Previous Issue
Volume 6, June
 
 

Electricity, Volume 6, Issue 3 (September 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 2156 KiB  
Article
Fault Location on Three-Terminal Transmission Lines Without Utilizing Line Parameters
by Hongchun Shu, Le Minh Tri Nguyen, Xuan Vinh Nguyen and Quoc Hung Doan
Electricity 2025, 6(3), 42; https://doi.org/10.3390/electricity6030042 - 10 Jul 2025
Abstract
Transmission lines are constantly exposed to changes in climatic conditions and aging which affect the parameters and change the characteristics of the three-terminal circuit over time. In this paper we propose a fault location algorithm for three-terminal transmission lines to solve this problem. [...] Read more.
Transmission lines are constantly exposed to changes in climatic conditions and aging which affect the parameters and change the characteristics of the three-terminal circuit over time. In this paper we propose a fault location algorithm for three-terminal transmission lines to solve this problem. The algorithm utilizes the positive components of the voltage and current signals measured synchronously from the terminals. In this work no prior knowledge of the line parameters was required when calculating the fault location and the use of fault classification algorithms was not necessary. In addition, the proposed method determines the parameters of the line segment and fault location based on a solid mathematical basis and has been verified through simulation results using SIMULINK/MATLAB R2018a software. The fault location results demonstrate the high accuracy and efficiency of the algorithm. Moreover, this method can estimate the characteristic impedance and propagation constants of the transmission lines and determine the location of the fault, which is not affected by different fault parameters including fault location, and fault resistance. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

16 pages, 493 KiB  
Article
Novel Methodology for Determining Necessary and Sufficient Power in Integrated Power Systems Based on the Forecasted Volumes of Electricity Production
by Artur Zaporozhets, Vitalii Babak, Mykhailo Kulyk and Viktor Denysov
Electricity 2025, 6(3), 41; https://doi.org/10.3390/electricity6030041 - 4 Jul 2025
Viewed by 197
Abstract
This study presents a novel methodology for determining zonal electricity generation and capacity requirements corresponding to forecasted annual production in an integrated power system (IPS). The proposed model combines the statistical analysis of historical daily load patterns with a calibration technique to translate [...] Read more.
This study presents a novel methodology for determining zonal electricity generation and capacity requirements corresponding to forecasted annual production in an integrated power system (IPS). The proposed model combines the statistical analysis of historical daily load patterns with a calibration technique to translate forecast total demand into zonal powers (base, semi-peak and peak). A representative reference daily electrical load graph (ELG) is selected from retrospective data using least squares criteria, and a calibration factor α = Wx/Wie scales its zonal outputs to match the forecasted annual generation Wx. The innovation lies in this combination of historical ELG identification and calibration for accurate zonal power prediction. Applying the model to Ukrainian IPS data yields high accuracy: a zonal power error below 1.02% and a generation error below 0.39%. Key contributions include explicitly stating the research questions and hypotheses, providing a schematic procedural description and discussing model limitations (e.g., treatment of renewable variability and omission of meteorological/astronomical factors). Future work is outlined to incorporate unforeseen factors (e.g., post-war demand shifts, electric vehicle adoption) into the forecasting framework. Full article
Show Figures

Figure 1

17 pages, 411 KiB  
Article
Improving the Operation of Transmission Systems Based on Static Var Compensator
by Kelly M. Berdugo Sarmiento, Jorge Iván Silva-Ortega, Vladimir Sousa Santos, John E. Candelo-Becerra and Fredy E. Hoyos
Electricity 2025, 6(3), 40; https://doi.org/10.3390/electricity6030040 - 4 Jul 2025
Viewed by 239
Abstract
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated [...] Read more.
This study evaluates and compares centralized and distributed reactive power compensation strategies using Static Var Compensators (SVCs) to enhance the performance of a high-voltage transmission system in the Caribbean region of Colombia. The methodology comprises four stages: system characterization, assessment of the uncompensated condition under peak demand, definition of four SVC-based scenarios, and steady-state analysis through power flow simulations using DIgSILENT PowerFactory. SVCs were modeled as Thyristor-Controlled Devices (“SVC Type 1”) operating as PV nodes for voltage regulation. The evaluated scenarios include centralized SVCs at the Slack node, node N4, and node N20, as well as a distributed scheme across load nodes N51 to N55. Node selection was guided by power flow analysis, identifying voltage drops below 0.9 pu and overloads above 125%. Technically, the distributed strategy outperformed the centralized alternatives, reducing active power losses by 37.5%, reactive power exchange by 46.1%, and improving node voltages from 0.71 pu to values above 0.92 pu while requiring only 437 MVAr of compensation compared to 600 MVAr in centralized cases. Economically, the distributed configuration achieved the highest annual energy savings (36 GWh), the greatest financial return (USD 5.94 M/year), and the shortest payback period (7.4 years), highlighting its cost-effectiveness. This study’s novelty lies in its system-level comparison of SVC deployment strategies under real operating constraints. The results demonstrate that distributed compensation not only improves technical performance but also provides a financially viable solution for enhancing grid reliability in infrastructure-limited transmission systems. Full article
Show Figures

Figure 1

19 pages, 318 KiB  
Article
MI-Convex Approximation for the Optimal Siting and Sizing of PVs and D-STATCOMs in Distribution Networks to Minimize Investment and Operating Costs
by Oscar Danilo Montoya, Brandon Cortés-Caicedo, Luis Fernando Grisales-Noreña, Walter Gil-González and Diego Armando Giral-Ramírez
Electricity 2025, 6(3), 39; https://doi.org/10.3390/electricity6030039 - 3 Jul 2025
Viewed by 223
Abstract
The optimal integration of photovoltaic (PV) systems and distribution static synchronous compensators (D-STATCOMs) in electrical distribution networks is important to reduce their operating costs, improve their voltage profiles, and enhance their power quality. To this effect, this paper proposes a mixed-integer convex (MI-Convex) [...] Read more.
The optimal integration of photovoltaic (PV) systems and distribution static synchronous compensators (D-STATCOMs) in electrical distribution networks is important to reduce their operating costs, improve their voltage profiles, and enhance their power quality. To this effect, this paper proposes a mixed-integer convex (MI-Convex) optimization model for the optimal siting and sizing of PV systems and D-STATCOMs, with the aim of minimizing investment and operating costs in electrical distribution networks. The proposed model transforms the traditional mixed-integer nonlinear programming (MINLP) formulation into a convex model through second-order conic relaxation of the nodal voltage product. This model ensures global optimality and computational efficiency, which is not achieved using traditional heuristic-based approaches. The proposed model is validated on IEEE 33- and 69-bus test systems, showing a significant reduction in operating costs in both feeders compared to traditional heuristic-based approaches such as the vortex search algorithm (VSA), the sine-cosine algorithm (SCA), and the sech-tanh optimization algorithm (STOA). According to the results, the MI-convex model achieves cost savings of up to 38.95% in both grids, outperforming the VSA, SCA, and STOA. Full article
(This article belongs to the Special Issue Recent Advances in Power and Smart Grids)
Show Figures

Figure 1

31 pages, 759 KiB  
Article
Secure Optimization Dispatch Framework with False Data Injection Attack in Hybrid-Energy Ship Power System Under the Constraints of Safety and Economic Efficiency
by Xiaoyuan Luo, Weisong Zhu, Shaoping Chang and Xinyu Wang
Electricity 2025, 6(3), 38; https://doi.org/10.3390/electricity6030038 - 3 Jul 2025
Viewed by 222
Abstract
Hybrid-energy vessels offer significant advantages in reducing carbon emissions and air pollutants by integrating traditional internal combustion engines, electric motors, and new energy technologies. However, during operation, the high reliance of hybrid-energy ships on networks and communication systems poses serious data security risks. [...] Read more.
Hybrid-energy vessels offer significant advantages in reducing carbon emissions and air pollutants by integrating traditional internal combustion engines, electric motors, and new energy technologies. However, during operation, the high reliance of hybrid-energy ships on networks and communication systems poses serious data security risks. Meanwhile, the complexity of energy scheduling presents challenges in obtaining feasible solutions. To address these issues, this paper proposes an innovative two-stage security optimization scheduling framework aimed at simultaneously improving the security and economy of the system. Firstly, the framework employs a CNN-LSTM hybrid model (WOA-CNN-LSTM) optimized using the whale optimization algorithm to achieve real-time detection of false data injection attacks (FDIAs) and post-attack data recovery. By deeply mining the spatiotemporal characteristics of the measured data, the framework effectively identifies anomalies and repairs tampered data. Subsequently, based on the improved multi-objective whale optimization algorithm (IMOWOA), rapid optimization scheduling is conducted to ensure that the system can maintain an optimal operational state following an attack. Simulation results demonstrate that the proposed framework achieves a detection accuracy of 0.9864 and a recovery efficiency of 0.969 for anomaly data. Additionally, it reduces the ship’s operating cost, power loss, and carbon emissions by at least 1.96%, 5.67%, and 1.65%, respectively. Full article
Show Figures

Figure 1

15 pages, 390 KiB  
Article
Optimal Transmission Switching and Grid Reconfiguration for Transmission Systems via Convex Relaxations
by Vineet Jagadeesan Nair
Electricity 2025, 6(3), 37; https://doi.org/10.3390/electricity6030037 - 3 Jul 2025
Viewed by 128
Abstract
In this paper, we formulate optimization problems and successive convex relaxations to perform optimal transmission switching (OTS) in order to operate power transmission grids more efficiently. OTS may be crucial in future power grids with much higher penetrations of renewable energy sources, which [...] Read more.
In this paper, we formulate optimization problems and successive convex relaxations to perform optimal transmission switching (OTS) in order to operate power transmission grids more efficiently. OTS may be crucial in future power grids with much higher penetrations of renewable energy sources, which will introduce more variability and intermittency in generation. Similarly, OTS can potentially help mitigate the effects of unpredictable demand fluctuations (e.g., due to extreme weather). We explore and compare several different formulations for the OTS problem in terms of the computational performance and optimality. In particular, we build upon the literature by considering more complex and accurate power flow formulations for OTS and introducing novel convex relaxations. This allows us to model the grid physics more accurately than prior works and generalize to several different types of networks. We also apply our methods to small transmission test cases as a proof of concept to determine the effects of applying OTS. Full article
Show Figures

Figure 1

24 pages, 14028 KiB  
Article
Heuristic-Based Scheduling of BESS for Multi-Community Large-Scale Active Distribution Network
by Ejikeme A. Amako, Ali Arzani and Satish M. Mahajan
Electricity 2025, 6(3), 36; https://doi.org/10.3390/electricity6030036 - 1 Jul 2025
Viewed by 241
Abstract
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) [...] Read more.
The integration of battery energy storage systems (BESSs) within active distribution networks (ADNs) entails optimized day-ahead charge/discharge scheduling to achieve effective peak shaving.The primary objective is to reduce peak demand and mitigate power deviations caused by intermittent photovoltaic (PV) output. Quasi-static time-series (QSTS) co-simulations for determining optimal heuristic solutions at each time interval are computationally intensive, particularly for large-scale systems. To address this, a two-stage intelligent BESS scheduling approach implemented in a MATLAB–OpenDSS environment with parallel processing is proposed in this paper. In the first stage, a rule-based decision tree generates initial charge/discharge setpoints for community BESS units. These setpoints are refined in the second stage using an optimization algorithm aimed at minimizing community net load power deviations and reducing peak demand. By assigning each ADN community to a dedicated CPU core, the proposed approach utilizes parallel processing to significantly reduce the execution time. Performance evaluations on an IEEE 8500-node test feeder demonstrate that the approach enhances peak shaving while reducing QSTS co-simulation execution time, utility peak demand, distribution network losses, and point of interconnection (POI) nodal voltage deviations. In addition, the use of smart inverter functions improves BESS operations by mitigating voltage violations and active power curtailment, thereby increasing the amount of energy shaved during peak demand periods. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop