wind Resource Assessment over Extremely Diverse Terrain
by
Jay Prakash Goit
Wind 2025, 5(4), 32; https://doi.org/10.3390/wind5040032 - 26 Nov 2025
Abstract
►▼
Show Figures
The current study investigates the effect of terrain features on wind resources in a region with extremely diverse terrain. To that end, a case study of Nepal based on annual wind data collected from 10 different sites is performed. The evaluation of mean
[...] Read more.
The current study investigates the effect of terrain features on wind resources in a region with extremely diverse terrain. To that end, a case study of Nepal based on annual wind data collected from 10 different sites is performed. The evaluation of mean wind speeds using Weibull probability density functions (PDFs) shows that complex-terrain sites exhibit greater variability in 10-min average wind speeds relative to the annual average wind speeds. This pattern is also evident in comparisons of short- and long-term average wind speeds. At the complex-terrain sites, the wind speeds exhibited strong short-term variations, suggesting that local terrain effects dominate over seasonal wind variation. Terrain complexity also strongly affected turbulence. The flat-terrain sites showed turbulence intensities below the lowest IEC category turbulence profile, while the complex-terrain sites exceeded the highest IEC profile. This indicates that the IEC standard may require modification based on site complexity parameters, such as the standard deviation of elevation fluctuations. The power law exponent ( ), used to extrapolate wind speeds to higher elevations, deviated notably from the typical 1/7 value, even in flat terrain. Finally, a power potential analysis indicated that three sites with higher mean wind speeds achieved higher capacity factors.
Full article

Figure 1
Open AccessArticle
Comparative Performance Evaluation of Wind Energy Systems Using Doubly Fed Induction Generator and Permanent Magnet Synchronous Generator
by
Areeg Ebrahiem Elngar, Asmaa Sobhy Sabik, Ahmed Hassan Adel and Adel S. Nada
Wind 2025, 5(4), 31; https://doi.org/10.3390/wind5040031 - 21 Nov 2025
Abstract
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly
[...] Read more.
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly Fed Induction Generator (DFIG) and the Permanent Magnet Synchronous Generator (PMSG) dominate commercial applications; however, a comprehensive comparative assessment under diverse grid and fault scenarios is still limited. This study addresses this gap by systematically evaluating the performance of DFIG- and PMSG-based WECSs across three operating stages: (i) normal operation at constant speed, (ii) variable wind speed operation, and (iii) grid fault conditions including single-line-to-ground, line-to-line, and three-phase faults. To enhance fault resilience, a DC-link Braking Chopper is integrated into both systems, ensuring a fair evaluation of transient stability and compliance with low-voltage ride-through (LVRT) requirements. The analysis, performed using MATLAB/Simulink, focuses on active and reactive power, rotor speed, pitch angle, and DC-link voltage dynamics. The results reveal that PMSG exhibits smoother transient responses and lower overshoot compared to DFIG. Under fault conditions, the DC-link Braking Chopper effectively suppresses voltage spikes in both systems, with DFIG achieving faster reactive power recovery in line with grid code requirements, while PMSG ensures more stable rotor dynamics with lower oscillations. The findings highlight the complementary strengths of both technologies and provide useful insights for selecting appropriate WECS configurations to improve grid integration and fault ride-through capability.
Full article
(This article belongs to the Topic Wind Energy in Multi Energy Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
MW-Level Performance Comparison of Contra Rotating Generators for Wind Power Applications
by
Mehroz Fatima, Wasiq Ullah, Faisal Khan and U. B. Akuru
Wind 2025, 5(4), 30; https://doi.org/10.3390/wind5040030 - 6 Nov 2025
Abstract
►▼
Show Figures
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching
[...] Read more.
The scaling effect of machines from kW to MW greatly affects electromagnetic performance and needs to be investigated for different machines. Therefore, this paper presents a comprehensive comparative study on the intriguing electromagnetic performance of contra-rotating permanent-magnet vernier machines and dual-port, wound-field-excited, flux-switching machines at the MW power level for contra-rotating wind turbine applications. The analysis evaluates both machines across various slot/pole combinations while maintaining constant key design parameters. The electromagnetic performance analysis reveals that the permanent-magnet vernier machine (PMVM) exhibits superior torque and power, with minimal cogging torque compared to the wound-field flux-switching machine (WFFSM). Conversely, the WFFSM outperforms the PMVM in terms of power factor and efficiency. This study provides valuable perspectives on the strengths and weaknesses of each machine, highlighting their potential for contra-rotating turbine and wind power generation. Finally, to justify the findings of the finite element analysis and the proof of concept, an experimental prototype is tested to validate the study.
Full article

Figure 1
Open AccessSystematic Review
A Systematic Review of Wind Energy Forecasting Models Based on Deep Neural Networks
by
Edgar A. Manzano, Ruben E. Nogales and Alberto Rios
Wind 2025, 5(4), 29; https://doi.org/10.3390/wind5040029 - 3 Nov 2025
Abstract
The present study focuses on wind power forecasting (WPF) models based on deep neural networks (DNNs), aiming to evaluate current approaches, identify gaps, and provide insights into their importance for the integration of Renewable Energy Sources (RESs). The systematic review was conducted following
[...] Read more.
The present study focuses on wind power forecasting (WPF) models based on deep neural networks (DNNs), aiming to evaluate current approaches, identify gaps, and provide insights into their importance for the integration of Renewable Energy Sources (RESs). The systematic review was conducted following the methodology of Kitchenham and Charters, including peer-reviewed articles from 2020 to 2024 that focused on WPF using deep learning (DL) techniques. Searches were conducted in the ACM Digital Library, IEEE Xplore, ScienceDirect, Springer Link, and Wiley Online Library, with the last search updated in April 2024. After the first phase of screening and then filtering using inclusion and exclusion criteria, risk of bias was assessed using a Likert-scale evaluation of methodological quality, validity, and reporting. Data extraction was performed for 120 studies. The synthesis established that the state of the art is dominated by hybrid architectures (e.g., CNN-LSTM) integrated with signal decomposition techniques like VMD and optimization algorithms such as GWO and PSO, demonstrating high predictive accuracy for short-term horizons. Despite these advancements, limitations include the variability in datasets, the heterogeneity of model architectures, and a lack of standardization in performance metrics, which complicate direct comparisons across studies. Overall, WPF models based on DNNs demonstrate substantial promise for renewable energy integration, though future work should prioritize standardization and reproducibility. This review received no external funding and was not prospectively registered.
Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Gated Lag and Feature Selection for Day-Ahead Wind Power Forecasting Using On-Site SCADA Data
by
Inajara Rutyna
Wind 2025, 5(4), 28; https://doi.org/10.3390/wind5040028 - 3 Nov 2025
Abstract
►▼
Show Figures
Day-ahead wind power forecasting is often limited to on-site Supervisory Control and Data Acquisition (SCADA) datasets without Numerical Weather Prediction (NWP) information. In this regime, practitioners extend autoregressive windows over many variables, so the input size grows with both features and lags. Many
[...] Read more.
Day-ahead wind power forecasting is often limited to on-site Supervisory Control and Data Acquisition (SCADA) datasets without Numerical Weather Prediction (NWP) information. In this regime, practitioners extend autoregressive windows over many variables, so the input size grows with both features and lags. Many lag–feature pairs are redundant, increasing the training time and overfitting risk. A lightweight, differentiable joint gate over the lag–feature plane trained with a temperature-annealed sigmoid is proposed. Sparsity is induced by capped penalties that (i) bound the total open mass to the top-M features and (ii), within each selected feature, bound the mass to the top-k lags. An additional budget-aware off-state term pushes unused logits negative in proportion to the excess density over the budget. A lightweight, per-feature softmax pooling head supplies the forecasting loss during selection. After training, the learned probabilities are converted into compact, non-contiguous lag–feature subsets (top-M features; per-feature top-k lags) and reused by downstream predictors. Tests on the Offshore Renewable Energy (ORE) Catapult Platform for Operational Data (POD) from the Levenmouth Demonstration Turbine (LDT) dataset show that the joint gate reduces the input dimensionality and training time while improving accuracy and stability relative to Pearson’s correlation, mutual information, and cross-correlation function selectors.
Full article

Figure 1
Open AccessArticle
Advancing Bridge Aerodynamics: Open-Jet Testing, Reynolds Number Effects, and Sustainable Mitigation Through Green Energy Integration
by
Aly Mousaad Aly and Hannah DiLeo
Wind 2025, 5(4), 27; https://doi.org/10.3390/wind5040027 - 21 Oct 2025
Abstract
►▼
Show Figures
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures
[...] Read more.
Bridges, as critical transportation infrastructure, are highly vulnerable to aerodynamic forces, particularly vortex-induced vibrations (VIV), which severely compromise their structural integrity and operational safety. These low-frequency, high-amplitude vibrations are a primary challenge to serviceability and fatigue life. Ensuring the resilience of these structures demands advanced understanding and robust mitigation strategies. This paper comprehensively addresses the multifaceted challenges of bridge aerodynamics, presenting an in-depth analysis of contemporary testing methodologies and innovative solutions. We critically examine traditional wind tunnel modeling, elucidating its advantages and inherent limitations, such as scale effects, Reynolds number dependence, and boundary interference, which can lead to inaccurate predictions of aerodynamic forces and vibration amplitudes. This scale discrepancy is critical, as demonstrated by peak pressure coefficients being underestimated by up to 64% in smaller-scale wind tunnel environments compared to high-Reynolds-number open-jet testing. To overcome these challenges, the paper details the efficacy of open-jet testing at facilities like the Windstorm Impact, Science, and Engineering (WISE) Laboratory, demonstrating its superior capability in replicating realistic atmospheric boundary layer flow conditions and enabling larger-scale, high-Reynolds-number testing for more accurate insights into bridge behavior under dynamic wind loads. Furthermore, we explore the design principles and applications of various aerodynamic mitigation devices, including handrails, windshields, guide vanes, and spoilers, which are essential for altering airflow patterns and suppressing vortex-induced vibrations. The paper critically investigates the innovative integration of green energy solutions, specifically solar panels, with bridge structures. This study presents the application of solar panel arrangements to provide both renewable energy production and verifiable aerodynamic mitigation. This strategic incorporation is shown not only to harness renewable energy but also to actively improve aerodynamic performance and mitigate wind-induced vibrations, thereby fostering both bridge safety and sustainable infrastructure development. Unlike previous studies focusing primarily on wind loads on PV arrays, this work demonstrates how the specific geometric integration of solar panels can serve as an active aerodynamic mitigation device for bridge decks. This dual functionality—harnessing renewable energy while simultaneously serving as a passive geometric countermeasure to vortex-induced vibrations—marks a novel advancement over single-purpose mitigation technologies. Through this interdisciplinary approach, the paper seeks to advance bridge engineering towards more resilient, efficient, and environmentally responsible solutions.
Full article

Figure 1
Open AccessArticle
Modernizing Wind Load Standards for Ireland
by
David Cunningham, Rubina Ramponi, Reamonn MacReamoinn and Jennifer Keenahan
Wind 2025, 5(4), 26; https://doi.org/10.3390/wind5040026 - 17 Oct 2025
Abstract
In anticipation of the implementation of the Second-Generation Eurocodes, evaluating the suitability of these standards is necessary to ensure the structural safety and sustainable design of Ireland’s future building stock. This paper provides a detailed comparative analysis of the wind loading codes of
[...] Read more.
In anticipation of the implementation of the Second-Generation Eurocodes, evaluating the suitability of these standards is necessary to ensure the structural safety and sustainable design of Ireland’s future building stock. This paper provides a detailed comparative analysis of the wind loading codes of practice relevant to Ireland: The Irish National Annex to EN1991-1-4 (2005) and the draft version of the Second-Generation Eurocode, EN1991-1-4 (2025). Quantitative evaluation is conducted across a range of building typologies, with calculations performed for various sites and structural geometries. The findings reveal marked differences in wind load predictions between the codes, particularly affecting base shear values and net pressure coefficients. Areas of concern regarding structural design efficiency and safety for future building structures in Ireland are outlined. The significant inconsistencies between provisions within the codes of practice are identified and critically evaluated from both theoretical and practical perspectives, providing insight into the optimal solution for implementation in Irish engineering practice.
Full article
(This article belongs to the Special Issue Wind Effects on Civil Infrastructure)
►▼
Show Figures

Figure 1
Open AccessArticle
Lift-Based Rotor Optimization of HAWTs via Blade Element Momentum Theory and CFD
by
Rossen Iliev
Wind 2025, 5(4), 25; https://doi.org/10.3390/wind5040025 - 13 Oct 2025
Abstract
►▼
Show Figures
This article presents a methodology for the synthesis of horizontal-axis wind turbines operating on the principle of lift. The profile geometry is synthesized using the Vortex–source distribution method following Glauert’s approach. The blade shape is developed using the Blade Element Momentum Theory. Efficiency
[...] Read more.
This article presents a methodology for the synthesis of horizontal-axis wind turbines operating on the principle of lift. The profile geometry is synthesized using the Vortex–source distribution method following Glauert’s approach. The blade shape is developed using the Blade Element Momentum Theory. Efficiency is determined with Computational Fluid Dynamics. The methodology uses a multifactor numerical experiment, with the objective function defined as maximizing lift-to-drag ratio of the blade profile. Validation of the obtained power curves is performed with QBlade and XFoil and confirmed experimentally on a laboratory test bench. The proposed methodology demonstrates improved accuracy in predicting the power coefficient and the optimal operation regime of horizontal-axis wind turbines at low Reynolds numbers.
Full article

Figure 1
Open AccessArticle
Incorporating the Effect of Windborne Debris on Wind Pressure Calculation of ASCE 7 Provisions
by
Karim Farokhnia
Wind 2025, 5(4), 24; https://doi.org/10.3390/wind5040024 - 13 Oct 2025
Abstract
►▼
Show Figures
Windborne debris generated during tornadoes and hurricanes plays a critical role in building damage. This damage occurs either through direct impact on structural and nonstructural components or indirectly by increasing internal pressure when debris penetrates openings (e.g., windows and doors) or creates new
[...] Read more.
Windborne debris generated during tornadoes and hurricanes plays a critical role in building damage. This damage occurs either through direct impact on structural and nonstructural components or indirectly by increasing internal pressure when debris penetrates openings (e.g., windows and doors) or creates new ones. These breaches can significantly raise internal pressure, even at lower wind speeds compared to debris-free conditions. Current provisions in ASCE 7, the nationally adopted standard for wind load calculations in the United States, account for factors such as building geometry, location, and exposure category. However, they do not consider the effects of windborne debris on internal pressure coefficients. This study proposes an enhancement to ASCE 7 by incorporating debris effects through the use of a more conservative enclosure classification. Real-world damage observations from three tornado-impacted residential buildings are presented, followed by a failure mechanism analysis, supporting analytical fragility data, and numerical simulations of debris effects on building damage. The findings suggest that treating buildings as Partially Enclosed under ASCE 7 can more accurately reflect debris-induced internal pressures and improve building resilience under extreme wind events.
Full article

Figure 1
Open AccessArticle
Structural Topology Optimisation of a Composite Wind Turbine Blade Under Various Constraints
by
Mohamed Noufel Ajmal Khan and Mertol Tüfekci
Wind 2025, 5(4), 23; https://doi.org/10.3390/wind5040023 - 28 Sep 2025
Cited by 1
Abstract
►▼
Show Figures
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while
[...] Read more.
This study investigates the topology optimisation of a composite wind turbine blade with the objective of improving its structural performance under static and dynamic constraints. Two distinct optimisation strategies—based on static deformation limits and modal frequency enhancement—are employed to achieve mass reduction while maintaining or improving mechanical performance. The optimisation process incorporates modal characterisation of the first ten natural frequencies and a detailed static stress analysis. Results indicate that the optimised designs achieve a notable increase in the fundamental natural frequency of the blade—from 2.32 Hz to 2.99 Hz—and reduce the overall mass by approximately 49%, lowering it from 4.55 × 105 kg to around 2.34 × 105 kg compared to the original configuration. In particular, the optimised geometry offers improved stiffness and a more uniform stress distribution, especially in the flapwise bending and torsional modes. Higher-order torsional frequencies remain well-separated from typical excitation sources, minimising resonance risks. These findings highlight the effectiveness of constraint-driven topology optimisation in enhancing structural performance and reducing material usage in wind turbine blade design.
Full article

Figure 1
Open AccessSystematic Review
Current Status and Sustainable Utilization of Wind Energy Resources in Mexico: A Systematic Review
by
Uriel Castilla Batun, Mohamed E. Zayed, Mohamed Ghazy and Shafiqur Rehman
Wind 2025, 5(4), 22; https://doi.org/10.3390/wind5040022 - 24 Sep 2025
Cited by 1
Abstract
►▼
Show Figures
Mexico holds significant potential for wind energy development, owing to its strategic geographic location and extensive coastlines. This review article systematically explores the technical, environmental, and economic aspects of wind energy in five different climatic zones in Mexico, reviewing potential zones for wind
[...] Read more.
Mexico holds significant potential for wind energy development, owing to its strategic geographic location and extensive coastlines. This review article systematically explores the technical, environmental, and economic aspects of wind energy in five different climatic zones in Mexico, reviewing potential zones for wind energy development, with the focus on the key case studies, ongoing project, and wind power performance metrics. It also critically examines the key challenges and opportunities within Mexico’s wind energy portfolio, with a focus on social, economic, environmental, and regulatory dimensions that influence the sector’s development and long-term sustainability. The results indicate that Oaxaca leads Mexico’s onshore wind potential with a power density of 761 W/m2, followed by strong resources in Tamaulipas and Baja California, where wind speeds exceed 6 m/s. For offshore wind potential, Isthmus of Tehuantepec demonstrates outstanding offshore potential, with wind power densities exceeding 1000 W/m2 and wind speeds above 8 m/s. Major challenges include inconsistent or unclear governmental policies regarding renewable energy incentives, regulatory uncertainties, and social resistance from local communities concerned about environmental impacts and land use. These obstacles underline the need for integrated, transparent policies and inclusive engagement strategies to carry out the full potential of wind energy in Mexico.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Sciences, Energies, Forecasting, Solar, Wind, Batteries
Solar and Wind Power and Energy Forecasting, 2nd Edition
Topic Editors: Emanuele Ogliari, Alessandro Niccolai, Sonia LevaDeadline: 31 July 2026
Topic in
Applied Sciences, Energies, J. Compos. Sci., JMSE, Machines, Wind, Fluids
Advancements in Cost-Effective and Reliable Floating Offshore Wind Technologies: From Innovative Design to System Integration
Topic Editors: Yanfei Deng, Mingming Zhang, Xiaowei DengDeadline: 30 November 2026
Topic in
Applied Sciences, Energies, JMSE, Sustainability, Wind
Advances in Structural Wind-Resistant Analysis and Disaster Mitigation
Topic Editors: Tianyou Tao, Haojun Tang, Fei DingDeadline: 31 December 2026
Topic in
Aerospace, Applied Sciences, Energies, Machines, Wind
Advances in Aeroacoustics Research in Wind Engineering
Topic Editors: Firoz Alam, Yingai Jin, Xingjun HuDeadline: 15 February 2027
Conferences
Special Issues
Special Issue in
Wind
Novel Research on Permeable and Porous Elements in Wind Engineering
Guest Editors: Mao Xu, Yukio Tamura, Jingxue Wang, Luca PatrunoDeadline: 31 March 2026
Special Issue in
Wind
New Fluid Mechanics Research in Wind Engineering
Guest Editors: Costin Cosoiu, Horia HanganDeadline: 30 June 2026
Special Issue in
Wind
Wind Effects on Civil Infrastructure
Guest Editor: Mihail IancoviciDeadline: 31 August 2026
Special Issue in
Wind
Canadian Wind Energy Research
Guest Editor: Marianne RodgersDeadline: 30 November 2026




