You are currently viewing a new version of our website. To view the old version click .

Hydrogen

Hydrogen is an international, peer-reviewed, open access journal on all aspects of hydrogen published quarterly online by MDPI.

Quartile Ranking JCR - Q3 (Energy and Fuels | Chemistry, Physical)

All Articles (281)

While renewable energy deployment has accelerated in recent years, fossil fuels continue to play a dominant role in electricity generation worldwide. This necessitates the development of transitional strategies to mitigate greenhouse gas emissions from this sector while gradually reducing reliance on fossil fuels. This study investigates the potential of blending green hydrogen with natural gas as a transitional solution to decarbonize Jordan’s electricity sector. The research presents a comprehensive techno-economic and environmental assessment evaluating the compatibility of the Arab Gas Pipeline and major power plants with hydrogen–natural gas mixtures, considering blending limits, energy needs, environmental impacts, and economic feasibility under Jordan’s 2030 energy scenario. The findings reveal that hydrogen blending between 5 and 20 percent can be technically achieved without major infrastructure modifications. The total hydrogen demand is estimated at 24.75 million kilograms per year, with a reduction of 152.7 thousand tons of carbon dioxide per annum. This requires 296,980 cubic meters of water per year, equivalent to only 0.1 percent of the National Water Carrier’s capacity, indicating a negligible impact on national water resources. Although technically and environmentally feasible, the project remains economically constrained, requiring a carbon price of $1835.8 per ton of carbon dioxide for economic neutrality.

4 November 2025

The concept of hydrogen–natural gas blending.

Hydrogen Diffusivity and Hydrogen Traps Behavior of a Tempered and Untempered Martensitic Steel

  • Edgar López-Martínez,
  • Samuel Eduardo Salud-Ordon and
  • Octavio Vázquez-Gómez
  • + 3 authors

The effect of tempering temperature and tempering time on the density of hydrogen traps, hydrogen diffusivity, and microhardness in a vanadium-modified AISI 4140 martensitic steel was determined. Tempering parameters were selected to activate the second, third, and fourth tempering stages. These conditions were intended to promote specific microstructural transformations. Permeability tests were performed using the electrochemical method developed by Devanathan and Stachurski, and microhardness was measured before and after these tests. It was observed that hydrogen diffusivity is inversely proportional to microhardness, while the density of hydrogen traps is directly proportional to microhardness. The lowest hydrogen diffusivity, the highest trap density, and the highest microhardness were obtained in the as-quenched condition and the tempering at 286 °C for 0.25 h. In contrast, tempering at a temperature corresponding to the fourth tempering stage increases hydrogen diffusivity and decreases the density of hydrogen traps and microhardness. However, as the tempering time or temperature increases, the opposite occurs, which is attributed to the formation of alloy carbides. Finally, hydrogen has a softening effect for tempering temperatures corresponding to the fourth tempering stage, tempering times of 0.25 h, and in the as-quenched condition. However, with increasing tempering time, hydrogen has a hardening effect.

4 November 2025

Diagram of the permeation cell, consisting of a charging cell and a hydrogen detection cell (oxidation cell). WE: working electrode (membrane); AE: auxiliar electrode; RE: reference electrode (calomel saturated electrode).

Hydrogen-Rich Gaseous Mixture for Enhanced Combustion in a Flex-Fuel Engine: An Experimental Analysis

  • Lucimar Venancio Amaral,
  • Augusto César Teixeira Malaquias and
  • Gabriel Heleno de Paula Araújo
  • + 5 authors

This experimental study examines the effect of adding a hydrogen-enriched synthetic gaseous mixture (HGM’) on the combustion and fuel conversion efficiency of a single-cylinder research engine (SCRE). The work assesses the viability of using this mixture as a supplemental fuel for flex-fuel engines operating under urban driving cycling conditions. An SCRE, the AVL 5405 model, was employed, operating with ethanol and gasoline as primary fuels through direct injection (DI) and a volumetric compression ratio of 11.5:1. The HGM’ was added in the engine’s intake via fumigation (FS), with volumetric proportions ranging from 5% to 20%. The tests were executed at 1900 rpm and 2500 rpm engine speeds, with indicated mean effective pressures (IMEPs) of 3 and 5 bar. When HGM’s 5% v/v was applied at 2500 rpm, the mean indicated effective pressure of 3 bar was observed. A decrease of 21% and 16.5% in the ISFC was observed when using gasoline and ethanol as primary fuels, respectively. The usage of an HGM’ combined with gasoline or ethanol, proved to be a relevant and economically accessible strategy in the improvement of the conversion efficiency of combustion fuels, once this gaseous mixture could be obtained through the vapor-catalytic reforming of ethanol, giving up the use of turbochargers or lean and ultra-lean burn strategies. These results demonstrated the potential of using HGM’ as an effective alternative to increase the efficiency of flex-fuel engines.

3 November 2025

SCRE general vision and HGM’ intake from the catalytic reforming process.

Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station, with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation, a proton-exchange-membrane electrolyzer, battery energy storage, compression, and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered, whereas if surplus hydrogen sales are accounted for, the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis, underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport.

3 November 2025

Hydrogen production and refueling station scheme.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Hydrogen Energy Technologies
Reprint

Hydrogen Energy Technologies

Editors: Bahman Shabani, Mahesh Suryawanshi

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Hydrogen - ISSN 2673-4141Creative Common CC BY license