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Abstract: Photoelectrocatalytic hydrogen production is crucial to reducing greenhouse gas emissions
for carbon neutrality and meeting energy demands. Pivotal advances in photoelectrochemical (PEC)
water splitting have been achieved by increasing solar light absorption. P-type Cu-based metal oxide
materials have a wide range of energy band gaps and outstanding band edges for PEC water splitting.
In this study, we first prepared Cu2O thin films using electrodeposition and fabricated a heterojunc-
tion structure of CuO/Cu2O by controlling annealing temperatures. The surface morphological,
optical, and electrochemical properties were characterized using various analytical tools. X-ray and
Raman spectroscopic approaches were used to verify the heterojunction of CuO/Cu2O, while surface
analyses revealed surface roughness changes in thin films as the annealing temperatures increased.
Electrochemical impedance spectroscopic measurements in conjunction with the Mott–Schottky
analysis confirm that the CuO/Cu2O heterojunction thin film can boost photocurrent generation
(1.03 mA/cm2 at 0 V vs. RHE) via enhanced light absorption, a higher carrier density, and a higher
flat band potential than CuO and Cu2O thin films (0.92 and 0.08 mA/cm2, respectively).

Keywords: p-type semiconductor; copper oxide; heterojunction; electrodeposition; photoelectro-
chemical water splitting

1. Introduction

Solar energy is one of the most viable renewable energy resources to meet global
energy demand and minimize environmental pollution and global warming [1]. Effec-
tive solar energy harvesting has been a central direction in improving photoconversion
efficiencies [2–4]. Among solar energy-driven approaches for producing green hydrogen,
photoelectrochemical (PEC) water splitting has attracted significant attention [5]. Briefly, it
generates electron-hole pairs via a semiconductor photoelectrode by absorbing sunlight and
separating the charges that go to the photoelectrodes. Then, the reduction and oxidation
processes of water on the electrodes by charge carriers occur, producing hydrogen and
oxygen [6]. To date, many photoelectrode materials for PEC water splitting have been
designed, including TiO2 [7,8], Fe2O3 [9,10], BiVO4 [11,12], Si [13,14], Cu2O [15,16], and
CuO [17,18]. Photoelectrodes for PEC water splitting must have a suitable energy band
gap [5]. For example, the energy of the conduction band (CB) should be lower than that of
reduced water, while that of the valence band (VB) should be higher than that of oxidized
water. In particular, p-type semiconducting copper oxides (i.e., Cu2O and CuO) have a
low energy band gap (2.0–2.5 eV [19–21] and 1.3–2.1 eV [20,22,23], respectively). It is also
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known that they are a potential electrode material for photovoltaic applications [24] because
of their cost-effectiveness, non-toxicity, excellent carrier mobility [25], and high absorption
coefficient. Similarly, these advantages make copper oxides suitable as an efficient photo-
electrode for PEC water splitting, as shown in Table S1 [26–37] and Table S2 [38–40]. One
crucial obstacle to copper oxides may be their high electron-hole recombination rate, lower-
ing photoconversion efficiencies. One of the effective approaches to address the issue is to
employ a heterostructure configuration with a non-copper-containing semiconductor ma-
terial, for example, Fe2O3/CuO [41,42], CuO/ZnO [43], TiO2/CuO [44], WO3/Cu2O [45],
InGaN/Cu2O [46], and Cu2O/g-C3N4/Cu2O [47]. Although the heterojunction structures
reduce the electron-hole recombination rate, they also increase the complexity of devices.
Accordingly, heterostructured CuO/Cu2O, which has been proposed as the heterojunc-
tion configuration, can be prepared using simple thermal oxidation from Cu2O (Cu2O +
1/2O2 → 2CuO) [28]. In this work, we reported a facile method to prepare a CuO/Cu2O
heterojunction structure for PEC water splitting. Cu2O thin films were prepared by elec-
trodeposition, and thermal treatment was performed [28,40,48]. Simple and eco-friendly
electrodeposition by controlling annealing temperatures resulted in micron thick copper
oxide layers (~1.4 µm thick) compared to physical methods (i.e., sputtering and pulsed
laser deposition). Controlling thin-film thicknesses is one of the essential design factors to
improve electron-hole separation [49,50]. The heterojunction configuration demonstrated
improved PEC performance compared to CuO and Cu2O, as confirmed by the analysis of X-
ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis)
spectroscopy, electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. In
particular, copper oxide thin films were characterized to understand the change in carrier
densities and flat-band potentials.

2. Experimental Details
2.1. Fabrication of Copper Oxide Thin Films

Cu2O thin films were prepared by electrodeposition on fluorine-doped tin oxide glass
substrates (FTO, ~400 nm and 1 cm × 2 cm). The substrates were first cleaned with an
ultrasonicator with acetone, isopropyl alcohol (IPA), ethanol, and deionized (DI) water for
5 min and dried in an oven. In this study, all chemicals and reagents were used without
further purification. Electrodeposition was performed using a three-electrode system with
a potentiostat (SP-150e, BioLogic, Seyssinet-Pariset, France). A cleaned FTO substrate, a
coiled platinum wire (0.5 mm diameter), and Ag/AgCl (3 M NaCl) were used as working,
counter, and reference electrodes, respectively. Copper sulfate (Sigma-Aldrich, Burlington,
MA, USA, >98%) and 3M lactic acid (Sigma-Aldrich, Burlington, MA, USA, >85%) mixed
in 40 mL of DI water were used after adjusting pH = 9 with 5 M NaOH. The chronoam-
perometric (CA) method was applied at −0.36 V (V vs. Ag/AgCl) for 20 min to deposit
Cu2O thin films on an FTO glass substrate at ~50 ◦C and with magnetic stirring at 600 rpm.
We then carried out thermal oxidation at different temperatures for 1 h on a hot plate
using as-prepared Cu2O thin films after washing with DI water and drying with nitro-
gen. After conducting the annealing temperature effects, we found that heterostructured
CuO/Cu2O/FTO and CuO/FTO thin films can be prepared at 350 and 500 ◦C, respectively
(Figure 1). For simplicity, Cu2O, CuO/Cu2O, and CuO thin films correspond to Cu2O/FTO
prepared by electrodeposition without annealing, a heterostructured configuration of
CuO/Cu2O/FTO annealed at 350 ◦C and CuO/FTO annealed at 500 ◦C.
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Figure 1. Schematic of the preparation process of copper oxide thin films on an FTO-coated glass
substrate using electrodeposition and thermal oxidation at different temperatures.

2.2. Materials Characterization

The surface morphologies of three thin films (Cu2O, CuO/Cu2O, and CuO deposited
on an FTO-coated glass substrate) were observed by scanning electron microscopy (SEM,
Zeiss Gemini 450, Jena, Germany) operated at an acceleration voltage of 10 keV. Ultraviolet-
visible spectroscopy (UV-VIS, SEMSO-3000, AUBOTECH, Taipei, Taiwan) was used to
examine the optical properties of the thin films. X-ray diffraction (XRD, Brucker D8
DISCOVER, Billerica, MA, USA) with Cu Kα radiation (λ = 0.154184 nm) and Raman
microscopy (CL Technology UniDRON-S, New Taipei, Taiwan) with a 532 nm excitation
wavelength were applied to investigate the transformation of Cu2O to CuO. An X-ray
photoelectron spectrometer (XPS, Thermo Scientific K-Alpha, Waltham, MA, USA) was
used with monochromatic Al Kα radiation and a flood gun to examine the chemical valences
of the thin films. All electrochemical measurements were performed using a standard
rectangular quartz cuvette of ~20 mL with the three-electrode system. A leakless miniature
Ag/AgCl reference electrode (ET072-1, eDAQ, 3.4 M KCl) was used after calibration using
the Ag/AgCl (3 M NaCl) reference electrode to convert the potentials to the reversible
hydrogen electrode (RHE) scale [51]. While 0.2 M Na2SO4 (pH = 6.2) was used as an
electrolyte, an active area of thin films of 1.0 cm2 was set using a chemical-tolerant 3 M
tape (Electroplating Tape 470, 3 M). For the Mott–Schottky analysis, the frequency was
set at 1k Hz and an amplitude of 10 mV. For PEC measurements, potentials were applied
from 0 to 0.5 V (vs. RHE) at the scan rate of 5 mV/s. A solar simulator with an AM 1.5 G
filter (Enlitech SS-X, Enlitech, Kaohsiung, Taiwan) and a light intensity of 100 mW/cm2

was used as a light source after accurate calibration. The EIS was also adopted to ensure
the rate of charge-transfer reactions between the electrode surface and the electrolyte. The
Nyquist plots were obtained by applying a static potential of 0.3 V vs. Ag/AgCl with the
5 mV sinusoidal wave from 0.1 to 1 M Hz without and with light illumination.

3. Results and Discussion
3.1. Morphology and Optical Properties of Copper Oxide Thin Films

The surface morphologies of the thin films were examined by SEM and AFM, as
shown in Figure 2. After 1-h thermal treatment at 350 and 500 ◦C, it was observed that the
grain sizes and shapes changed, and the surfaces became denser than pristine Cu2O thin
films. The cross-sectional view of the Cu2O thin film indicates a thickness of ~1.40 µm. Due
to the difference in density (Cu2O: 6.0 g/cm3 and CuO: 6.31 g/cm3) [52] and the thermal
expansion of Cu2O [53] after thermal oxidation (Cu2O + 1/2O2 → 2CuO), a slight increase
in thickness was observed, similar to previous reports [28]. As summarized in Table S3,
energy-dispersive X-ray spectroscopy (EDS) was also employed to examine the chemical
composition of the thin films before and after annealing at 350 and 500 ◦C. It verifies the
successful fabrication of Cu2O using electrodeposition and the complete transformation
of Cu2O to CuO after annealing at 500 ◦C for 1 h. Additionally, the EDS analysis shows
a heterostructure of CuO/Cu2O ([Cu]/[O] = 1.52). The SEM analysis illustrates that the
annealing of metal oxides [54] led to the agglomeration of adjacent grains [55].
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Figure 2. Typical top and cross-sectional views of SEM images for (a) Cu2O, (b) CuO/Cu2O, and
(c) CuO thin films. Scale bar = 1 µm. Corresponding AFM images of the thin films, (d), (e), and
(f), respectively, obtained with the tapping mode. Rq denotes RMS roughness. Image areas are
2 µm × 2 µm.

A similar trend was also observed using AFM (Figure 2d–f), which is attributed to
the random distribution of grains and phase changes [56]. It was found that the root
mean square (RMS) roughness of the thin films increased from 21.6 nm (Cu2O) to 33.9 nm
(CuO/Cu2O at 350 ◦C) and 46.5 nm (CuO at 500 ◦C) (Cu2O < CuO/Cu2O < CuO). We
assume that the controlling of thin film thicknesses using the electrolyte temperature affects
RMS roughness [40]. Furthermore, since the light absorption properties of thin films play
an essential role in PEC performance, we measured the absorbance of Cu2O, CuO/Cu2O,
and CuO thin films using a UV-Vis spectrometer. Figure 3a shows the typical absorbance
of the three thin films, demonstrating that the Cu2O thin film has an absorption edge in
the range of 500 to 650 nm. It shows that the absorption edge of thermally treated thin
films (CuO/Cu2O and CuO) was red-shifted. In addition, we measured the band gaps of
these samples using the Tauc plot analysis [57] using (αhν)n = B

(
hν− Eg

)
, where α is the

absorption coefficient, h is the Plank constant, v is the photon energy, B is a constant, and Eg
is the band gap. The copper oxide thin films were analyzed with a direct transition (n = 2).
As Figure 3b and Table S4 show, the band gaps measured (Cu2O: 2.35 eV, CuO/Cu2O:
1.81 eV, CuO: 1.45 eV) are in good agreement with a previous study [28]. CuO/Cu2O
and CuO exhibited a higher band gap than Cu2O, denoting that they can expand the
absorption range of visible light compared to Cu2O. Consequently, it could improve PEC
performance [58].
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Figure 3. (a) Normalized absorbance spectra and (b) Tauc plots of Cu2O, CuO/Cu2O, and CuO
thin films.

3.2. Characterization of Copper Oxide Thin Films Using XRD, Raman Spectroscopy, and XPS

Figure 4a demonstrates the XRD pattern for the CuO/Cu2O thin film, while Figure
S1 shows those for Cu2O and CuO thin films. For the Cu2O thin film, the peaks at 36.6◦

and 42.5◦ are attributed to the (111) and (200) planes [59,60] (JCPDS file No. 99-0041). The
XRD pattern of Cu2O illustrates that the thin films exhibit the (200) plane as the preferential
growth direction [61]. Cu2O and CuO diffraction peaks were observed in the thin film
annealed at 350 ◦C, while the thin film annealed at 500 ◦C exhibited the pure CuO phase
(JCPDS file No. 72-0269) [62]. The distinctive diffraction peak at 35.6◦ indicates that the thin
film has a good crystal structure of CuO after annealing at 500 ◦C. The XRD analysis may
support that the thermal oxidation process at 350 ◦C produced heterostructured CuO/Cu2O
similar to the previous studies [28,63]. The particle sizes of the thin films were evaluated
using the Scherrer–Debye equation [64], D = Kλ

β cos θ , where D is the average crystal particle
size, K is a constant, λ is the wavelength of X-ray, β is the full width at half maximum
(FWHM), and θ is the Bragg angle. The Cu2O and CuO thin films were determined as
22.3 and 29.1 nm, respectively, indicating the improvement of the homogeneity of the thin
films and the enhancement of the electrical properties [65]. As shown in Figure 4b, we also
performed Raman spectroscopic measurements in the spectral region of 100 to 800 cm−1 to
complement the XRD and SEM analyses. Single-phase Cu2O has only one Raman active
mode (F2g), while single-phase CuO has three Raman active modes (Ag + 2Bg) [66]. The
Raman bands of the Cu2O thin film at 218, 278, and 623 cm−1 are contributed from the
second-order Raman-allowed modes of single-phase Cu2O [67], while those of the CuO thin
film at 287, 338, and 614 cm−1 are in good agreement with single-phase CuO, as reported
in the literature [68]. As the annealing temperatures increased, Cu2O peaks decreased, and
CuO peaks appeared gradually. The Raman spectrum of the CuO/Cu2O thin film shows
that the combined peaks of Cu2O and CuO (209, 279, 329, and 614 cm−1) are assigned to
the Ag and Bg modes [66]. As illustrated in Figure 4c,d, XPS was also used to analyze the
elemental compositions of copper oxides. Figure 4c shows a representative XPS survey
spectrum of the CuO/Cu2O thin film [69]. All XPS spectra were calibrated with the C 1s
photoemission peak of adventitious carbon at 284.5 eV [70]. Figure S2a,b shows the XPS
spectra of Cu 2p of the Cu2O and CuO thin films that align with those reported in the
literature [71,72]. To examine the heterostructure of the CuO/Cu2O thin film, we carried
out the deconvolution of its XPS spectrum using XPSPEAK 4.1. Two main peaks and
satellite peaks were observed in the spectrum. The deconvolution process identified that
the peaks at 932.91 and 952.74 eV are related to Cu+ (Cu2O), which are assigned to Cu
2p3/2 and Cu 2p1/2. By contrast, those at 934.27 and 954.12 eV are attributed to Cu 2p3/2
and Cu 2p1/2, confirming the presence of Cu2+ (CuO). As summarized in Figure S2c, we
observed a slightly broadened peak for Cu 2p3/2 of CuO/Cu2O compared to CuO. Based
on the deconvolution of the CuO/Cu2O thin film, we manifested that the sample is a
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heterojunction (CuO:Cu2O = 56.4%:43.6%), which qualitatively agrees with the analysis
using SEM/EDS (Table S3). As reported [73,74], metal oxide thin films fabricated via simple
annealing could generate cracks inside thin films due to thermal stress, enabling X-ray
beams to irradiate the FTO surface. Thus, the peak at 496.08 eV can be assigned to Sn
3d originating from FTO [75]. We assumed that the CuO/Cu2O thin film prepared by
electrodeposition could become a heterojunction configuration as reported [28] according
to the characterization of the SEM/EDS, XRD, XPS, and Raman spectroscopic analyses.
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Figure 4. (a) XRD pattern of the CuO/Cu2O thin film. The diffraction peaks can be indexed with
Cu2O (JCPDS file No. 99-0041) and CuO (JCPDS file No. 72-0269); (b) Raman spectra of Cu2O,
CuO/Cu2O, and CuO thin films; (c) the full XPS survey spectrum of the CuO/Cu2O thin film;
(d) high-resolution XPS spectrum of Cu 2p of the CuO/Cu2O thin film. The dotted curve is the
experimental data, while solid curves are after the curve-fitting procedure.

3.3. Electrochemical Measurements of Copper Oxide Thin Films

The Mott–Schottky technique was applied to examine changes in electrochemical
interfaces between the electrolyte and photocathodes prepared in this study. Carrier
densities and flat band potentials can be accurately measured using the Mott–Schottky
equation for p-type semiconductors [76,77].

1
C2 = − 2

εε0eNA A2

(
V −Vf b −

kBT
e

)
where C is the interfacial capacitance, ε is the dielectric constant of the semiconductor
electrode, ε0 is the vacuum permittivity, e is the electron charge, Vfb is the flat band potential,
NA is the major carrier density, A is the electrode area, V is the applied voltage, kB is the
Boltzmann constant, and T is the absolute temperature. Carrier densities of p-type copper
oxides (NA) can be determined from a straight line by plotting 1/C2 vs. V, while the
flat band potential (Vfb) can be obtained from the intercept with the x-axis. While carrier
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densities affect charge transfer rates [28,78,79], the flat band potential is associated with a
driving force to separate electron-hole pairs in the space charge region, which can be used
as one of the key factors to predict PEC performance. For example, a shift of the flat band to
a more positive potential denotes improved electron transfer, decreasing the recombination
of electron-hole pairs and boosting PEC efficiencies [80]. Figure 5a–c demonstrates Mott–
Schottky plots for Cu2O, CuO/Cu2O, and CuO thin films. The three thin films exhibit
p-type semiconductor characteristics with a negative slope. ε of 7.6 for Cu2O [81] and
10.26 [36] for CuO/Cu2O and CuO thin films were used to calculate carrier densities. It
resulted in a NA value of 1.79 × 1016, 6.91 × 1017, and 6.26 × 1017 cm–3, respectively, in
the order of Cu2O < CuO < CuO/Cu2O. Moreover, we also successfully confirmed the
same trend of flat band potentials of 0.46, 1.04, and 0.89 V, respectively. According to the
Mott–Schottky analysis, the improved PEC performance of the heterojunction structure of
CuO/Cu2O can be rationally anticipated [28]. Figure 5d,e shows Nyquist plots of three thin
films without and with illumination. It exhibited that the radius of the semicircle decreased
with light illumination to the working electrode. It denotes that illumination accelerated the
rate of the charge transfer reaction between the photoelectrode surface and the electrolyte,
and accordingly, the carrier density increased. As shown in Figure 5e, EIS data were then
analyzed by fitting with an equivalent electrical circuit model to examine transfer resistance
on different photoelectrode materials. As reported, Rs is the series resistance, Rsc is the
resistance on the depletion layer, and Rct is the charge transfer resistance, while Csc is the
capacitance related to the depletion layer of a semiconductor and CH is the Helmholtz layer
capacitance [82]. It is anticipated that the heterostructured electrode exhibits the lowest
charge transfer resistance (Rct) due to its smallest diameter, leading to the highest charge
transfer reaction rate [28]. Figure 5f illustrates representative photocurrent densities of three
electrode materials under AM1.5G illumination. For the Cu2O thin film, a photocurrent of
0.08 mA/cm2 at 0 V (vs. RHE) was observed, while for the CuO/Cu2O and CuO thin films,
the photocurrent increased to 1.03 and 0.92 mA/cm2, respectively. It aligns with Mott–
Schottky and EIS-based analyses. Table 1 compiles carrier densities, flat band potentials,
and photocurrent densities of Cu2O, CuO/Cu2O, and CuO thin films. It is noted that PEC
performance can be affected by too high annealing temperatures, altering the electrical
property of FTO-based thin films [83]. In summary, it manifests that a higher carrier density,
a higher flat band potential, and lower charge transfer resistance of the heterojunction
CuO/Cu2O thin film could be highly correlated with the PEC performance compared to
the Cu2O and CuO thin films [28].

Table 1. Experimental values of carrier density (NA), flat band potential (Vfb), and photocurrent
density for p-type Cu2O, CuO/Cu2O, and CuO thin films.

Thin Film NA (cm−3) Vfb (V) Photocurrent Density (mA/cm2)

Cu2O 1.79 × 1016 0.46 0.08
CuO/Cu2O 6.91 × 1017 1.04 1.03

CuO 6.26 × 1017 0.89 0.92
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4. Conclusions

Cu2O thin films were effectively fabricated using electrodeposition, followed by con-
trolling annealing temperatures. The thickness and morphology of thin films were analyzed
using SEM, while the surface roughness was investigated using AFM. XRD, XPS, and Ra-
man spectroscopic measurements confirmed the heterojunction structure of CuO/Cu2O
after annealing at 350 ◦C. As the thermal oxidation temperatures increased, the light ab-
sorbance edge of the thin films was red-shifted, demonstrating a better absorber in the visi-
ble region and enhancing photocurrent densities in the order of Cu2O < CuO < CuO/Cu2O.
In particular, the Mott–Schottky and EIS measurements confirmed that the heterojunction
structure has a higher carrier concentration, a larger flat band potential, and a lower charge
transfer resistance than the Cu2O and CuO thin films. Accordingly, the CuO/Cu2O thin
film annealed at 350 ◦C achieved a boosted photocurrent density of 1.03 mA/cm2 at 0 V
(vs. RHE). We demonstrated that the heterojunction configuration of copper oxide thin
films (CuO/Cu2O) via the cost-effective electrodeposition method could improve PEC per-
formance by reducing the electro-hole pair recombination and increasing carrier densities.
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