Antifrictional Effects of Group IVB Elements Deposited as Nanolayers on Anodic Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hard Anodization
2.2. Deposition of Nanolayers
2.3. Tribotesting
2.4. Microscopy and Roughness Measurements
2.5. Hardness by Indentation
3. Results and Discussion
3.1. Characterization of Nanolayers of IVB Metals
3.2. Friction of Nanolayers of IVB Metals
3.3. Friction of Nanolayers of 75 nm and Higher Thickness
4. Conclusions
- Nanolayers of Ti and its oxides are tribologically more effective on anodic coatings than other IVB elements. At 180 nm or higher thickness, Ti layers progressively lose their ability to sustain low friction.
- Tin layers of 375 nm demonstrate better tribological performance than Ti of similar thickness.
- Nanolayers of HfO₂ and Zr show effectiveness in static COF reduction.
- Nanolayers of Cr, Cu and Nb do not show frictional reduction on anodic coatings.
- Although the parameters of nanolayer hardness and roughness did not show a statistically valid correlation to the friction tendencies, the higher difference between kurtosis and skewness matched the instance of low friction in several cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Q. Origin of friction in running-in sliding wear of nitride coatings. Tribol. Lett. 2010, 37, 529–539. [Google Scholar] [CrossRef]
- Sun, W.C.; Zhang, P.; Zhao, K.; Tian, M.M.; Wang, Y. Effect of graphite concentration on the friction and wear of Ni–Al2O3/graphite composite coatings by a combination of electrophoresis and electrodeposition. Wear 2015, 342–343, 172–180. [Google Scholar] [CrossRef]
- Gustavsson, F.; Svahn, F.; Bexell, U.; Jacobson, S. Nanoparticle based and sputtered WS2 low-friction coatings—Differences and similarities with respect to friction mechanisms and tribofilm formation. Surf. Coat. Technol. 2013, 232, 616–626. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Biswas, S.K. Microtribology and friction-induced material transfer in layered MoS2 nanoparticles sprayed on a steel surface. Tribol. Lett. 2010, 37, 313–326. [Google Scholar] [CrossRef]
- Ronkainen, H.; Holmberg, K. Environmental and thermal effects on the tribological performance of DLC coatings. In Tribology of Diamond-Like Carbon Films; Donnet, C., Erdemir, A., Eds.; Springer: Boston, MA, USA, 2008; pp. 155–200. [Google Scholar]
- Liew, W.Y.H. Effect of relative humidity on the unlubricated wear of metals. Wear 2006, 260, 720–727. [Google Scholar] [CrossRef]
- Uflyand, I.E.; Zhinzhilo, V.A.; Burlakova, V.E. Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development. Friction 2019, 7, 93–116. [Google Scholar] [CrossRef] [Green Version]
- Matijošius, T.; Ručinskienė, A.; Selskis, A.; Stalnionis, G.; Leinartas, K.; Asadauskas, S.J. Friction reduction by nanothin titanium layers on anodized alumina. Surf. Coat. Technol. 2016, 307, 610–621. [Google Scholar] [CrossRef]
- Matijošius, T.; Pivoriūnas, A.; Čebatariūnienė, A.; Tunaitis, V.; Staišiūnas, L.; Stalnionis, G.; Ručinskienė, A.; Asadauskas, S.J. Friction reduction using Nanothin Titanium layers on anodized aluminum as potential bioceramic material. Ceram. Int. 2020, 46, 15581–15593. [Google Scholar] [CrossRef]
- Krishna, D.S.R.; Brama, Y.L.; Sun, Y. Thick rutile layer on titanium for tribological applications. Tribol. Int. 2007, 40, 329–334. [Google Scholar] [CrossRef]
- Dejang, N.; Watcharapasorn, A.; Wirojupatump, S.; Niranatlumpong, P.; Jiansirisomboon, S. Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition. Surf. Coat. Technol. 2010, 204, 1651–1657. [Google Scholar] [CrossRef]
- Guleryuz, C.G.; Krzanowski, J.E. Mechanisms of self-lubrication in patterned TiN coatings containing solid lubricant microreservoirs. Surf. Coat. Technol. 2010, 204, 2392–2399. [Google Scholar] [CrossRef]
- Alansari, A.; Sun, Y. A comparative study of the mechanical behaviour of thermally oxidised commercially pure titanium and zirconium. J. Mech. Behav. Biomed. Mater. 2017, 74, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bikulčius, G.; Češunienė, A.; Selskienė, A.; Pakštas, V.; Matijošius, T. Dry sliding tribological behavior of Cr coatings electrodeposited in trivalent chromium sulphate baths. Surf. Coat. Technol. 2017, 315, 130–138. [Google Scholar] [CrossRef]
- Garkunov, D.N. Self-organizing processes in tribological system under friction interaction. In Handbook on Tribology; Hebda, M., Chichnadze, A.V., Eds.; Machinostroenie: Moscow, Russia, 1989; p. 288. [Google Scholar]
- Burlakova, V.E.; Milov, A.A.; Drogan, E.G.; Novikova, A.A. Nanotribology of Aqueous Solutions of Monobasic Carboxylic Acids in a Copper Alloy—Steel Tribological Assembly. J. Surf. Invest-X-Ray 2018, 12, 1108–1116. [Google Scholar] [CrossRef]
- Matijošius, T.; Gedvilas, M.; Gečys, P.; Vozgirdaitė, D.; Asadauskas, S. Effects of electrolyte and Ti layers on static and dynamic friction of anodized alumina. In Proceedings of the BALTTRIB’2017: Proceedings of IX International Scientific Conference: Dedicated to 100th Anniversary of Restitution of LITHUANIA, Kaunas, Lithuania, 16–17 November 2017; pp. 199–206. [Google Scholar]
- Asadauskas, S.J.; Stalnionis, G.; Bikulcius, G.; Jankauskas, S.; Staisiunas, L.; Matijosius, T. Nanoscale deposition of Group IVB elements on anodized surfaces to reduce friction. Mater. Today Commun. 2021, 29, 103008. [Google Scholar] [CrossRef]
- Matijošius, T.; Staišiūnas, L.; Stalnionis, G.; Asadauskas, S.J. Deposition of nanothin layers of selected elements by magnetron sputtering and ALD on anodized aluminum. In FizTech; Center for Physical Science and Technology: Vilnius, Lithuania, 22–23 October 2020; p. 36. [Google Scholar] [CrossRef]
- Matijošius, T.; Staišiūnas, L.; Asadauskas, S.J. Ball-on-plate tribotesting of IVB element layers deposited on anodized aluminum alloys. Open Access Dataset 2021, 1, 1–15. [Google Scholar] [CrossRef]
- Horváth, R.; Czifra, Á.; Drégelyi-Kiss, Á. Effect of conventional and non-conventional tool geometries to skewness and kurtosis of surface roughness in case of fine turning of aluminium alloys with diamond tools. J. Adv. Manuf. Technol. 2015, 78, 297–304. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, J.; Cheng, X.; Xia, W.; He, A.; Yun, J.H.; Huang, S.; Wang, L.; Huang, H.; Jiao, S.; et al. Friction and wear characteristics of TiO2 nano-additive water-based lubricant on ferritic stainless steel. Tribol. Int. 2018, 117, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Padgurskas, J.; Kreivaitis, R.; Jankauskas, V.; Janulis, P.; Makarevičienė, V.; Asadauskas, S.; Miknius, L. Antiwear properties of lard methyl esters and rapeseed oil with commercial ashless additives. Mechanics 2008, 70, 67–72. [Google Scholar]
- Iordanoff, I.; Khonsari, M.M. Granular lubrication: Toward an understanding of the transition between kinetic and quasi-fluid regime. J. Trib. 2004, 126, 137–145. [Google Scholar] [CrossRef]
Deposition and Layer Thickness, nm | Alloy | Elemental Composition, at. % | ||||
---|---|---|---|---|---|---|
Al | O | Hf/Ti/Zr | Si | S | ||
no layer | 1050 | 26.89 | 69.33 | 0 | 0 | 3.78 |
0 nm | 6082 | 32.13 | 63.40 | 0 | 0.41 | 4.06 |
Hf (sputtering) | 1050 | 32.42 | 62.64 | 0.90 | 0 | 4.04 |
16 nm | 6082 | 31.66 | 62.92 | 0.96 | 0.63 | 3.84 |
HfO2 (ALD) | 1050 | 32.57 | 62.59 | 0.94 | 0 | 3.89 |
15 nm | 6082 | 32.10 | 63.37 | 0.85 | n.d. | 3.68 |
TiO2 (ALD) | 1050 | 31.93 | 62.53 | 1.41 | 0.05 | 4.08 |
15 nm | 6082 | 31.61 | 62.17 | 1.97 | 0.34 | 3.91 |
Ti (sputtering) | 1050 | 31.51 | 64.66 | 0.35 | 0 | 3.47 |
16 nm | 6082 | 31.09 | 64.39 | 0.38 | 0.38 | 3.77 |
Zr (sputtering) | 1050 | 30.06 | 66.00 | 0.16 | 0 | 3.78 |
16 nm | 6082 | 29.26 | 66.54 | 0.17 | 0.33 | 3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matijošius, T.; Stalnionis, G.; Bikulčius, G.; Jankauskas, S.; Staišiūnas, L.; Asadauskas, S.J. Antifrictional Effects of Group IVB Elements Deposited as Nanolayers on Anodic Coatings. Coatings 2023, 13, 132. https://doi.org/10.3390/coatings13010132
Matijošius T, Stalnionis G, Bikulčius G, Jankauskas S, Staišiūnas L, Asadauskas SJ. Antifrictional Effects of Group IVB Elements Deposited as Nanolayers on Anodic Coatings. Coatings. 2023; 13(1):132. https://doi.org/10.3390/coatings13010132
Chicago/Turabian StyleMatijošius, Tadas, Giedrius Stalnionis, Gedvidas Bikulčius, Sigitas Jankauskas, Laurynas Staišiūnas, and Svajus Joseph Asadauskas. 2023. "Antifrictional Effects of Group IVB Elements Deposited as Nanolayers on Anodic Coatings" Coatings 13, no. 1: 132. https://doi.org/10.3390/coatings13010132
APA StyleMatijošius, T., Stalnionis, G., Bikulčius, G., Jankauskas, S., Staišiūnas, L., & Asadauskas, S. J. (2023). Antifrictional Effects of Group IVB Elements Deposited as Nanolayers on Anodic Coatings. Coatings, 13(1), 132. https://doi.org/10.3390/coatings13010132