cancers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 226 KB  
Review
Early Diagnosis to Improve the Poor Prognosis of Pancreatic Cancer
by Masataka Kikuyama, Terumi Kamisawa, Sawako Kuruma, Kazuro Chiba, Shinya Kawaguchi, Shuzo Terada and Tatsunori Satoh
Cancers 2018, 10(2), 48; https://doi.org/10.3390/cancers10020048 - 11 Feb 2018
Cited by 59 | Viewed by 7957
Abstract
Pancreatic cancer (PC) has a poor prognosis due to delayed diagnosis. Early diagnosis is the most important factor for improving prognosis. For early diagnosis of PC, patients with clinical manifestations suggestive of PC and high risk for developing PC need to be selected [...] Read more.
Pancreatic cancer (PC) has a poor prognosis due to delayed diagnosis. Early diagnosis is the most important factor for improving prognosis. For early diagnosis of PC, patients with clinical manifestations suggestive of PC and high risk for developing PC need to be selected for examinations for PC. Signs suggestive of PC (e.g., symptoms, diabetes mellitus, acute pancreatitis, or abnormal results of blood examinations) should not be missed, and the details of risks for PC (e.g., familial history of PC, intraductal mucin producing neoplasm, chronic pancreatitis, hereditary pancreatitis, or life habit) should be understood. Multidetector computed tomography (MDCT) and magnetic resonance imaging (MRI) can be performed for diagnosing PC, but the diagnostic ability of these examinations for PC is limited. Endoscopic diagnostic procedures, such as endoscopic ultrasonography, including fine-needle aspiration, and endoscopic retrograde pancreatocholangiography, including Serial Pancreatic-juice Aspiration Cytologic Examination (SPACE), could be recommended for a detailed examination to diagnose pancreatic carcinoma earlier. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
18 pages, 6315 KB  
Review
Bioapplications of Cell-SELEX-Generated Aptamers in Cancer Diagnostics, Therapeutics, Theranostics and Biomarker Discovery: A Comprehensive Review
by Xuehui Pang, Cheng Cui, Shuo Wan, Ying Jiang, Liangliang Zhang, Lian Xia, Long Li, Xiaowei Li and Weihong Tan
Cancers 2018, 10(2), 47; https://doi.org/10.3390/cancers10020047 - 9 Feb 2018
Cited by 95 | Viewed by 10886
Abstract
Currently, functional single-stranded oligonucleotide probes, termed aptamers, generated by an iterative technology, Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are utilized to selectively target molecules or cells with high affinity. Aptamers hold considerable promise as multifunctional molecules or conjugates for challenging nanotechnologies [...] Read more.
Currently, functional single-stranded oligonucleotide probes, termed aptamers, generated by an iterative technology, Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are utilized to selectively target molecules or cells with high affinity. Aptamers hold considerable promise as multifunctional molecules or conjugates for challenging nanotechnologies or bioapplications now and in the future. In this review, we first describe recent endeavors to select aptamers towards live cancer cells via cell-SELEX. We then introduce several characteristic applications of selected aptamers, especially in imaging, drug delivery and therapy. In part, these advances have been made possible via synthesis of aptamer-based nanomaterials, which, by their sizes, shapes, and physicochemical properties, allow such aptamer-nanomaterial complexes to function as signal reporters or drug carriers. We also describe how these aptamer-based molecular tools contribute to cancer biomarker discovery through high-affinity recognition of membrane protein receptors. Full article
(This article belongs to the Special Issue Aptamers: Promising Tools for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

20 pages, 4161 KB  
Review
Linking Extracellular Matrix Agrin to the Hippo Pathway in Liver Cancer and Beyond
by Sayan Chakraborty and Wanjin Hong
Cancers 2018, 10(2), 45; https://doi.org/10.3390/cancers10020045 - 6 Feb 2018
Cited by 51 | Viewed by 11010
Abstract
In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing [...] Read more.
In addition to the structural and scaffolding role, the extracellular matrix (ECM) is emerging as a hub for biomechanical signal transduction that is frequently relayed to intracellular sensors to regulate diverse cellular processes. At a macroscopic scale, matrix rigidity confers long-ranging effects contributing towards tissue fibrosis and cancer. The transcriptional co-activators YAP/TAZ, better known as the converging effectors of the Hippo pathway, are widely recognized for their new role as nuclear mechanosensors during organ homeostasis and cancer. Still, how YAP/TAZ senses these “stiffness cues” from the ECM remains enigmatic. Here, we highlight the recent perspectives on the role of agrin in mechanosignaling from the ECM via antagonizing the Hippo pathway to activate YAP/TAZ in the contexts of cancer, neuromuscular junctions, and cardiac regeneration. Full article
Show Figures

Figure 1

11 pages, 1546 KB  
Article
Elevated Polyamines in Saliva of Pancreatic Cancer
by Yasutsugu Asai, Takao Itoi, Masahiro Sugimoto, Atsushi Sofuni, Takayoshi Tsuchiya, Reina Tanaka, Ryosuke Tonozuka, Mitsuyoshi Honjo, Shuntaro Mukai, Mitsuru Fujita, Kenjiro Yamamoto, Yukitoshi Matsunami, Takashi Kurosawa, Yuichi Nagakawa, Miku Kaneko, Sana Ota, Shigeyuki Kawachi, Motohide Shimazu, Tomoyoshi Soga, Masaru Tomita and Makoto Sunamuraadd Show full author list remove Hide full author list
Cancers 2018, 10(2), 43; https://doi.org/10.3390/cancers10020043 - 5 Feb 2018
Cited by 78 | Viewed by 8656
Abstract
Detection of pancreatic cancer (PC) at a resectable stage is still difficult because of the lack of accurate detection tests. The development of accurate biomarkers in low or non-invasive biofluids is essential to enable frequent tests, which would help increase the opportunity of [...] Read more.
Detection of pancreatic cancer (PC) at a resectable stage is still difficult because of the lack of accurate detection tests. The development of accurate biomarkers in low or non-invasive biofluids is essential to enable frequent tests, which would help increase the opportunity of PC detection in early stages. Polyamines have been reported as possible biomarkers in urine and saliva samples in various cancers. Here, we analyzed salivary metabolites, including polyamines, using capillary electrophoresis-mass spectrometry. Salivary samples were collected from patients with PC (n = 39), those with chronic pancreatitis (CP, n = 14), and controls (C, n = 26). Polyamines, such as spermine, N1-acetylspermidine, and N1-acetylspermine, showed a significant difference between patients with PC and those with C, and the combination of four metabolites including N1-acetylspermidine showed high accuracy in discriminating PC from the other two groups. These data show the potential of saliva as a source for tests screening for PC. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Graphical abstract

0 pages, 1556 KB  
Review
Colorectal Cancer and Alcohol Consumption—Populations to Molecules
by Marco Rossi, Muhammad Jahanzaib Anwar, Ahmad Usman, Ali Keshavarzian and Faraz Bishehsari
Cancers 2018, 10(2), 38; https://doi.org/10.3390/cancers10020038 - 30 Jan 2018
Cited by 143 | Viewed by 19639
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and [...] Read more.
Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the third most common cancer diagnosed in both men and women in the world. Several environmental and habitual factors have been associated with the CRC risk. Alcohol intake, a common and rising habit of modern society, is one of the major risk factors for development of CRC. Here, we will summarize the evidence linking alcohol with colon carcinogenesis and possible underlying mechanisms. Some epidemiologic studies suggest that even moderate drinking increases the CRC risk. Metabolism of alcohol involves ethanol conversion to its metabolites that could exert carcinogenic effects in the colon. Production of ethanol metabolites can be affected by the colon microbiota, another recently recognized mediating factor to colon carcinogenesis. The generation of acetaldehyde and alcohol’s other metabolites leads to activation of cancer promoting cascades, such as DNA-adduct formation, oxidative stress and lipid peroxidation, epigenetic alterations, epithelial barrier dysfunction, and immune modulatory effects. Not only does alcohol induce its toxic effect through carcinogenic metabolites, but alcoholics themselves are predisposed to a poor diet, low in folate and fiber, and circadian disruption, which could further augment alcohol-induced colon carcinogenesis. Full article
(This article belongs to the Special Issue Alcohol and Cancer)
Show Figures

Figure 1

15 pages, 1244 KB  
Review
Precision Immuno-Oncology: Prospects of Individualized Immunotherapy for Pancreatic Cancer
by Jiajia Zhang, Christopher L. Wolfgang and Lei Zheng
Cancers 2018, 10(2), 39; https://doi.org/10.3390/cancers10020039 - 30 Jan 2018
Cited by 47 | Viewed by 10410
Abstract
Pancreatic cancer, most commonly referring to pancreatic ductal adenocarcinoma (PDAC), remains one of the most deadly diseases, with very few effective therapies available. Emerging as a new modality of modern cancer treatments, immunotherapy has shown promises for various cancer types. Over the past [...] Read more.
Pancreatic cancer, most commonly referring to pancreatic ductal adenocarcinoma (PDAC), remains one of the most deadly diseases, with very few effective therapies available. Emerging as a new modality of modern cancer treatments, immunotherapy has shown promises for various cancer types. Over the past decades, the potential of immunotherapy in eliciting clinical benefits in pancreatic cancer have also been extensively explored. It has been demonstrated in preclinical studies and early phase clinical trials that cancer vaccines were effective in eliciting anti-tumor immune response, but few have led to a significant improvement in survival. Despite the fact that immunotherapy with checkpoint blockade (e.g., anti-cytotoxic T-lymphocyte antigen 4 [CTLA-4] and anti-programmed cell death 1 [PD-1]/PD-L1 antibodies) has shown remarkable and durable responses in various cancer types, the application of checkpoint inhibitors in pancreatic cancer has been disappointing so far. It may, in part, due to the unique tumor microenvironment (TME) of pancreatic cancer, such as existence of excessive stromal matrix and hypovascularity, creating a TME of strong inhibitory signaling circuits and tremendous physical barriers for immune agent infiltration. This informs on the need for combination therapy approaches to engender a potent immune response that can translate to clinical benefits. On the other hand, lack of effective and validated biomarkers to stratify subgroup of patients who can benefit from immunotherapy poses further challenges for the realization of precision immune-oncology. Future studies addressing issues such as TME modulation, biomarker identification and therapeutic combination are warranted. In this review, advances in immunotherapy for pancreatic cancer were discussed and opportunities as well as challenges for personalized immune-oncology were addressed. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

14 pages, 678 KB  
Review
Targeted Therapies for Pancreatic Cancer
by Idoroenyi Amanam and Vincent Chung
Cancers 2018, 10(2), 36; https://doi.org/10.3390/cancers10020036 - 29 Jan 2018
Cited by 64 | Viewed by 9190
Abstract
Pancreatic cancer is the third leading cause of cancer related death and by 2030, it will be second only to lung cancer. We have seen tremendous advances in therapies for lung cancer as well as other solid tumors using a molecular targeted approach [...] Read more.
Pancreatic cancer is the third leading cause of cancer related death and by 2030, it will be second only to lung cancer. We have seen tremendous advances in therapies for lung cancer as well as other solid tumors using a molecular targeted approach but our progress in treating pancreatic cancer has been incremental with median overall survival remaining less than one year. There is an urgent need for improved therapies with better efficacy and less toxicity. Small molecule inhibitors, monoclonal antibodies and immune modulatory therapies have been used. Here we review the progress that we have made with these targeted therapies. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

26 pages, 5196 KB  
Review
The Ever-Evolving Concept of the Cancer Stem Cell in Pancreatic Cancer
by Sandra Valle, Laura Martin-Hijano, Sonia Alcalá, Marta Alonso-Nocelo and Bruno Sainz Jr.
Cancers 2018, 10(2), 33; https://doi.org/10.3390/cancers10020033 - 26 Jan 2018
Cited by 89 | Viewed by 13456
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is the 4th most frequent cause of cancer-related death worldwide, primarily due to the inherent chemoresistant nature and metastatic capacity of this tumor. The latter is believed to be mainly due to the existence of a subpopulation of highly plastic “stem”-like cells within the tumor, known as cancer stem cells (CSCs), which have been shown to have unique metabolic, autophagic, invasive, and chemoresistance properties that allow them to continuously self-renew and escape chemo-therapeutic elimination. As such, current treatments for the majority of PDAC patients are not effective and do not significantly impact overall patient survival (<7 months) as they do not affect the pancreatic CSC (PaCSC) population. In this context, it is important to highlight the need to better understand the characteristics of the PaCSC population in order to develop new therapies to target these cells. In this review, we will provide the latest updates and knowledge on the inherent characteristics of PaCSCs, particularly their unique biological properties including chemoresistance, epithelial to mesenchymal transition, plasticity, metabolism and autophagy. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

17 pages, 505 KB  
Review
Tackling Cancer Resistance by Immunotherapy: Updated Clinical Impact and Safety of PD-1/PD-L1 Inhibitors
by Shifaa M. Abdin, Dana M. Zaher, El-Shaimaa A. Arafa and Hany A. Omar
Cancers 2018, 10(2), 32; https://doi.org/10.3390/cancers10020032 - 25 Jan 2018
Cited by 58 | Viewed by 15789
Abstract
Cancer therapy has been constantly evolving with the hope of finding the most effective agents with the least toxic effects to eradicate tumors. Cancer immunotherapy is currently among the most promising options, fulfilling this hope in a wide range of tumors. Immunotherapy aims [...] Read more.
Cancer therapy has been constantly evolving with the hope of finding the most effective agents with the least toxic effects to eradicate tumors. Cancer immunotherapy is currently among the most promising options, fulfilling this hope in a wide range of tumors. Immunotherapy aims to activate immunity to fight cancer in a very specific and targeted manner; however, some abnormal immune reactions known as immune-related adverse events (IRAEs) might occur. Therefore, many researchers are aiming to define the most proper protocols for managing these complications without interfering with the anticancer effect. One of these targeted approaches is the inhibition of the interaction between the checkpoint protein, programmed death-receptor 1 (PD-1), and its ligand, programmed death-ligand 1 (PD-L1), via a class of antibodies known as PD-1/PD-L1 inhibitors. These antibodies achieved prodigious success in a wide range of malignancies, including those where optimal treatment is not yet fully identified. In this review, we have critically explored and discussed the outcome of the latest PD-1 and PD-L1 inhibitor studies in different malignancies compared to standard chemotherapeutic alternatives with a special focus on the clinical efficacy and safety. The approval of the clinical applications of nivolumab, pembrolizumab, atezolizumab, avelumab, and durvalumab in the last few years clearly highlights the hopeful future of PD-1/PD-L1 inhibitors for cancer patients. These promising results of PD-1/PD-L1 inhibitors have encouraged many ongoing preclinical and clinical trials to explore the extent of antitumor activity, clinical efficacy and safety as well as to extend their applications. Full article
Show Figures

Figure 1

15 pages, 2685 KB  
Review
Estrogen and Androgen Blockade for Advanced Prostate Cancer in the Era of Precision Medicine
by Tetsuya Fujimura, Kenichi Takayama, Satoru Takahashi and Satoshi Inoue
Cancers 2018, 10(2), 29; https://doi.org/10.3390/cancers10020029 - 23 Jan 2018
Cited by 26 | Viewed by 10923
Abstract
Androgen deprivation therapy (ADT) has been widely prescribed for patients with advanced prostate cancer (PC) to control key signaling pathways via androgen receptor (AR) and AR-collaborative transcriptional factors; however, PC gradually acquires a lethal phenotype and results in castration-resistant PC (CRPC) during ADT. [...] Read more.
Androgen deprivation therapy (ADT) has been widely prescribed for patients with advanced prostate cancer (PC) to control key signaling pathways via androgen receptor (AR) and AR-collaborative transcriptional factors; however, PC gradually acquires a lethal phenotype and results in castration-resistant PC (CRPC) during ADT. Therefore, new therapeutic strategies are required in clinical practice. In addition, ARs; estrogen receptors (ERs; ERα and ERβ); and estrogen-related receptors (ERRs; ERRα, ERRβ, and ERRγ) have been reported to be involved in the development or regulation of PC. Recent investigations have revealed the role of associated molecules, such as KLF5, FOXO1, PDGFA, VEGF-A, WNT5A, TGFβ1, and micro-RNA 135a of PC, via ERs and ERRs. Selective ER modulators (SERMs) have been developed. Recently, estrogen and androgen blockade (EAB) using a combination of toremifene and ADT has been demonstrated to improve biochemical recurrence rate in treatment-naïve bone metastatic PC. In the future, the suitability of ADT alone or EAB for individuals may be evaluated by making clinical decisions on the basis of information obtained from RT-PCR, gene-panel, or liquid biopsy to create a “personalized medicine” or “precision medicine”. In this review, we summarize ER and ERR signaling pathways, molecular diagnosis, and SERMs as candidates for advanced PC treatment. Full article
(This article belongs to the Special Issue Hormone Receptors in Genitourinary Tumors)
Show Figures

Figure 1

18 pages, 3035 KB  
Review
Colorectal Cancers: An Update on Their Molecular Pathology
by Kentaro Inamura
Cancers 2018, 10(1), 26; https://doi.org/10.3390/cancers10010026 - 20 Jan 2018
Cited by 142 | Viewed by 24833
Abstract
Colorectal cancers (CRCs) are the third leading cause of cancer-related mortality worldwide. Rather than being a single, uniform disease type, accumulating evidence suggests that CRCs comprise a group of molecularly heterogeneous diseases that are characterized by a range of genomic and epigenomic alterations. [...] Read more.
Colorectal cancers (CRCs) are the third leading cause of cancer-related mortality worldwide. Rather than being a single, uniform disease type, accumulating evidence suggests that CRCs comprise a group of molecularly heterogeneous diseases that are characterized by a range of genomic and epigenomic alterations. This heterogeneity slows the development of molecular-targeted therapy as a form of precision medicine. Recent data regarding comprehensive molecular characterizations and molecular pathological examinations of CRCs have increased our understanding of the genomic and epigenomic landscapes of CRCs, which has enabled CRCs to be reclassified into biologically and clinically meaningful subtypes. The increased knowledge of the molecular pathological epidemiology of CRCs has permitted their evolution from a vaguely understood, heterogeneous group of diseases with variable clinical courses to characteristic molecular subtypes, a development that will allow the implementation of personalized therapies and better management of patients with CRC. This review provides a perspective regarding recent developments in our knowledge of the molecular and epidemiological landscapes of CRCs, including results of comprehensive molecular characterizations obtained from high-throughput analyses and the latest developments regarding their molecular pathologies, immunological biomarkers, and associated gut microbiome. Advances in our understanding of potential personalized therapies for molecularly specific subtypes are also reviewed. Full article
Show Figures

Figure 1

15 pages, 254 KB  
Review
Contemporary Management of Localized Resectable Pancreatic Cancer
by Anuhya Kommalapati, Sri Harsha Tella, Gaurav Goyal, Wen Wee Ma and Amit Mahipal
Cancers 2018, 10(1), 24; https://doi.org/10.3390/cancers10010024 - 20 Jan 2018
Cited by 77 | Viewed by 6193
Abstract
Pancreatic cancer is the third most common cause of cancer deaths in the United States. Surgical resection with negative margins still constitutes the cornerstone of potentially curative therapy, but is possible only in 15–20% of patients at the time of initial diagnosis. Accumulating [...] Read more.
Pancreatic cancer is the third most common cause of cancer deaths in the United States. Surgical resection with negative margins still constitutes the cornerstone of potentially curative therapy, but is possible only in 15–20% of patients at the time of initial diagnosis. Accumulating evidence suggests that the neoadjuvant approach may improve R0 resection rate in localized resectable and borderline resectable diseases, and potentially downstage locally advanced disease to achieve surgical resection, though the impact on survival is to be determined. Despite advancements in the last decade in developing effective combinational chemo-radio therapeutic options, preoperative treatment strategies, and better peri-operative care, pancreatic cancer continues to carry a dismal prognosis in the majority. Prodigious efforts are currently being made in optimizing the neoadjuvant therapy with a better toxicity profile, developing novel agents, imaging techniques, and identification of biomarkers for the disease. Advancement in our understanding of the tumor microenvironment and molecular pathology is urgently needed to facilitate the development of novel targeted and immunotherapies for this setting. In this review, we detail the current literature on contemporary management of resectable, borderline resectable and locally advanced pancreatic cancer with a focus on future directions in the field. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
30 pages, 3712 KB  
Review
mTOR Cross-Talk in Cancer and Potential for Combination Therapy
by Fabiana Conciatori, Ludovica Ciuffreda, Chiara Bazzichetto, Italia Falcone, Sara Pilotto, Emilio Bria, Francesco Cognetti and Michele Milella
Cancers 2018, 10(1), 23; https://doi.org/10.3390/cancers10010023 - 19 Jan 2018
Cited by 121 | Viewed by 13776
Abstract
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 [...] Read more.
The mammalian Target of Rapamycin (mTOR) pathway plays an essential role in sensing and integrating a variety of exogenous cues to regulate cellular growth and metabolism, in both physiological and pathological conditions. mTOR functions through two functionally and structurally distinct multi-component complexes, mTORC1 and mTORC2, which interact with each other and with several elements of other signaling pathways. In the past few years, many new insights into mTOR function and regulation have been gained and extensive genetic and pharmacological studies in mice have enhanced our understanding of how mTOR dysfunction contributes to several diseases, including cancer. Single-agent mTOR targeting, mostly using rapalogs, has so far met limited clinical success; however, due to the extensive cross-talk between mTOR and other pathways, combined approaches are the most promising avenues to improve clinical efficacy of available therapeutics and overcome drug resistance. This review provides a brief and up-to-date narrative on the regulation of mTOR function, the relative contributions of mTORC1 and mTORC2 complexes to cancer development and progression, and prospects for mTOR inhibition as a therapeutic strategy. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

27 pages, 959 KB  
Review
Alcohol-Derived Acetaldehyde Exposure in the Oral Cavity
by Alessia Stornetta, Valeria Guidolin and Silvia Balbo
Cancers 2018, 10(1), 20; https://doi.org/10.3390/cancers10010020 - 14 Jan 2018
Cited by 80 | Viewed by 16784
Abstract
Alcohol is classified by the International Agency for Research on Cancer (IARC) as a human carcinogen and its consumption has been associated to an increased risk of liver, breast, colorectum, and upper aerodigestive tract (UADT) cancers. Its mechanisms of carcinogenicity remain unclear and [...] Read more.
Alcohol is classified by the International Agency for Research on Cancer (IARC) as a human carcinogen and its consumption has been associated to an increased risk of liver, breast, colorectum, and upper aerodigestive tract (UADT) cancers. Its mechanisms of carcinogenicity remain unclear and various hypotheses have been formulated depending on the target organ considered. In the case of UADT cancers, alcohol’s major metabolite acetaldehyde seems to play a crucial role. Acetaldehyde reacts with DNA inducing modifications, which, if not repaired, can result in mutations and lead to cancer development. Despite alcohol being mainly metabolized in the liver, several studies performed in humans found higher levels of acetaldehyde in saliva compared to those found in blood immediately after alcohol consumption. These results suggest that alcohol-derived acetaldehyde exposure may occur in the oral cavity independently from liver metabolism. This hypothesis is supported by our recent results showing the presence of acetaldehyde-related DNA modifications in oral cells of monkeys and humans exposed to alcohol, overall suggesting that the alcohol metabolism in the oral cavity is an independent cancer risk factor. This review article will focus on illustrating the factors modulating alcohol-derived acetaldehyde exposure and effects in the oral cavity. Full article
(This article belongs to the Special Issue Alcohol and Cancer)
Show Figures

Figure 1

15 pages, 645 KB  
Review
mTOR Pathways in Cancer and Autophagy
by Mathieu Paquette, Leeanna El-Houjeiri and Arnim Pause
Cancers 2018, 10(1), 18; https://doi.org/10.3390/cancers10010018 - 12 Jan 2018
Cited by 259 | Viewed by 26655
Abstract
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell [...] Read more.
TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

17 pages, 1624 KB  
Review
Oncogenic Signalling through Mechanistic Target of Rapamycin (mTOR): A Driver of Metabolic Transformation and Cancer Progression
by Ellie Rad, James T. Murray and Andrew R. Tee
Cancers 2018, 10(1), 5; https://doi.org/10.3390/cancers10010005 - 3 Jan 2018
Cited by 54 | Viewed by 10688
Abstract
Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell [...] Read more.
Throughout the years, research into signalling pathways involved in cancer progression has led to many discoveries of which mechanistic target of rapamycin (mTOR) is a key player. mTOR is a master regulator of cell growth control. mTOR is historically known to promote cell growth by enhancing the efficiency of protein translation. Research in the last decade has revealed that mTOR’s role in promoting cell growth is much more multifaceted. While mTOR is necessary for normal human physiology, cancer cells take advantage of mTOR signalling to drive their neoplastic growth and progression. Oncogenic signal transduction through mTOR is a common occurrence in cancer, leading to metabolic transformation, enhanced proliferative drive and increased metastatic potential through neovascularisation. This review focuses on the downstream mTOR-regulated processes that are implicated in the “hallmarks” of cancer with focus on mTOR’s involvement in proliferative signalling, metabolic reprogramming, angiogenesis and metastasis. Full article
(This article belongs to the Special Issue mTOR Pathway in Cancer)
Show Figures

Figure 1

13 pages, 432 KB  
Review
Modification of Epigenetic Histone Acetylation in Hepatocellular Carcinoma
by Kwei-Yan Liu, Li-Ting Wang and Shih-Hsien Hsu
Cancers 2018, 10(1), 8; https://doi.org/10.3390/cancers10010008 - 3 Jan 2018
Cited by 40 | Viewed by 7458
Abstract
Cells respond to various environmental factors such as nutrients, food intake, and drugs or toxins by undergoing dynamic epigenetic changes. An imbalance in dynamic epigenetic changes is one of the major causes of disease, oncogenic activities, and immunosuppressive effects. The aryl hydrocarbon receptor [...] Read more.
Cells respond to various environmental factors such as nutrients, food intake, and drugs or toxins by undergoing dynamic epigenetic changes. An imbalance in dynamic epigenetic changes is one of the major causes of disease, oncogenic activities, and immunosuppressive effects. The aryl hydrocarbon receptor (AHR) is a unique cellular chemical sensor present in most organs, and its dysregulation has been demonstrated in multiple stages of tumor progression in humans and experimental models; however, the effects of the pathogenic mechanisms of AHR on epigenetic regulation remain unclear. Apart from proto-oncogene activation, epigenetic repressions of tumor suppressor genes are involved in tumor initiation, procession, and metastasis. Reverse epigenetic repression of the tumor suppressor genes by epigenetic enzyme activity inhibition and epigenetic enzyme level manipulation is a potential path for tumor therapy. Current evidence and our recent work on deacetylation of histones on tumor-suppressive genes suggest that histone deacetylase (HDAC) is involved in tumor formation and progression, and treating hepatocellular carcinoma with HDAC inhibitors can, at least partially, repress tumor proliferation and transformation by recusing the expression of tumor-suppressive genes such as TP53 and RB1. Full article
(This article belongs to the Collection Histone Modification in Cancer)
Show Figures

Figure 1

33 pages, 4543 KB  
Review
Current Advances in Aptamers for Cancer Diagnosis and Therapy
by Shin-ichiro Hori, Alberto Herrera, John J. Rossi and Jiehua Zhou
Cancers 2018, 10(1), 9; https://doi.org/10.3390/cancers10010009 - 3 Jan 2018
Cited by 150 | Viewed by 14874
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically [...] Read more.
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy. Full article
(This article belongs to the Special Issue Aptamers: Promising Tools for Cancer Diagnosis and Therapy)
Show Figures

Figure 1

16 pages, 585 KB  
Review
Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapy
by Neus Martinez-Bosch, Judith Vinaixa and Pilar Navarro
Cancers 2018, 10(1), 6; https://doi.org/10.3390/cancers10010006 - 3 Jan 2018
Cited by 169 | Viewed by 13729
Abstract
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much [...] Read more.
Pancreatic ductal adenocarcinoma (PDA), the most frequent type of pancreatic cancer, remains one of the most challenging problems for the biomedical and clinical fields, with abysmal survival rates and poor therapy efficiency. Desmoplasia, which is abundant in PDA, can be blamed for much of the mechanisms behind poor drug performance, as it is the main source of the cytokines and chemokines that orchestrate rapid and silent tumor progression to allow tumor cells to be isolated into an extensive fibrotic reaction, which results in inefficient drug delivery. However, since immunotherapy was proclaimed as the breakthrough of the year in 2013, the focus on the stroma of pancreatic cancer has interestingly moved from activated fibroblasts to the immune compartment, trying to understand the immunosuppressive factors that play a part in the strong immune evasion that characterizes PDA. The PDA microenvironment is highly immunosuppressive and is basically composed of T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressive cells (MDSCs), which block CD8+ T-cell duties in tumor recognition and clearance. Interestingly, preclinical data have highlighted the importance of this immune evasion as the source of resistance to single checkpoint immunotherapies and cancer vaccines and point at pathways that inhibit the immune attack as a key to solve the therapy puzzle. Here, we will discuss the molecular mechanisms involved in PDA immune escape as well as the state of the art of the PDA immunotherapy. Full article
(This article belongs to the Special Issue Latest Development in Pancreatic Cancer)
Show Figures

Figure 1

Back to TopTop