Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pryliński, M. Vademecum Materiałoznawstwa Protetycznego; Med Tour Press International: Otwock, Poland, 2020; pp. 124–129. [Google Scholar]
- Albert, F.E.; El-Mowafy, O.M. Marginal adaptation and microleage of Procera AllCeram crowns with four cements. Int. J. Prosthodont. 2004, 17, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Bosso Andre, C.; Agular, T.R.; Ayres, A.P.; Bovi Ambrosano, G.M.; Giannini, M. Bond strength of self-adhesive resincements to dry and moist dentin. Braz. Oral Res. 2013, 27, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; Di Francescantonino, M.; Ambrosano, G.M.B.; Giannini, M. Effect of curing mode on bond strength of self-adhesive resin luting cements to dentin. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Pisani-Proenca, J.; Erhard, M.C.; Amaral, R.; Valandro, L.F.; Bottino, M.A.; Del Castillo-Salmerón, R. Influence of different surface conditioning protocols on microtensile bond strength of self-adhesive resin cements to dentin. J. Prosthet. Dent. 2011, 105, 227–235. [Google Scholar] [CrossRef]
- Vaz, R.R.; Hipólito, V.D.; D’Alpino, P.H.; Goes, M.F. Bond strength and interfacial micromorphology of etch-and-rinse and self-adhesive resin cements to dentin. J. Prosthodont. 2012, 21, 101–111. [Google Scholar] [CrossRef]
- Duarte, S., Jr.; Botta, A.C.; Meire, M.; Sadan, A. Microtensil bond strengths and scanning electron microscopic evaluation of self-adhesive and self-etch resin cements so intact and etched enamel. J. Prosthet. Dent. 2008, 10, 203–210. [Google Scholar] [CrossRef]
- Marzec-Gawron, M.; Michalska, S.; Dejak, B. Properties of contemporary resin cements and their adhesion to enamel and dentin. Prosthodontics 2012, LXII, 173–180. [Google Scholar] [CrossRef]
- Kuhn, H.J.; Braslovsky, S.E.; Schmidt, R. Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2105–2146. [Google Scholar] [CrossRef]
- Karjalainen, S. Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Build. Environ. 2007, 4, 1594–1603. [Google Scholar] [CrossRef]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S.A. The well-bulit clinical question: A key to evidence-based decisions. ACP J. Club 1995, 123, A12. [Google Scholar] [CrossRef]
- Nishikawa-Pacher, A. Research Questions with PICO: A Universal Mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamsheer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ozer, F.; Ovecoglu, H.S.; Deneshmehr, L.; Sinmazisik, G.; Kashyap, K.; Iriboz, E.; Blatz, M.B. Effect of storage temperature on the shelf life of self-adhesive resin cements. J. Adhes. Dent. 2015, 17, 545–550. [Google Scholar] [CrossRef]
- Øllo, G.; Ørstavik, D. The temperature of cement specimens and its influence on measured strength. Dent. Mater. 1985, 1, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Bausch, J.R.; de Lange, C.; Davidson, C.L. The influence of the temperature on some physical properties of dental composites. J. Oral Rehabil. 1981, 8, 309–317. [Google Scholar] [CrossRef]
- Żuławnik, A.; Cierech, M.; Rączkiewicz, M. Effect of temperature increase of composite materials on the quality of adhesive cementation—Review of literature. Prosthodontics 2019, 69, 437–443. [Google Scholar] [CrossRef]
- Naumova, E.A.; Ernst, S.; Schaper, K.; Arnold, W.H.; Piwowarczyk, A. Adhesion of different resin cements to enamel and dentin. Dent. Mater. J. 2016, 35, 345–352. [Google Scholar] [CrossRef]
- Rohr, N.; Fischer, J. Tooth surface treatment strategie for adhesive cementation. J. Adv. Prosthodont. 2017, 9, 85–92. [Google Scholar] [CrossRef]
- Skąpska, A.; Sochacka, A.; Ziopaja, A.; Komorek, Z.; Cierech, M. Comparative analysis of selected mechanical properties of preheated composite material and self-adhesive composite cement—Pilot study. Prosthodontics 2020, 70, 281–288. [Google Scholar] [CrossRef]
- Moldovan, M.; Balazsi, R.; Soanca, A.; Roman, A.; Sarosi, C.; Prodan, D.; Cojocaru, I.; Saceleanu, V.; Cristescu, I. Evaluation of degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials 2019, 12, 2109. [Google Scholar] [CrossRef]
- Skąpska, A.; Komorek, Z.; Cierech, M.; Mierzwińska-Nastalska, E. Comparison of mechanical properties of self-adhesive composite cement and heated composite material. Polymers 2022, 14, 2686. [Google Scholar] [CrossRef] [PubMed]
- Deb, S.; Di Silvio, L.; Mackler, H.E.; Millar, B.J. Pre-warming of dental composites. Dent. Mater. 2011, 27, e51–e59. [Google Scholar] [CrossRef] [PubMed]
- Ayub, K.V.; Santos GCIr Rizkalla, A.S.; Bohay, R.; Pegoraro, L.F.; Rubo, J.H.; Santos, M.J. Effect of preheating on microhardness and viscosity of four resin composites. J. Can. Dent. Assoc. 2014, 80, e12. [Google Scholar]
- Mufnoz, C.A.; Bond, P.R.; Sy-Munoz, J.; Tan, D.; Peterson, J. Effect of pre-heating on depth of cure and surface hardness of light polymerized resin composites. Am. J. Dent. 2008, 21, 215–222. [Google Scholar]
- Wagner, W.; Asku, M.; Neme, A.M.L.; Linger, J.B.; Pink, F.E.; Walker, S. Effect of pre-haeting resin composite on restoration microleakage. Oper. Dent. 2008, 33, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef]
- Morais, A.; Santos, A.; Giannini, M.; Reis, A.F.; Rodrigues, J.A.; Arrais, C.A. Effect of pre-heated dual-cured resin cements on the bond strength of indirect restorations to dentin. Bras. Oral Res. 2012, 26, 170–176. [Google Scholar] [CrossRef]
- Shoja-Assadi, F.T.; Lea, S.C.; Burke, F.J.; Palin, W.M. Extrinsic energy sources affect hardness through depth during set of a glass-ionomer cement. J. Dent. 2010, 38, 490–495. [Google Scholar] [CrossRef]
- Khoroushi, M.; Karvandi, T.M.; Sadeghi, R. Effect of prewarming and/or delayed light activation on resin-modified glass ionomer bond strength to tooth structures. Oper. Dent. 2012, 37, 54–62. [Google Scholar] [CrossRef]
- Gavic, L.; Gorseta, K.; Glavina, D.; Czrnecka, B.; Nicholson, J.W. Heat transfer properties and thermal cure glass-ionomer dental cements. J. Mater. Sci. Mater. Med. 2015, 26, 249. [Google Scholar] [CrossRef]
- El-Deeb, H.A.; Abd El-Azis, S.; Mobarak, E.H. Effect of preheating low shrinking resin composite on intrapulpal temperature and microtensile bond strength to dentin. J. Adv. Res. 2015, 6, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Karacan, A.O.; Ozyurt, P. Effect of preheated bulk-fill composite temperature on intrapulpal temperature increase in vitro. J. Esthet. Restor. Dent. 2019, 31, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, A.; Zaljezic, D.; Kopjar, N.; Duarte, S., Jr.; Par, M.; Tarle, Z. Toxicity of pre-heated composites polymerized directly and through CAD/CAM overlay. Acta Stomatol. Croat. 2018, 52, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Gross, D.J.; Davila-Sanchez, A.; Runnacles, P.; Zarpellon, D.C.; Kiratcz, F.; Campagnoli, E.B.; Alegria-Acevedo, L.F.; Coelho, U.; Rueggeberg, F.A.; Arrais, C. In vivo temperature rise and acute inflammatory response in anesthetized human pulp tissue of premolars having Class V preparations after exposure to Polywave® LED light curing inits. Dent. Mater. 2020, 36, 1201–1213. [Google Scholar] [CrossRef]
- Froes-Salgado, N.R.; Silva, L.M.; Kawano, Y.; Francci, C.; Reis, A.; Loguercio, A.D. Composite pre-heating: Effects on marginal adaptation, degree of conversion and mechanical properties. Dent. Mater. 2010, 26, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F. Monomer conversion of pre-heated composite. J. Dent. Res. 2005, 84, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Daronch, M.; Rueggeberg, F.A.; De Goes, M.F.; Giudici, R. Plymerization kinetics of pre-heated composite. J. Dent. Res. 2006, 85, 38–43. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Moss, L.; de Goes, M.F. Clinically relevant issues related to preheating composites. J. Esthet. Restor. Dent. 2006, 18, 340–350. [Google Scholar] [CrossRef]
- Blalock, J.S.; Holmes, R.G.; Rueggeberg, F.A. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006, 96, 424–432. [Google Scholar] [CrossRef]
- Daronch, M.; Rueggeberg, F.A.; Hall De Goes, M.F. Effect of composite temperature on in vitro intrapulpal temperature rise. Dent. Mater. 2007, 23, 1283–1288. [Google Scholar] [CrossRef]
- Franca, F.A.; de Oliveira, M.; Rodriges, J.A.; Arrals, C.A. Pre-heated dual-cured resin cements: Analysis of the degree of conversion and ultimate tensile strength. Braz. Oral Res. 2011, 25, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Ruyter, I.E. Methacrylate-based polymeric denetal materials: Conversion and related properties. Summary and review. Acta Odontol. Scan. 1982, 40, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Mileding, P.; Ortengren, U.; Karlsson, S. Ceramic inlay systems: Some clinical aspects. J. Oral Rehabil. 1995, 22, 571–580. [Google Scholar] [CrossRef]
- Ferracane, J.L. Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dent. Mater. 1985, 1, 11–14. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Berge, H.X.; Condon, J.R. In vitro aging of dental composites in water—Effect of degree of conversion, filler volume, and filler/matrix coupling. J. Biomed. Mater. Res. 1998, 42, 465–472. [Google Scholar] [CrossRef]
- Peutzfeldt, A. Dual-cure resin cements: In vitro wear and effect of quantity of remaining double bonds, filler volume and light curing. Acta Odontol. Scand. 1995, 53, 29–34. [Google Scholar] [CrossRef]
- Goulart, M.; Borges Veleda, B.; Damin, D.; Bovi Ambrosano, G.M.; Coelho de Souza, F.H.; Guilherme Erhardt, M.C. Preheated composite resin used as a luting agent for indirect restorations: Effects on bond strength and resin-dentin interfaces. Int. J. Esthet. Dent. 2018, 13, 86–97. [Google Scholar]
- Mohammadi, M.; Jafari-Navimipour, E.; Kimyai, S.; Ajami, A.A.; Bahari, M.; Ansarin, M. Effect of preheating on the mechanical properties of silorane-based and methacrylate-based composites. J. Clin. Exp. Dent. 2016, 8, e373–e378. [Google Scholar] [CrossRef]
- Lucey, S.; Lynch, C.D.; Ray, N.J.; Burke, F.M.; Hannigan, A. Effect of pre-heating on the viscosity and microhardness of a resin composite. J. Oral Rehabil. 2010, 37, 278–282. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Gauza-Włodarczyk, M.; Kubisz, L.; Hędzelek, W. The electrical properties and glass transition of some dental materials after temperature exposure. J. Mater. Sci. Mater. Med. 2017, 28, 186. [Google Scholar] [CrossRef]
- Sharafeddin, F.; Motamedi, M.; Fattah, Z. Effect of preheating and precooling on the flexural strength and modulus of elasticity of nanohybrid and silorane-based composite. J. Dent. 2015, 16, 224–229. [Google Scholar]
- Davari, A.; Daneshkazemi, A.; Behniafar, B.; Sheshmani, M. Effect of pre-heating on microtensile bond, strength of composite resin to dentin. J. Dent. 2014, 11, 569–575. [Google Scholar]
- da Costa, J.; Mcpharlin, R.; Hilton, T.; Ferracane, J. Effect of heat on the flow of commercial composites. Am. J. Dent. 2009, 22, 92–96. [Google Scholar]
- Kramer, M.R.; Edelhoff, D.; Stawarczyk, B. Flexural strength of preheated resin composites and bonding properties to glass-ceramic and dentin. Materials 2016, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, N.; Kamat, S.; Mangala, T.M.; Thomas, M. Effect of pre-heating composite resin on gap formation at three different temperatures. J. Conserv. Dent. 2011, 14, 191–195. [Google Scholar] [CrossRef]
- Jongsma, L.A.; Kleveraan, C.J. Influence of temperature on volumetric shrinkage and constraction stress of dental composites. Dent. Mater. 2015, 31, 721–725. [Google Scholar] [CrossRef]
- Ahn, K.H.; Lim, S.; Kum, K.Y.; Chang, S.W. Effect of preheating on the viscoelastic properties of dental composite under different deformation conditions. Dent. Mater. J. 2015, 34, 702–706. [Google Scholar] [CrossRef]
- Staansbury, J.W. Curing dental resin and composites by photopolymerization. J. Esthet. Dent. 2020, 12, 300–308. [Google Scholar] [CrossRef]
- Cheung, K.C.; Darvell, B.W. Sintering of dental porcelain: Effect of time and temperature on appearance and porosity. Dent. Mater. 2002, 18, 163–173. [Google Scholar] [CrossRef]
- Theobaldo, J.D.; Aguiar, F.H.B.; Pini, N.I.P.; Lima, D.A.N.L.; Liporoni, P.C.S.; Catelan, A. Effect of preheating and light-curing unit on physicochemical properties of a bulk-fill composite. Clin. Cosmet. Investig. Dent. 2017, 16, 39–43. [Google Scholar] [CrossRef]
- El-Korashy, D.I. Post-gel shrinkage strain and degree oh conversion of preheated resin composite cured using different regimens. Oper. Dent. 2010, 35, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, N.; Pallavi, R.Y.; Kavitha, S.; Lakshmi Narayanan, L. Degree of conversion and residual stress of preheated and room-temperature composites. Indian J. Dent. Res. 2007, 18, 173–176. [Google Scholar] [CrossRef]
- Silva, J.C.; Rogerio Vieira, R.; Rege, I.C.; Cruz, C.A.; Vaz, L.G.; Estrela, C.; Castro, F.L. Pre-heating mitigates composite degradation. J. Appl. Oral Sci. 2015, 23, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, M.; Newman, S.M.; Stansbury, J.W. Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent. Mater. 2004, 20, 766–777. [Google Scholar] [CrossRef] [PubMed]
- da Silva-Junior, M.E.; de Fz, L.R.; Bagnato, V.S.; Tonetto Mr Simoes, F.; Borges, A.H.; Bandeca, M.C.; de Andrade, M.F. Effect of the curing temperature of dental composites evaluated with a fluorescent dye. J. Contemp. Dent. Pract. 2018, 19, 3–12. [Google Scholar] [CrossRef]
- Taubock, T.T.; Tarle, Z.; Marovic, D.; Attin, T. Pre-heating of high-viscosity bulk-fill resin composites: Effects on shrinkage force and monomer conversion. J. Dent. 2015, 43, 1358–1364. [Google Scholar] [CrossRef]
- Behr, M.; Rosentritt, M.; Loher, H.; Kolbeck, C.; Trempler, C.; Stemplinger, B.; Kopzon, V.; Handel, G. Changes of cement properties by mixing errors: The therapeutic range of different cement types. Dent. Mater. 2008, 24, 1187–1193. [Google Scholar] [CrossRef]
- Vrohari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Curing efficiency of four self-etching, self adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef]
- Bocci, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S. Thio-urethanes improve properties of dual-cured composite cements. J. Dent. Res. 2014, 93, 1320–1325. [Google Scholar] [CrossRef]
- Yoon, T.H.; Lee, Y.K.; Lim, B.S.; Kim, C.W. Degree of polymerization of resin composites by different light sources. J. Oral Rehabil. 2002, 29, 1165–1173. [Google Scholar] [CrossRef]
- Silikas, N.; Eliades, G.; Watts, D.C. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent. Mater. 2000, 16, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Rahiotis, C.; Kramer, N.; Petschelt, A.; Eliades, G. The effect of different light-curing units on fatique behavior and degree of conversion of resin composite. Dent. Mater. 2005, 21, 608–615. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Unit | Definition |
---|---|---|
SBS | MPa | shear bond strength |
CS | MPa | compressive strength |
E | GPa | flexibility module/elastic modulus |
HV | - | hardness |
µTBS | MPa | microtensile bond strength |
DC | - | degree of conversion |
UTS | MPa | ultimate tensile strength |
Cement | BS [MPa] | |
---|---|---|
6 ± 2 °C | 19 ± 2 °C | |
BIS-Cem | 5.02 ± 1.78 | 1.21 ± 1.79 |
Clearfil SA | 1.50 ± 0.54 | 0.49 ± 0.98 |
G-Cem capsule | 6.33 ± 1.33 | 3.80 ± 1.40 |
Cement | Temperature | E [GPa] | CS [MPa] |
---|---|---|---|
Enamel Plus Hri | 50 °C | 7.9 ± 1.48 | 340 |
RelyX U200 | room temperature | 5.9 ± 0.35 | 327 |
Author | Cement (Manufacturer) | Other Condition | Type of Mechanical Property | Temperature | Result |
---|---|---|---|---|---|
Ozer F et al. [14] | BIS-Cem (Bisco) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 5.02 ± 1.78/1.25 ± 1.79 |
Ozer F et al. [14] | Clearfil SA (CSA) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 1.50 ± 0.54/0.49 ± 0.98 |
Ozer F et al. [14] | G-Cem capsule (GC) | Data Not Available | Bond strengths of resin cements (MPa) | 6 ± 2 °C/19 ± 2 °C | 6.33 ± 1.33/3.80 ± 1.40 |
Skapska A et al. [20] | Enamel Plus Hri (Micerium) | Data Not Available | Flexibility modul (GPa) | 50 °C | 7.9 ± 1.48 |
Skapska A et al. [20] | RelyX U200 (3M) | Data Not Available | Flexibility modul (GPa) | 50 °C | 5.9 ± 0.35 |
Morais A et al. [28] | Variolink II (Ivoclar Vivadent) | Dual-polymerized | μTBS (MPa) | 25 °C/50 °C | 33.38/47.12 |
Morais A et al. [28] | Variolink II (Ivoclar Vivadent) | Self-polymerized | μTBS (MPa) | 25 °C/50 °C | 17.34/21.65 |
Morais A et al. [28] | Calibra (Densply Sirona) | Dual-polymerized | μTBS (MPa) | 25 °C/50 °C | 37.45/36.17 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a glass slide | Degree of conversion | 25 °C/50 °C | 68.2/76.4 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a pre-cured 2-mm thick resin composite disc | Degree of conversion | 25 °C/50 °C | 63.0/71.1 |
Franca F et al. [42] | RelyX ARC (3M) | They were allowed to self-cured | Degree of conversion | 25 °C/50 °C | 44.5/61.8 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a glass slide | Degree of conversion | 25 °C/50 °C | 63.5/68.8 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a pre-cured 2-mm thick resin composite disc | Degree of conversion | 25 °C/50 °C | 56.3/67.0 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | They were allowed to self-cured | Degree of conversion | 25 °C/50 °C | 45.3/60.4 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a glass slide | Ultimate tensile strength (MPa) | 25 °C/50 °C | 77.3/68.5 |
Franca F et al. [42] | RelyX ARC (3M) | Light-activation through a pre-cured 2-mm thick resin composite disc | Ultimate tensile strength (MPa) | 25 °C/50 °C | 72.4/75.4 |
Franca F et al. [42] | RelyX ARC (3M) | They were allowed to self-cured | Ultimate tensile strength (MPa) | 25 °C/50 °C | 35.7/45.7 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a glass slide | Ultimate tensile strength (MPa) | 25 °C/50 °C | 75.5/62.4 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | Light-activation through a pre-cured 2-mm thick resin composite disc | Ultimate tensile strength (MPa) | 25 °C/50 °C | 72.6/78.7 |
Franca F et al. [42] | Variolink II (Ivoclar Vivadent) | They were allowed to self-cured | Ultimate tensile strength (MPa) | 25 °C/50 °C | 16.8/35.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giełzak, J.; Dejak, B.; Sokołowski, J.; Bociong, K. Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings 2023, 13, 244. https://doi.org/10.3390/coatings13020244
Giełzak J, Dejak B, Sokołowski J, Bociong K. Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings. 2023; 13(2):244. https://doi.org/10.3390/coatings13020244
Chicago/Turabian StyleGiełzak, Joanna, Beata Dejak, Jerzy Sokołowski, and Kinga Bociong. 2023. "Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature" Coatings 13, no. 2: 244. https://doi.org/10.3390/coatings13020244
APA StyleGiełzak, J., Dejak, B., Sokołowski, J., & Bociong, K. (2023). Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literature. Coatings, 13(2), 244. https://doi.org/10.3390/coatings13020244