Open AccessFeature PaperEditor’s ChoiceArticle
Functionally Gradient Material Fabrication Based on Cr, Ti, Fe, Ni, Co, Cu Metal Layers via Spark Plasma Sintering
by
Oleg O. Shichalin, Evgeniy K. Papynov, Igor Yu. Buravlev, Anastasiya A. Buravleva, Sergey V. Chuklinov, Ekaterina A. Gridasova, Anton V. Pogodaev, Valreiia A. Nepomnyushchaya, Zlata E. Kornakova, Alexey O. Lembikov, Danila V. Gritsuk, Olesya V. Kapustina, Sofia S. Gribanova and Yun Shi
Cited by 7 | Viewed by 3332
Abstract
The paper presents a method of obtaining functionally graded material (FGM) of heterogeneous (layered) type based on joined metals Cr-Ti-Fe-Co-Ni-Cu using spark plasma sintering (SPS) technology. The structure, elemental and phase composition of FGM obtained on the basis of joined metals with different
[...] Read more.
The paper presents a method of obtaining functionally graded material (FGM) of heterogeneous (layered) type based on joined metals Cr-Ti-Fe-Co-Ni-Cu using spark plasma sintering (SPS) technology. The structure, elemental and phase composition of FGM obtained on the basis of joined metals with different values of the temperature coefficient of linear expansion (CTLE) were studied by SEM, EDS and XRD methods with regard to the phase states of the alloy system. Based on the Vickers microhardness data, the evaluation of the mechanical characteristics of FGM in the whole sample body and locally at the contact boundaries of the joined metals was carried out. The results of the study are new and represent a potential for FGM, as well as functionally graded coatings (FGC), which have special physical, chemical and mechanical properties and are highly demanded for the manufacture of structures and products for industrial applications.
Full article
►▼
Show Figures