- Article
Thermal Management and Optimization of Large-Scale Metal Hydride Reactors for Shipboard Hydrogen Storage and Transport
- Seth A. Thomas,
- Vamsi Krishna Kukkapalli and
- Sunwoo Kim
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze examples of two large-scale lanthanum pentanickel (LaNi5)-based metal hydride reactor configurations with shell-and-tube heat exchangers. This research studies two large-scale shell-and-tube metal hydride reactor configurations: a tube-side cooling reactor with hydride powder packed in the shell and coolant flowing through internal tubes, and a shell-side cooling reactor using annular hydride pellets with coolant circulating through the shell. The thermal and kinetic performance of these large-scale reactors was simulated using COMSOL Multiphysics (version 6.1) and analyzed under different geometries and operating conditions typical of industrial scales. The tube-side solution provided 90% hydrogen absorption in 1500–2000 s at 30 bar, while the shell-side solution reached the same level of absorption in 430 s at 10 bar. Results show that tube-side cooling has higher storage, while shell-side cooling improves heat removal and kinetics. For energy and maritime transport applications, these findings reveal optimization insights for large-scale, efficient hydrogen storage systems.
27 January 2026





