Journal Description
Wind
Wind
is an international, peer-reviewed, open access journal on wind-related technologies, environmental and sustainability studies published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science) and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 43.5 days after submission; acceptance to publication is undertaken in 12.5 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Wind is a companion journal of Energies.
Latest Articles
Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies
Wind 2024, 4(4), 275-287; https://doi.org/10.3390/wind4040014 - 2 Oct 2024
Abstract
►
Show Figures
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to
[...] Read more.
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to capture wind energy by increasing the wind influx through the turbine. In the contemporary wind energy sector, PMSGs are extensively employed due to their superior performance characteristics. This study integrates a 1 kW PMSG system with a wind lens to optimize power extraction from the wind energy conversion system (WECS) under varying wind speeds. A comparative analysis of different control strategies for maximum power point tracking (MPPT) is conducted, including the incremental conductance (INC) method and the perturb and observe (P&O) method. The performance of the MPPT controller integrated with the wind lens-based PMSG system is assessed based on output DC voltage and power delivered to the load. To evaluate the overall effectiveness of these control strategies, both steady-state voltage and dynamic response under diverse wind conditions are examined. The system is modeled and simulated using the MATLAB R2023a/Simulink 9.1 software, and the simulation results are validated to demonstrate the efficacy of the proposed energy management system.
Full article
Open AccessArticle
Comparison of S-N Curves from International Fatigue Design Standards for a Better Understanding of the Long-Term Operation of Offshore Wind Turbine Welded Foundations
by
Federico Della Santa, Gianluca Zorzi and Ali Mehmanparast
Wind 2024, 4(3), 251-274; https://doi.org/10.3390/wind4030013 - 21 Sep 2024
Abstract
►▼
Show Figures
Fatigue poses significant challenges for the structural integrity of monopiles, the most common type of foundation for offshore wind turbines. These structures are usually manufactured by rolling and welding together large steel plates. Offshore wind turbines are typically designed to operate for 20
[...] Read more.
Fatigue poses significant challenges for the structural integrity of monopiles, the most common type of foundation for offshore wind turbines. These structures are usually manufactured by rolling and welding together large steel plates. Offshore wind turbines are typically designed to operate for 20 years or longer, thus the number of cycles to failure ( ) that these structures are required to withstand lies in the so called ultrahigh-cycle fatigue (UHCF) regime ( ). Moreover, because, in the past few years, there has been a continuous increase in the size of monopiles, the fatigue life reduction caused by the utilization of thicker steel plates plays an important role (i.e., thickness or size effect). Different regions worldwide apply distinct codes to ensure that offshore structures can withstand fatigue damages, but most of them are tailored for the high-cycle fatigue (HCF) regime. This paper seeks to compare a selection of these codes, highlighting both differences and similarities, while also questioning their suitability in the UHCF regime and for much thicker structures (compared to the reference thickness values reported in the standards). By doing so, it aims to contribute to the ongoing efforts to optimize the efficiency of the fatigue life assessment of offshore wind infrastructures. The focus of this study is on double-V transverse butt welds and their S-N curves in air and seawater (with and without cathodic protection), while the analyzed standards are those provided by the Det Norske Veritas (DNV-RP-C203-2021), the British Standards Institution (BS 7608, including the amendments of 2015), and the European Union (EN 1993-1-9, updated in 2005). The results have been discussed in terms of the level of conservatism that each of these standards offers and in identifying the areas for further research to enable extended lives in the current and future offshore wind monopile foundations.
Full article
Figure 1
Open AccessArticle
Insights on the Optimization of Short- and Long-Term Maintenance Decisions for Floating Offshore Wind Using Nested Genetic Algorithms
by
Mário Vieira and Dragan Djurdjanovic
Wind 2024, 4(3), 227-250; https://doi.org/10.3390/wind4030012 - 3 Sep 2024
Abstract
The present research explores the optimization of maintenance strategies for floating offshore wind (FOW) farms using nested genetic algorithms. The primary goal is to provide insights on the decision-making processes required for both immediate and strategic maintenance planning, crucial for the viability and
[...] Read more.
The present research explores the optimization of maintenance strategies for floating offshore wind (FOW) farms using nested genetic algorithms. The primary goal is to provide insights on the decision-making processes required for both immediate and strategic maintenance planning, crucial for the viability and efficiency of FOW operations. A nested genetic algorithm was coupled with discrete-event simulations in order to simulate and optimize maintenance scenarios influenced by various operational and environmental parameters. The study revealed that short-term maintenance timing is significantly influenced by wind conditions, with higher electricity prices justifying on-site spare parts storage to mitigate operational disruptions, suggesting economic incentives for maintaining on-site inventory of spare parts. Long-term strategic findings emphasized the impact of planned intervals between inspections on financial outcomes, identifying optimal strategies that balance operational costs with energy production efficiency. Ultimately, this study highlights the importance of integrating sophisticated predictive models for failure detection with real-time operational data to enhance maintenance decision-making in the evolving landscape of offshore wind energy, where future farms are likely to operate farther from onshore facilities and under potentially highly varying market conditions in terms of electricity prices.
Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
►▼
Show Figures
Figure 1
Open AccessReview
A Review of State of the Art for Accelerated Testing in Fluid Power Pitch Systems
by
Diego Manuel Chamorro Ruz, Henrik C. Pedersen, Jesper Liniger, Mohit Bhola and Gyan Wrat
Wind 2024, 4(3), 208-226; https://doi.org/10.3390/wind4030011 - 10 Aug 2024
Abstract
►▼
Show Figures
Failures in hydraulic systems in offshore wind turbines represent an enormous challenge for manufacturers and operators, as the pitch system statistically is one of the subsystems contributing the most to the downtime of the turbines, which is the case for both electrical and
[...] Read more.
Failures in hydraulic systems in offshore wind turbines represent an enormous challenge for manufacturers and operators, as the pitch system statistically is one of the subsystems contributing the most to the downtime of the turbines, which is the case for both electrical and hydraulic pitch systems. However, the complex failure mechanisms of the various different hydraulic components mean that, typically, the critical components of hydraulic systems must be tested to better understand the failure mechanisms. Nonetheless, conventional testing procedures are lengthy and costly. Accelerated testing plays a critical role as it can mimic hydraulic system failure mechanisms in a shorter period. However, the lack of standardized test methods and detailed knowledge about the failure-accelerating effects complicates the process. Therefore, this paper offers a comprehensive examination of approaches applicable to conducting accelerated tests on hydraulic systems. It identifies and discusses five primary component types or sub-components related to the acceleration of testing in hydraulic systems: pumps, cylinders, seals, valves, and hoses. Each section references studies that delve into accelerated testing methodologies for these individual components. Furthermore, within each component, a concise overview of the current techniques is provided, followed by a discussion and summary based on the state of the art.
Full article
Figure 1
Open AccessArticle
Development and Measurement of a Very Thick Aerodynamic Profile for Wind Turbine Blades
by
Alois Peter Schaffarczyk, Brandon Arthur Lobo, Nicholas Balaresque, Volker Kremer, Janick Suhr and Zhongxia Wang
Wind 2024, 4(3), 190-207; https://doi.org/10.3390/wind4030010 - 12 Jul 2024
Abstract
►▼
Show Figures
We designed 60% thick airfoil to improve the aerodynamic performance in the root region of wind turbine rotor blades, taking into account current constraints. After an extensive literature review and patent research, a design methodology (including the considerations of simple manufacturing) was set
[...] Read more.
We designed 60% thick airfoil to improve the aerodynamic performance in the root region of wind turbine rotor blades, taking into account current constraints. After an extensive literature review and patent research, a design methodology (including the considerations of simple manufacturing) was set up, and extensive 2D- and 3D-CFD investigations with four codes (Xfoil, MSES, ANSYS fluent, and DLR-tau) were performed, including implementation inside a generic 10 MW test-blade (CIG10MW). Comparison with results from Blade Element Momentum (BEM) methods and the estimation of 3D effects due to the rotating blade were undertaken. One specific shape (with a pronounced flat-back) was selected and tested in the Deutsche WindGuard aeroacoustic Wind Tunnel (DWAA), in Bremerhaven, Germany. A total of 34 polars were measured, included two trailing edge shapes and aerodynamic devices such as vortex generators, gurney flaps, zig-zag tape, and a splitter plate. Considerable changes in lift and drag characteristics were observed due to the use of aerodynamic add-ons. With the studies presented here, we believe we have closed an important technological gap.
Full article
Figure 1
Open AccessArticle
A Generative Design Approach for the Dynamic Optimisation of Multi-MW Offshore Direct-Drive Wind Turbine Electrical Generator Supporting Structures Using Modal Analysis
by
Daniel Gonzalez-Delgado, Pablo Jaen-Sola and Erkan Oterkus
Wind 2024, 4(2), 172-189; https://doi.org/10.3390/wind4020009 - 19 Jun 2024
Abstract
Generative design techniques together with the rapid development of additive manufacturing represent a revolution in the field of structural optimisation processes. In this study, a static structural and modal analysis was integrated to drive a multi-objective generative design optimisation process for a 3
[...] Read more.
Generative design techniques together with the rapid development of additive manufacturing represent a revolution in the field of structural optimisation processes. In this study, a static structural and modal analysis was integrated to drive a multi-objective generative design optimisation process for a 3 MW direct-drive offshore wind turbine electrical generator rotor structure. This novel optimisation approach implements an automated fittest-for-purpose process including a static structural analysis and a modal analysis as the input for the optimisation strategy algorithm, allowing the exploration of a wide range of non-conventional topologies. If compared with the simple generator rotor disc structure, the results obtained using this innovative method achieved over 7% of weight reduction and a 39% increment in the generator operational range with the consequent growth in the wind turbine energy capture capability. Moreover, this approach generates a vast amount of structural analysis information, crucial at an early stage of the development of large-scale projects for a cost-effective scheme.
Full article
(This article belongs to the Special Issue O&M and Innovative Solutions Bringing Scale and Speed to Wind Energy Engineering)
►▼
Show Figures
Figure 1
Open AccessArticle
Icing Wind Tunnel and Erosion Field Tests of Superhydrophobic Surfaces Caused by Femtosecond Laser Processing
by
Roland Fürbacher, Gerhard Liedl, Gabriel Grünsteidl and Andreas Otto
Wind 2024, 4(2), 155-171; https://doi.org/10.3390/wind4020008 - 5 Jun 2024
Cited by 1
Abstract
►▼
Show Figures
Ice accumulation on lift-generating surfaces, such as rotor blades or wings, degrades aerodynamic performance and increases various risks. Active measures to counteract surface icing are energy-consuming and should be replaced by passive anti-icing surfaces. Two major categories of surface treatments—coating and structuring—already show
[...] Read more.
Ice accumulation on lift-generating surfaces, such as rotor blades or wings, degrades aerodynamic performance and increases various risks. Active measures to counteract surface icing are energy-consuming and should be replaced by passive anti-icing surfaces. Two major categories of surface treatments—coating and structuring—already show promising results in the laboratory, but none fulfill the current industry requirements for performance and durability. In this paper, we show how femtosecond laser structuring of stainless steel (1.4301) combined with a hydrocarbon surface treatment or a vacuum treatment leads to superhydrophobic properties. The anti-ice performance was investigated in an icing wind tunnel under glaze ice conditions. Therefore, flexible steel foils were laser-structured, wettability treated and attached to NACA 0012 air foil sections. In the icing wind tunnel, hydrocarbon treated surfaces showed a 50 s ice build-up delay on the leading edge as well as a smoother ice surface compared to the reference. To demonstrate the erosion resistance of these surfaces, long-term field tests on a small-scale wind turbine were performed under alpine operating conditions. The results showed only minor erosion wear of micro- and nano-structures after a period of six winter months.
Full article
Figure 1
Open AccessArticle
System-Level Offshore Wind Energy and Hydrogen Generation Availability and Operations and Maintenance Costs
by
Robert Lochhead, Orla Donnelly and James Carroll
Wind 2024, 4(2), 135-154; https://doi.org/10.3390/wind4020007 - 21 May 2024
Abstract
With the current trends of wind energy already playing a major part in the Scottish energy supply, the capacity of wind farms is predicted to grow exponentially and reach further depths offshore. However, a key challenge that presents itself is the integration of
[...] Read more.
With the current trends of wind energy already playing a major part in the Scottish energy supply, the capacity of wind farms is predicted to grow exponentially and reach further depths offshore. However, a key challenge that presents itself is the integration of large producing assets into the current UK grid. One potential solution to this is green hydrogen production, which is being heavily researched in industry, with many concepts being investigated for large-scale purposes. However, the operations and maintenance (O&M) costs and availability of green hydrogen systems need to be quantified to ensure economical and technical viability, which is sparse in the available literature. The study presented in this paper investigated the availability and O&M costs of coupled wind–hydrogen systems by attempting to quantify the failure rates, repair times, repair costs and number of technicians required for key green hydrogen components. This study also utilised an O&M model created by the University of Strathclyde, which uses Monte Carlo Markov chain simulations to produce the O&M outputs. A number of assumptions were made throughout the study in relation to the O&M model inputs, and the baseline availability for the coupled wind–hydrogen system was 85.24%. Whilst the wind turbine still contributed a major part to the downtime seen in the simulations, the combined hydrogen system also contributed a significant amount, a total of 37%, which could have been due to the technology readiness levels of some the components included in the hydrogen system.
Full article
(This article belongs to the Special Issue O&M and Innovative Solutions Bringing Scale and Speed to Wind Energy Engineering)
►▼
Show Figures
Figure 1
Open AccessArticle
Green Hydrogen Driven by Wind and Solar—An Australian Case Study
by
Glen Currie, Edward Behrens, Samuel Bolitho, Michael Coen and Thomas Wilson
Wind 2024, 4(2), 111-134; https://doi.org/10.3390/wind4020006 - 12 Apr 2024
Abstract
The energy transition to wind and solar opens up opportunities for green hydrogen as wind and solar generation tend to bring electricity prices down to very low levels. We evaluate whether green hydrogen can integrate well with wind and solar PVs to improve
[...] Read more.
The energy transition to wind and solar opens up opportunities for green hydrogen as wind and solar generation tend to bring electricity prices down to very low levels. We evaluate whether green hydrogen can integrate well with wind and solar PVs to improve the South Australian electricity grid. Green hydrogen can use membrane electrolysis plants during periods of surplus renewable energy. This hydrogen can then be electrified or used in industry. The green hydrogen system was analysed to understand the financial viability and technical impact of integrating green hydrogen. We also used system engineering techniques to understand the system holistically, including the technical, social, environmental, and economic impacts. The results show opportunities for the system to provide seasonal storage, grid firming, and reliability services. Financially, it would need changes to electricity rules to be viable, so at present, it would not be viable without subsidy.
Full article
(This article belongs to the Topic Market Integration of Renewable Generation)
►▼
Show Figures
Figure 1
Open AccessArticle
Fault-Tolerant Controller Applied to a Wind System Using a Doubly Fed Induction Generator
by
Onofre Morfín, Diego Delgado, Alan Campos, Miguel Murillo, Jesús I. Hernández and Pedro Esquivel
Wind 2024, 4(2), 90-110; https://doi.org/10.3390/wind4020005 - 22 Mar 2024
Abstract
Wind systems are sustainable and economical options for producing electrical energy. These systems efficiently manage the power flow by maximizing wind power and consuming reactive power from the grid. In addition, wind systems must maintain operation despite utility grid electrical failure; hence, their
[...] Read more.
Wind systems are sustainable and economical options for producing electrical energy. These systems efficiently manage the power flow by maximizing wind power and consuming reactive power from the grid. In addition, wind systems must maintain operation despite utility grid electrical failure; hence, their control system must not collapse. This study proposes a fault-tolerant converter controller to ensure the efficient operation of wind system converters. The central concept behind this is that when there is an imbalance in the utility grid voltage due to a fault nearby or far away, positive and negative sequence voltages are created in the time domain. Then, two parallel controllers operate to allow the wind system to continue operating despite the failure. One controller utilizes positive sequence voltages as inputs to regulate the generator’s electromagnetic torque. This helps in maximizing the amount of wind energy. The second controller uses negative sequence voltages as inputs, which helps to cancel out the produced torque in the opposite direction, thereby preventing generator overload. Finally, the controllers proposed in this article are validated through simulations, and the results are presented.
Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
►▼
Show Figures
Figure 1
Open AccessArticle
Integration of Different Storage Technologies towards Sustainable Development—A Case Study in a Greek Island
by
Maria Margarita Bertsiou and Evangelos Baltas
Wind 2024, 4(1), 68-89; https://doi.org/10.3390/wind4010004 - 1 Mar 2024
Abstract
The necessity for transitioning to renewable energy sources and the intermittent nature of the natural variables lead to the integration of storage units into these projects. In this research paper, wind turbines and solar modules are combined with pumped hydro storage, batteries, and
[...] Read more.
The necessity for transitioning to renewable energy sources and the intermittent nature of the natural variables lead to the integration of storage units into these projects. In this research paper, wind turbines and solar modules are combined with pumped hydro storage, batteries, and green hydrogen. Energy management strategies are described for five different scenarios of hybrid renewable energy systems, based on single or hybrid storage technologies. The motivation is driven by grid stability issues and the limited access to fresh water in the Greek islands. A RES-based desalination unit is introduced into the hybrid system for access to low-cost fresh water. The comparison of single and hybrid storage methods, the exploitation of seawater for the simultaneous fulfillment of water for domestic and agricultural purposes, and the evaluation of different energy, economic, and environmental indices are the innovative aspects of this research work. The results show that pumped hydro storage systems can cover the energy and water demand at the minimum possible price, 0.215 EUR/kWh and 1.257 EUR/m3, while hybrid storage technologies provide better results in the loss of load probability, payback period and CO2 emissions. For the pumped hydro–hydrogen hybrid storage system, these values are 21.40%, 10.87 years, and 2297 tn/year, respectively.
Full article
(This article belongs to the Topic Advances in Renewable Energy Technologies and Systems Solutions)
►▼
Show Figures
Figure 1
Open AccessArticle
An Ensemble Approach to Short-Term Wind Speed Predictions Using Stochastic Methods, Wavelets and Gradient Boosting Decision Trees
by
Khathutshelo Steven Sivhugwana and Edmore Ranganai
Wind 2024, 4(1), 44-67; https://doi.org/10.3390/wind4010003 - 4 Feb 2024
Cited by 1
Abstract
►▼
Show Figures
Considering that wind power is proportional to the cube of the wind speed variable, which is highly random, complex power grid management tasks have arisen as a result. Wind speed prediction in the short term is crucial for load dispatch planning and load
[...] Read more.
Considering that wind power is proportional to the cube of the wind speed variable, which is highly random, complex power grid management tasks have arisen as a result. Wind speed prediction in the short term is crucial for load dispatch planning and load increment/decrement decisions. The chaotic intermittency of speed is often characterised by inherent linear and nonlinear patterns, as well as nonstationary behaviour; thus, it is generally difficult to predict it accurately and efficiently using a single linear or nonlinear model. In this study, wavelet transform (WT), autoregressive integrated moving average (ARIMA), extreme gradient boosting trees (XGBoost), and support vector regression (SVR) are combined to predict high-resolution short-term wind speeds obtained from three Southern African Universities Radiometric Network (SAURAN) stations: Richtersveld (RVD); Central University of Technology (CUT); and University of Pretoria (UPR). This hybrid model is termed WT-ARIMA-XGBoost-SVR. In the proposed hybrid, the ARIMA component is employed to capture linearity, while XGBoost captures nonlinearity using the wavelet decomposed subseries from the residuals as input features. Finally, the SVR model reconciles linear and nonlinear predictions. We evaluated the WT-ARIMA-XGBoost-SVR’s efficacy against ARIMA and two other hybrid models that substitute XGBoost with a light gradient boosting machine (LGB) component to form a WT-ARIMA-LGB-SVR hybrid model and a stochastic gradient boosting machine (SGB) to form a WT-ARIMA-SGB-SVR hybrid model. Based on mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), coefficient of determination (R2), and prediction interval normalised average width (PINAW), the proposed hybrid model provided more accurate and reliable predictions with less uncertainty for all three datasets. This study is critical for improving wind speed prediction reliability to ensure the development of effective wind power management strategies.
Full article
Figure 1
Open AccessArticle
The Financial Aspects behind Designing a Wind Turbine Generator
by
Alexandra C. Barmpatza, Remi Peltier, Constantinos Condaxakis and Dimitris Christakis
Wind 2024, 4(1), 25-43; https://doi.org/10.3390/wind4010002 - 16 Jan 2024
Abstract
►▼
Show Figures
This article investigates the construction of a wind power generator requiring the lowest possible cost. The proposed model is an Axial Flux Permanent Magnet (AFPM) Synchronous Machine, which contains two iron rotors and a coreless stator between them, constructed from resin. The scientific
[...] Read more.
This article investigates the construction of a wind power generator requiring the lowest possible cost. The proposed model is an Axial Flux Permanent Magnet (AFPM) Synchronous Machine, which contains two iron rotors and a coreless stator between them, constructed from resin. The scientific contribution relates to the coupling of economic and technical parameters, which will clarify the feasibility, i.e., a wind turbine construction capable of producing approximately 3.5 KW, using a simple mill and a generator of nominal rotor speed 100 rpm. Such studies are few in international literature and mainly concern low levels of rotor speed in relation to the produced output power. For the generator dimensioning, analytical equations are used, while the type and the dimensions of the magnets are determined, before the start of dimensioning. The authors carried out research in the international market, ending up with specific cost-effective magnets, while trying to adjust the remaining dimensions and materials of the machine based on these cost-effective magnets and the aforementioned nominal values of the generator. The machine, whose dimensions are derived by analytical equations, was simulated and analyzed using the Two-Dimensional Finite Element Method (2D-FEM) and the Three-Dimensional Finite Element Method (3D-FEM), for comparison purposes. Moreover, an economic analysis of the generator and its individual parts was conducted. Finally, a novel idea for reducing the total generator cost is proposed, by replacing the rotor disks with rings. The investigation revealed that analytical equations can predict with satisfactory accuracy the generator’s parameters. In addition, as permanent magnets are the most expensive materials in the construction, their predetermination using low-cost magnets can reduce the construction cost. Finally, the proposed concept of a ring-shaped rotor instead of a disk rotor, provides a cost reduction of up to 20%.
Full article
Figure 1
Open AccessReview
A Survey of Numerical Simulation Tools for Offshore Wind Turbine Systems
by
Saeid Fadaei, Fred F. Afagh and Robert G. Langlois
Wind 2024, 4(1), 1-24; https://doi.org/10.3390/wind4010001 - 10 Jan 2024
Cited by 2
Abstract
►▼
Show Figures
The emerging industry of offshore wind turbines mounted on floating bases has garnered significant attention from both academia and industry. The desire to understand the complex physics of these floating structures has led to the development of numerical and physical modelling techniques. While
[...] Read more.
The emerging industry of offshore wind turbines mounted on floating bases has garnered significant attention from both academia and industry. The desire to understand the complex physics of these floating structures has led to the development of numerical and physical modelling techniques. While physical testing has traditionally been employed, there is a growing focus on cost-effective and accurate high-fidelity numerical modelling as a potential alternative or supplement. However, commonly used numerical engineering tools in the offshore industry are considered mid- to low-fidelity and may lack the desired precision for floating offshore wind turbines (FOWTs). Given the complexity of these simulation codes, it is crucial to validate their accuracy. To address this, the International Energy Agency (IEA) Wind Technology Collaboration Programme initiated various research endeavors, including the Offshore Code Comparison Collaboration (OC3), Offshore Code Comparison Collaboration Continuation (OC4), Offshore Code Comparison Collaboration Continuation with Correlation (OC5), and the recent Offshore Code Comparison Collaboration Continued with Correlation and Uncertainty (OC6) projects. This study offers a comprehensive survey of the simulation tools available for FOWTs which were part of OC projects, focusing particularly on horizontal axis wind turbines (HAWTs) and highlighting their capabilities and fundamental theories.
Full article
Figure 1
Open AccessArticle
Modal Analysis of 15 MW Semi-Submersible Floating Wind Turbine: Investigation on the Main Influences in Natural Vibration
by
Arthur Harger, Lucas H. S. Carmo, Alfredo Gay Neto, Alexandre N. Simos, Guilherme R. Franzini and Guilherme Henrique Rossi Vieira
Wind 2023, 3(4), 548-566; https://doi.org/10.3390/wind3040031 - 11 Dec 2023
Cited by 1
Abstract
One of the sources of sustainable energy with great, still untapped potential is wind power. One way to harness such potential is to develop technology for offshore use, more specifically at high depths with floating turbines. It is always critical that their structural
[...] Read more.
One of the sources of sustainable energy with great, still untapped potential is wind power. One way to harness such potential is to develop technology for offshore use, more specifically at high depths with floating turbines. It is always critical that their structural designs guarantee that their natural frequencies of vibration do not match the frequencies of the most important oscillatory loads to which they will be subjected. This avoids resonance and its excessive undesired oscillatory responses. Based on that, a 3D finite element model of a 15 MW semi-submersible floating offshore wind turbine was developed in the commercial software ANSYS Mechanical ® to study its dynamic behavior and contribute to the in-depth analysis of structural modeling of FOWTs. A tower and floating platform were individually modeled and coupled together. The natural frequencies and modes of vibration of the coupled system and of its components were obtained by modal analysis, not only to verify the resonance, but also to investigate the determinant factors affecting such behaviors, which are not extensively discussed in literature. It was found that there is strong coupling between the components and that the tower affects the system as a result of its stiffness, and the floater as a result of its rotational inertia. The platform’s inertia comes mainly from the ballast and the effects of added mass, which was considered to be a literal increase in mass and was modeled in two manners: first, it was approximately calculated and distributed along the submerged flexible platform members and then as a nodal inertial element with the floater being considered as a rigid body. The second approach allowed an iterative analysis for non-zero frequencies of vibration, which showed that a first approximation with an infinite period is sufficiently accurate. Furthermore, the effects of the mooring lines was studied based on a linear model, which showed that they do not affect the boundary conditions at the bottom of the tower in a significant way.
Full article
(This article belongs to the Special Issue Floating Wind Energy Advances)
►▼
Show Figures
Figure 1
Open AccessEditorial
Challenges and Perspectives of Wind Energy Technology
by
Zhe Chen
Wind 2023, 3(4), 545-547; https://doi.org/10.3390/wind3040030 - 14 Nov 2023
Abstract
Wind power, as a vital renewable power source, has undergone rapid developments in recent years [...]
Full article
(This article belongs to the Special Issue Challenges and Perspectives of Wind Energy Technology)
Open AccessArticle
Responses of a Modular Floating Wind TLP of MarsVAWT Supporting a 10 MW Vertical Axis Wind Turbine
by
Sung Youn Boo, Steffen Allan Shelley, D. Todd Griffith and Alejandra S. Escalera Mendoza
Wind 2023, 3(4), 513-544; https://doi.org/10.3390/wind3040029 - 6 Nov 2023
Cited by 3
Abstract
Offshore floating wind foundations supporting a large wind turbine require a large yard facility or significant facility upgrades for their fabrication. To overcome the cost increase associated with facility upgrades, an innovative lightweight modular floating foundation is developed. The foundation comprises multiple modules
[...] Read more.
Offshore floating wind foundations supporting a large wind turbine require a large yard facility or significant facility upgrades for their fabrication. To overcome the cost increase associated with facility upgrades, an innovative lightweight modular floating foundation is developed. The foundation comprises multiple modules to enable their assembly on water, offering many benefits and expanding fabrication options for a reduction in the overall cost of the platform. In this paper, the foundation modules and their assembly are briefly described, and an analysis of the platform’s dynamic responses is presented. The modular foundation includes a modular and lightweight tension leg platform (TLP) called “MarsVAWT” which supports a Darrieus 10 MW vertical axis wind turbine (VAWT). The platform is moored with highly pretensioned wire rope tendons. The responses of the platform are analyzed in the time domain in a semi-coupled manner under the turbine operating and parked conditions for an offshore site in the US Northeast. The tower base shear forces and bending moments increase considerably with the combination of wind and waves, compared to those with wind only. The tendon tensions on the weatherside in the operating condition at high wind speeds are comparable to the values of the 50-year extreme (parked). The tendon tension increases are highly correlated to the platform pitch, as well as the horizontal and vertical velocities and vertical acceleration at the tendon porch. The modular platform performances and tendon designs are confirmed to comply with industry standards and practices.
Full article
(This article belongs to the Special Issue Floating Wind Energy Advances)
►▼
Show Figures
Figure 1
Open AccessArticle
Wind Power Forecasting in a Semi-Arid Region Based on Machine Learning Error Correction
by
Mirella Lima Saraiva Araujo, Yasmin Kaore Lago Kitagawa, Arthur Lúcide Cotta Weyll, Francisco José Lopes de Lima, Thalyta Soares dos Santos, William Duarte Jacondino, Allan Rodrigues Silva, Márcio de Carvalho Filho, Willian Ramires Pires Bezerra, José Bione de Melo Filho, Alex Álisson Bandeira Santos, Diogo Nunes da Silva Ramos and Davidson Martins Moreira
Wind 2023, 3(4), 496-512; https://doi.org/10.3390/wind3040028 - 31 Oct 2023
Cited by 1
Abstract
Wind power forecasting is pivotal in promoting a stable and sustainable grid operation by estimating future power outputs from past meteorological and turbine data. The inherent unpredictability in wind patterns poses substantial challenges in synchronizing supply with demand, with inaccuracies potentially destabilizing the
[...] Read more.
Wind power forecasting is pivotal in promoting a stable and sustainable grid operation by estimating future power outputs from past meteorological and turbine data. The inherent unpredictability in wind patterns poses substantial challenges in synchronizing supply with demand, with inaccuracies potentially destabilizing the grid and potentially causing energy shortages or excesses. This study develops a data-driven approach to forecast wind power from 30 min to 12 h ahead using historical wind power data collected by the Supervisory Control and Data Acquisition (SCADA) system from one wind turbine, the Enercon/E92 2350 kW model, installed at Casa Nova, Bahia, Brazil. Those data were measured from January 2020 to April 2021. Time orientation was embedded using sine/cosine or cyclic encoding, deriving 16 normalized features that encapsulate crucial daily and seasonal trends. The research explores two distinct strategies: error prediction and error correction, both employing a sequential model where initial forecasts via k-Nearest Neighbors (KNN) are rectified by the Extra Trees Regressor. Their primary divergence is the second model’s target variable. Evaluations revealed both strategies outperforming the standalone KNN, with error correction excelling in short-term predictions and error prediction showing potential for extended forecasts. This exploration underscores the imperative importance of methodology selection in wind power forecasting.
Full article
(This article belongs to the Special Issue Challenges and Perspectives of Wind Energy Technology)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Scaling Challenges for Conical Plain Bearings as Wind Turbine Main Bearings
by
Jan Euler, Georg Jacobs, Amin Loriemi, Timm Jakobs, Amadeus Rolink and Julian Röder
Wind 2023, 3(4), 485-495; https://doi.org/10.3390/wind3040027 - 27 Oct 2023
Cited by 4
Abstract
►▼
Show Figures
Wind energy is an important renewable energy source. Rotor main bearings are critical components of wind turbines since a faulty main bearing leads to downtime and high repair costs. Operational expenditures amount to 32% of wind energy costs. The use of plain bearings
[...] Read more.
Wind energy is an important renewable energy source. Rotor main bearings are critical components of wind turbines since a faulty main bearing leads to downtime and high repair costs. Operational expenditures amount to 32% of wind energy costs. The use of plain bearings as main bearings can potentially reduce these costs. Plain bearings with segmented sliding elements can be repaired up-tower without dismantling the drivetrain, as damaged segments can be exchanged individually. One such segmented plain bearing design is the conical plain bearing design called FlexPad. For the FlexPad, proof of concept was achieved for the 1 MW range during previous studies. Modern wind turbines—especially for offshore deployment—have increased in size significantly compared with their predecessors. The goal of current studies is to transfer the FlexPad design towards a main bearing unit at a market relevant scale of 8.5 MW. In this work, the identified scaling challenges are presented. A FlexPad model scaled to the 8.5 MW range is presented to illustrate the challenges. The bearing load components, such as radial forces and torque, increase on different scales with increasing rotor size leading to changed load characteristics with increasing size. Increased rotor weight and bearing diameters result in an increase in the breakaway torque required to start turbine rotation. This breakaway torque can exceed the torque generated by the turbine at starting wind speeds. The generally increased loads necessitate stiffer sliding segments leading to the increased weight of the segments, which hampers the ability to easily exchange segments.
Full article
Figure 1
Open AccessArticle
Numerical Modeling and Application of Horizontal-Axis Wind Turbine Arrays in Large Wind Farms
by
Lien Young, Xing Zheng and Erjie Gao
Wind 2023, 3(4), 459-484; https://doi.org/10.3390/wind3040026 - 10 Oct 2023
Cited by 1
Abstract
►▼
Show Figures
The global supply of energy is still tight, even with the rise of renewable energy utilization and abundant wind energy. More and more large wind farms have been installed globally. As of 2020, China’s total installed capacity accounted for 38.8%, far ahead of
[...] Read more.
The global supply of energy is still tight, even with the rise of renewable energy utilization and abundant wind energy. More and more large wind farms have been installed globally. As of 2020, China’s total installed capacity accounted for 38.8%, far ahead of other countries. The layout of horizontal-axis wind turbine (HAWT) arrays in large wind farms poses three main issues: (1) How to select a site. (2) How to arrange the HAWT arrays to achieve greater power extraction at a specific wind farm. (3) How to reduce the noise generated by HAWTs. The numerical simulation of a HAWT wake field generally includes the analytical method (AM), vortex-lattice or vortex particle method (VM), panel method (PM), blade element momentum method (BEM), generalized actuator method (GAM), and direct modeling method (DM). Considering the computational cost, this paper combines DMs and mainly adopts the BEM-CFD coupling method, including uniform and non-uniform loading of axial force. Forty specially designed numerical experiments were carried out, which show that: (1) the BEM-CFD method greatly improves the calculation speed within the accuracy range of a thrust coefficient less than 2.5%, making it very suitable for the calculation of large wind farm HAWT arrays; (2) for regular HAWT arrays, it is reasonable to choose a spacing in the wind direction and a spacing in the crosswind direction for simplicity in practice.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Energies, Applied Sciences, Forecasting, Solar, Wind
Solar and Wind Power and Energy Forecasting
Topic Editors: Emanuele Ogliari, Alessandro Niccolai, Sonia LevaDeadline: 20 November 2024
Topic in
Applied Sciences, Clean Technol., Energies, JMSE, Wind
Advances in Wind Energy Technology
Topic Editors: Galih Bangga, Martin Otto Laver HansenDeadline: 31 December 2024
Topic in
Electricity, Energies, Modelling, Sustainability, Wind
Market Integration of Renewable Generation
Topic Editors: Ana Estanqueiro, Nikolaos Chrysanthopoulos, Hugo AlgarvioDeadline: 31 January 2025
Topic in
Energies, Sustainability, JMSE, Processes, Solar, Wind
Sustainable Energy Technology, 2nd Volume
Topic Editors: Wei-Hsin Chen, Aristotle T. Ubando, Chih-Che Chueh, Liwen Jin, Yanjun SunDeadline: 20 August 2025
Conferences
Special Issues
Special Issue in
Wind
Wind Turbine Performance: Design, Evaluation and Testing
Guest Editor: Samah Ben AyedDeadline: 15 December 2024
Special Issue in
Wind
Wind Loads on Buildings and Structures
Guest Editor: Yasushi UematsuDeadline: 31 May 2025
Special Issue in
Wind
Wind Effects on Civil Infrastructure
Guest Editor: Mihail IancoviciDeadline: 31 August 2025
Special Issue in
Wind
O&M and Innovative Solutions Bringing Scale and Speed to Wind Energy Engineering
Guest Editors: Pablo Jaen Sola, Erkan OterkusDeadline: 31 December 2025