-
Design, Optimization, and Experimental Validation of Dynamic Vibration Absorber for Vibration Suppression in Cantilevered Plate Structures
-
Attenuation of the First-Cycle Peak Response to an Impulse Disturbance
-
Nonlinear Dynamics of a Coupled Electromechanical Transmission
-
Lattice Structures in Boring Bars for Passive Chatter Suppression
Journal Description
Vibration
Vibration
is a peer-reviewed, open access journal of vibration science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Journal Cluster of Civil Engineering and Built Environment: Architecture, Buildings, CivilEng, Construction Materials, Infrastructures, Intelligent Infrastructure and Construction, NDT and Vibration.
Impact Factor:
1.6 (2024);
5-Year Impact Factor:
2.0 (2024)
Latest Articles
Balancing Accuracy and Efficiency in Wire-Rope Isolator Modeling: A Simplified Beam-Element Framework
Vibration 2025, 8(3), 55; https://doi.org/10.3390/vibration8030055 - 22 Sep 2025
Abstract
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling
[...] Read more.
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling framework using constant-property Timoshenko beam elements with tuned Rayleigh damping to simulate WRI behavior across various configurations. Benchmark validation against analytical ring deformation confirmed the model’s ability to capture geometric nonlinearities. The framework was extended to five WRI types, with effective cross-sectional properties calibrated against vendor-supplied quasi-static data. Dynamic simulations under sinusoidal excitation demonstrated strong agreement with experimental force-displacement loops in pure modes and showed moderate accuracy (within 29%) in inclined configurations. System-level validation using a rocking-control platform with four inclined WRIs showed that the model reliably predicts global stiffness and energy dissipation under base accelerations. While the model does not capture localized nonlinearities such as pinched hysteresis due to interstrand friction, it offers a computationally efficient tool for engineering design. The proposed method enables rapid evaluation of WRI performance in complex scenarios, supporting broader integration into performance-based seismic mitigation strategies.
Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
►
Show Figures
Open AccessArticle
The Effect of Wave Signature on the Voltage Output of an Oscillating Water Column
by
Marcel Ilie
Vibration 2025, 8(3), 54; https://doi.org/10.3390/vibration8030054 - 22 Sep 2025
Abstract
►▼
Show Figures
The reduction in carbon footprint and scarcity of energy resources have increased the demand for renewable and sustainable energy resources, and thus, significant efforts have been concentrated on harnessing renewable and sustainable energy resources. The oscillating water column (OWC) wave energy converter has
[...] Read more.
The reduction in carbon footprint and scarcity of energy resources have increased the demand for renewable and sustainable energy resources, and thus, significant efforts have been concentrated on harnessing renewable and sustainable energy resources. The oscillating water column (OWC) wave energy converter has proven to be the most promising approach for harnessing wave energy. The OWC offers the benefits of a long operating time span and low maintenance, as air serves as the driving fluid. The hydrodynamic efficiency of OWC depends on the wave motion and its interaction with the OWC structure. Therefore, the present research concerns the impact of the incident wave signature on the OWC’s efficiency voltage output, and it is carried out experimentally using a laboratory-scale wave tank. Four different waves, of different amplitudes and frequencies, and their impact on the OWC voltage output are experimentally investigated. This study shows that the four waves exhibit different characteristics, such as crests and troughs of different slopes and amplitudes. However, although the wave crests exhibit relatively similar amplitudes, the wave troughs exhibit significantly different characteristics. This study also reveals that the OWC voltage output exhibits a nonlinear behavior due to the nonlinear nature of the incident waves and compressible air inside the OWC chamber. The maximum voltage output is obtained for a maximum air compressibility factor. However, lower voltage outputs are obtained for both compression and decompression of the air inside the OWC chamber.
Full article

Figure 1
Open AccessArticle
Damage Identification in Beams via Contourlet Transform of Shearography Modal Data
by
Ali Mohammad Mohammadi, Atefeh Soleymani, Hashem Jahangir, Mohsen Khatibinia, José Viriato Araújo dos Santos and Hernâni Miguel Lopes
Vibration 2025, 8(3), 53; https://doi.org/10.3390/vibration8030053 - 21 Sep 2025
Abstract
►▼
Show Figures
This paper presents a novel method for damage identification in aluminum beams using the contourlet transform. Four aluminum beams were used in the study: one was undamaged, while the other three had different damage scenarios. The damage included middle and side slots with
[...] Read more.
This paper presents a novel method for damage identification in aluminum beams using the contourlet transform. Four aluminum beams were used in the study: one was undamaged, while the other three had different damage scenarios. The damage included middle and side slots with depth-to-thickness ratios of 7% and 28%. Damage is identified using the proposed index of contourlet transform of the modal rotations and modal curvatures of the beams for the free-free condition. The beam’s first three modal rotations are directly measured with digital shearography, and the corresponding modal curvatures are obtained through their numerical differentiation. The results indicated that to detect the exact locations and identify damage severities using the proposed damage indices, instead of modal rotations, the modal curvatures should be introduced as the input. Moreover, they revealed that the proposed damage indices need modal data of the undamaged state as a baseline to identify smaller damage. In addition, comparing the proposed contourlet-based damage indices with previously suggested wavelet-based damage detection methods revealed that, although the wavelet-based damage index is more sensitive to damage severity, it also exhibits higher noise levels in undamaged locations. The Tukey windowing process was introduced to address the boundary effect problem.
Full article

Figure 1
Open AccessArticle
Prediction of Local Vibration Analysis for Ship Stiffened Panel Structure Using Artificial Neural Network Algorithm
by
Mahardika Rizki Pynasti and Chang-Yong Song
Vibration 2025, 8(3), 52; https://doi.org/10.3390/vibration8030052 - 13 Sep 2025
Abstract
Ship stiffened panels, typically flat plates reinforced with various types of stiffeners, form a substantial part of a ship’s structure and are susceptible to resonance, especially in areas such as the after peak structure, engine room, and accommodation compartments. These vibrations are primarily
[...] Read more.
Ship stiffened panels, typically flat plates reinforced with various types of stiffeners, form a substantial part of a ship’s structure and are susceptible to resonance, especially in areas such as the after peak structure, engine room, and accommodation compartments. These vibrations are primarily excited by main engine and propeller forces. Conventional methods such as finite element analysis (FEA) and plate theory are widely used to estimate vibration frequencies, but they are time-consuming and computationally intensive when applied to numerous stiffened panels. This study proposes a machine learning approach using an artificial neural network (ANN) algorithm to efficiently predict the vibration frequencies of ship stiffened panels. A crude oil tanker is chosen as the case study, and FEA is conducted to generate the vibration frequency and mass data for panels across critical regions. The input layer features for the ANN include panel area, thickness, number and area of stiffeners, fluid density, number of fluid contact sides, and overall structural stiffness. The ANN model predicts two outputs: the fundamental vibration frequency and the mass of the panel structure. To evaluate the model performance, hyperparameters such as the number of hidden neurons are optimized. The results indicate that the ANN achieves accurate predictions while significantly reducing the time and resources required compared with conventional methods. This approach offers a promising tool for accelerating the local vibration analysis process in ship structural design.
Full article
(This article belongs to the Special Issue Machine Learning Applications to Vibration Problems)
►▼
Show Figures

Figure 1
Open AccessArticle
Research on the Tensile-Bending Dynamic Response of the Half-Through Arch Bridge Short Suspender Considering Vehicle-Bridge Coupling Vibration
by
Lianhua Wang, Guowen Yao and Xuanbo He
Vibration 2025, 8(3), 51; https://doi.org/10.3390/vibration8030051 - 4 Sep 2025
Abstract
►▼
Show Figures
The half-through arch bridge short suspender is more prone to damage due to its high linear stiffness and special force characteristics. To analyze the vehicle-induced vibration characteristics of the short suspender during service, a half-through arch bridge finite element model and a three-axis
[...] Read more.
The half-through arch bridge short suspender is more prone to damage due to its high linear stiffness and special force characteristics. To analyze the vehicle-induced vibration characteristics of the short suspender during service, a half-through arch bridge finite element model and a three-axis vehicle model were established to realize the coupled vibration of the suspender axle under bridge deck unevenness excitation. The suspender was simulated using LINK element and BEAM element and separated along its axial and radial directions, and its tension-bending response characteristics was studied. The study found that the short suspender’s amplitude and frequency are higher than those of the long suspender as vehicle critical duration increases. Influenced by the tensile bending effect, the vibration, cross-section equivalent force amplitude, and impact coefficient at the anchorage end are larger than those at the center, and the lower anchorage end’s cross-section peak stress is biased towards the direction of the side column. The internal force of the short suspender is consistent with the deformation trend; its internal force coincides with the deformation trend; and its axial alternating load is generated by the axial relative deformation between the arch rib and the bridge deck, while the bending alternating load originates from the rotational deformation of the short suspender.
Full article

Figure 1
Open AccessArticle
Optimization of Energy Harvesting Performance and Local Resonance Instability Phenomenon Suppression in Piezoelectric Cantilever Beams with Arrayed Grooves
by
Yan Zhang, Qi Li, Haodong Sun, Kaiming Sun, Yuanjing Mou and Jie Wan
Vibration 2025, 8(3), 50; https://doi.org/10.3390/vibration8030050 - 3 Sep 2025
Abstract
►▼
Show Figures
This study addresses the performance optimization of piezoelectric cantilever beam energy harvesters by proposing a design method based on surface arrayed groove modulation. Through systematic investigation of the effects of single grooves (upper surface, lower surface, and double-sided grooves) and arrayed grooves on
[...] Read more.
This study addresses the performance optimization of piezoelectric cantilever beam energy harvesters by proposing a design method based on surface arrayed groove modulation. Through systematic investigation of the effects of single grooves (upper surface, lower surface, and double-sided grooves) and arrayed grooves on the power generation performance of piezoelectric cantilever beams, the coupling mechanism of stiffness modulation, Local resonance instability phenomenon, and energy conversion in groove design is revealed. The results show that while single grooves can improve the output voltage by altering the neutral axis position, groove widths exceeding 20 mm induce Local resonance instability phenomenon, leading to energy dissipation. In contrast, arrayed grooves effectively suppress Local resonance instability phenomenon by uniformly distributing the grooves, significantly enhancing energy conversion efficiency. The optimized arrayed groove configuration (groove width: 4 mm, depth: 1 mm, number: 7) achieves a peak voltage of 549.525 mV, representing a 17.3% improvement over the ungrooved structure, without inducing narrow-bandwidth effects. Additionally, this design exhibits excellent process compatibility and can be fabricated using conventional machining methods, reducing costs by 30–45% compared to additive manufacturing. This study provides important optimization directions and technical references for the design of piezoelectric cantilever beam energy harvesters.
Full article

Figure 1
Open AccessArticle
Spectral-Clustering-Guided Fourier Decomposition Method and Bearing Fault Feature Extraction
by
Wenxu Zhang, Chaoyong Ma, Gehao Feng, Yanping Zhu, Kun Zhang and Yonggang Xu
Vibration 2025, 8(3), 49; https://doi.org/10.3390/vibration8030049 - 1 Sep 2025
Abstract
►▼
Show Figures
The Fourier decomposition technique has notable advantages in filtering vibration acceleration signals and enhances the feasibility of frequency-domain mode decomposition. To improve the accuracy of mode extraction, this paper proposed a novel Fourier decomposition technique based on spectral clustering. The methodology comprises three
[...] Read more.
The Fourier decomposition technique has notable advantages in filtering vibration acceleration signals and enhances the feasibility of frequency-domain mode decomposition. To improve the accuracy of mode extraction, this paper proposed a novel Fourier decomposition technique based on spectral clustering. The methodology comprises three key steps. First, spectral clustering is performed using feature vectors derived from the spectrum envelope, specifically the frequency and amplitude of its maximum value, along with the average amplitude of local spectral peaks. Subsequently, the spectrum is adaptively segmented based on clustering feedback to determine spectral segmentation boundaries. Followed by this, a filter bank is constructed via Fourier decomposition for signal reconstruction. Finally, a harmonic correlation index is computed for all decomposed components to identify fault-sensitive modes exhibiting the highest diagnostic relevance. These selected modes are subsequently subjected to demodulation for fault diagnosis. The effectiveness of the proposed method is validated through both simulated signals and experimental datasets, demonstrating its improved ability to capture critical fault information.
Full article

Figure 1
Open AccessArticle
Trajectory Control of Flexible Manipulators Using Forward and Inverse Models with Neural Networks
by
Minoru Sasaki, Mizuki Takeda, Joseph Muguro and Waweru Njeri
Vibration 2025, 8(3), 48; https://doi.org/10.3390/vibration8030048 - 26 Aug 2025
Abstract
►▼
Show Figures
This study explores trajectory control in flexible manipulators using neural-network-based forward and inverse modeling. Unlike traditional approaches that enhance precision by increasing structural rigidity—often at the cost of added weight and energy consumption—this work focuses on lightweight flexible manipulators, which are more suitable
[...] Read more.
This study explores trajectory control in flexible manipulators using neural-network-based forward and inverse modeling. Unlike traditional approaches that enhance precision by increasing structural rigidity—often at the cost of added weight and energy consumption—this work focuses on lightweight flexible manipulators, which are more suitable for aerospace and other weight-sensitive applications but introduce control complexities due to elastic deformations. To address these challenges, neural-network-based models are proposed for a two-link, three-degree-of-freedom (3-DOF) flexible manipulator. Simulation and experimental results show that incorporating system delay compensation into the training data significantly improves tracking accuracy. Nonetheless, difficulties remain in achieving smooth trajectory generation. The findings highlight the potential of neural networks in adaptive control and point to future opportunities for refining input–output modeling to better align theoretical developments with practical implementation.
Full article

Figure 1
Open AccessArticle
Numerical Analysis of the Dispersive Behaviour of Buried Elastic Periodic Structures
by
Alexandre Castanheira-Pinto, Luís Godinho, Pedro Alves Costa and Aires Colaço
Vibration 2025, 8(3), 47; https://doi.org/10.3390/vibration8030047 - 14 Aug 2025
Abstract
►▼
Show Figures
Train-induced vibrations negatively impact residents in nearby buildings and are increasingly recognized as a public health concern. To address this issue, both effective mitigation measures and simplified design procedures are essential. This study investigates the mitigation pattern induced by an array of stiff
[...] Read more.
Train-induced vibrations negatively impact residents in nearby buildings and are increasingly recognized as a public health concern. To address this issue, both effective mitigation measures and simplified design procedures are essential. This study investigates the mitigation pattern induced by an array of stiff inclusions employing a modal dispersive analysis. However, applying this type of analysis to a half-space medium presents challenges. To overcome this limitation, a wave-scattering methodology is proposed. This approach enables the computation of the mitigation pattern in a specific direction and at a particular location. It also highlights the conditioning energy content, thereby identifying the key frequency target for attenuation.
Full article

Figure 1
Open AccessArticle
Weibull Reliability Based on Random Vibration Performance for Fiber Optic Connectors
by
Jesús M. Barraza-Contreras, Manuel R. Piña-Monárrez, María M. Hernández-Ramos and Secundino Ramos-Lozano
Vibration 2025, 8(3), 46; https://doi.org/10.3390/vibration8030046 - 12 Aug 2025
Abstract
►▼
Show Figures
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world
[...] Read more.
Communication via optical fiber is increasingly being used in harsh applications where environmental vibration is present. This study involves a Weibull reliability analysis focused on the performance of fiber optic connectors when they are subjected to mechanical random vibration stress to simulate real-world operating conditions, and the insertion loss (IL) degradation is measurable. By analyzing the testing times and stress levels, the Weibull shape ( ) and scale ( ) parameters are estimated directly from the maximal and minimal principal IL stresses ( , ), enabling the prediction of the connector’s reliability with efficiency. The sample size n is derived from the desired reliability (R(t)), and the GR-326 mechanical vibration test (2.306 Grms for six hours) is performed on optical SC angled physical contact (PC) polish fiber endface connectors that are monitored during testing to evaluate the IL transient change in the optical transmission. The method is verified by an experiment performed with and where the IL measurements are captured with an Agilent N7745A source-detector optical equipment, and the Weibull statistical results provide a connector’s reliability R(t) = 0.8474, with a characteristic value of = 0.2750 dB and = 3. Finally, the connector’s reliability is as worthy of attention as the telecommunication sign conditions.
Full article

Figure 1
Open AccessArticle
Theoretical Formulations of Integral-Type Frequency–Amplitude Relationships for Second-Order Nonlinear Oscillators
by
Chein-Shan Liu, Chia-Cheng Tsai and Chih-Wen Chang
Vibration 2025, 8(3), 45; https://doi.org/10.3390/vibration8030045 - 11 Aug 2025
Abstract
►▼
Show Figures
The development of simple and yet accurate formulations of frequency–amplitude relationships for non-conservative nonlinear oscillators is an important issue. The present paper is concerned with integral-type frequency–amplitude formulas in the dimensionless time domain and time domain to accurately determine vibrational frequencies of nonlinear
[...] Read more.
The development of simple and yet accurate formulations of frequency–amplitude relationships for non-conservative nonlinear oscillators is an important issue. The present paper is concerned with integral-type frequency–amplitude formulas in the dimensionless time domain and time domain to accurately determine vibrational frequencies of nonlinear oscillators. The novel formulation is a balance of kinetic energy and the work during motion of the nonlinear oscillator within one period; its generalized formulation permits a weight function to appear in the integral formula. The exact values of frequencies can be obtained when exact solutions are inserted into the formulas. In general, the exact solution is not available; hence, low-order periodic functions as trial solutions are inserted into the formulas to obtain approximate values of true frequencies. For conservative nonlinear oscillators, a powerful technique is developed in terms of a weighted integral formula in the spatial domain, which is directly derived from the governing ordinary differential equation (ODE) multiplied by a weight function, and integrating the resulting equation after inserting a general trial ODE to acquire accurate frequency. The free parameter is involved in the frequency–amplitude formula, whose optimal value is achieved by minimizing the absolute error to fulfill the periodicity conditions. Several examples involving two typical non-conservative nonlinear oscillators are explored to display the effectiveness and accuracy of the proposed integral-type formulations.
Full article

Figure 1
Open AccessArticle
Stochastic Vibration of Damaged Cable System Under Random Loads
by
Yihao Wang, Wei Li and Drazan Kozak
Vibration 2025, 8(3), 44; https://doi.org/10.3390/vibration8030044 - 4 Aug 2025
Abstract
►▼
Show Figures
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and
[...] Read more.
This study proposes an integrated framework that combines nonlinear stochastic vibration analysis with reliability assessment to address the safety issues of cable systems under damage conditions. First of all, a mathematical model of the damaged cable is established by introducing damage parameters, and its static configuration is determined. Using the Pearl River Huangpu Bridge as a case study, the accuracy of the analytical solution for the cable’s sag displacement is validated through the finite difference method (FDM). Furthermore, a quantitative relationship between the damage parameters and structural response under stochastic excitation is developed, and the nonlinear stochastic dynamic equations governing the in-plane and out-of-plane motions of the damaged cable are derived. Subsequently, a Gaussian Radial Basis Function Neural Network (GRBFNN) method is employed to solve for the steady-state probability density function of the system response, enabling a detailed analysis of how various damage parameters affect structural behavior. Finally, the First-Order and Second-Order Reliability Method (FORM/SORM) are used to compute the reliability index and failure probability, which are further validated using Monte Carlo simulation (MCS). Results show that the severity parameter η shows the highest sensitivity in influencing the failure probability among the damage parameters. For the system of the Pearl River Huangpu bridge, an increase in the damage extent δ from 0.1 to 0.4 can reduce the reliability-based service life of by approximately 40% under fixed values of the damage severity and location, and failure risk is highest when the damage is located at the midspan of the cable. This study provides a theoretical framework from the point of stochastic vibration for evaluating the response and associated reliability of mechanical systems; the results can be applied in practice with guidance for the engineering design and avoid potential damages of suspended cables.
Full article

Figure 1
Open AccessArticle
Method of Measuring the Dynamic Young’s Modulus Using a Reflective Fiber Optic Sensor of Vibration
by
Tomasz Więcek and Zygmunt L. Warsza
Vibration 2025, 8(3), 43; https://doi.org/10.3390/vibration8030043 - 24 Jul 2025
Abstract
►▼
Show Figures
The paper describes the vibration method of measuring the dynamic Young’s modulus for a ferromagnetic steel element. The parameters of vibrations at the resonant frequency induced by an external magnetic field are studied for an unmagnetized and magnetized steel element. A fiber optic
[...] Read more.
The paper describes the vibration method of measuring the dynamic Young’s modulus for a ferromagnetic steel element. The parameters of vibrations at the resonant frequency induced by an external magnetic field are studied for an unmagnetized and magnetized steel element. A fiber optic reflective sensor is used to study the vibration parameters of this element. The dynamic Young’s modulus is determined from these studies. A theory describing the amplitude of vibrations of the tested sample induced by the interaction of a magnetic field is developed and used. The conclusions resulting from the studies using this method on the experimental stand are discussed and the scope of its further studies are proposed.
Full article

Figure 1
Open AccessArticle
FEA-Based Vibration Modal Analysis and CFD Assessment of Flow Patterns in a Concentric Double-Flange Butterfly Valve Across Multiple Opening Angles
by
Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Vibration 2025, 8(3), 42; https://doi.org/10.3390/vibration8030042 - 23 Jul 2025
Abstract
►▼
Show Figures
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions
[...] Read more.
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions at 30°, 60°, and 90°. The valve geometry was discretized using a curvature-based mesh with linear elastic isotropic properties for 1023 carbon steel. Lower-order vibration modes produced global deformations primarily along the valve disk, while higher-order modes showed localized displacement near the shaft–bearing interface, indicating coupled torsional and translational dynamics. The highest EMPF in the X-direction occurred at 1153.1 Hz with 0.2631 kg, while the Y-direction showed moderate contributions peaking at 0.1239 kg at 392.06 Hz. The Z-direction demonstrated lower influence, with a maximum EMPF of 0.1218 kg. Modes 3 and 4 were critical for potential resonance zones due to significant mass contributions and directional sensitivity. Computational Fluid Dynamics (CFD) simulation analyzed flow behavior, pressure drops, and turbulence under varying valve openings. At a lower opening angle, significant flow separation, recirculation zones, and high turbulence were observed. At 90°, the flow became more streamlined, resulting in a reduction in pressure losses and stabilizing velocity profiles.
Full article

Figure 1
Open AccessArticle
Study on Vibration Control Systems for Spherical Water Tanks Under Earthquake Loads
by
Jingshun Zuo, Jingchao Guan, Wei Zhao, Keisuke Minagawa and Xilu Zhao
Vibration 2025, 8(3), 41; https://doi.org/10.3390/vibration8030041 - 11 Jul 2025
Abstract
►▼
Show Figures
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper
[...] Read more.
Ensuring the safety of large spherical water storage tanks in seismic environments is critical. Therefore, this study proposed a vibration control device applicable to general spherical water tanks. By utilizing the upper interior space of a spherical tank, a novel tuned mass damper (TMD) system composed of a mass block and four elastic springs was proposed. To enable practical implementation, the vibration control mechanism and tuning principle of the proposed TMD were examined. Subsequently, an experimental setup, including the spherical water tank and the TMD, was developed. Subsequently, shaking experiments were conducted using two types of spherical tanks with different leg stiffness values under various seismic waves and excitation directions. Shaking tests using actual El Centro NS and Taft NW earthquake waves demonstrated vibration reduction effects of 34.87% and 43.38%, respectively. Additional shaking experiments were conducted under challenging conditions, where the natural frequency of the spherical tank was adjusted to align closely with the dominant frequency of the earthquake waves, yielding vibration reduction effects of 18.74% and 22.42%, respectively. To investigate the influence of the excitation direction on the vibration control performance, shaking tests were conducted at 15-degree intervals. These experiments confirmed that an average vibration reduction of more than 15% was achieved, thereby verifying the validity and practicality of the proposed TMD vibration control system for spherical water tanks.
Full article

Figure 1
Open AccessArticle
Design, Optimization, and Experimental Validation of Dynamic Vibration Absorber for Vibration Suppression in Cantilevered Plate Structures
by
Linn Ye, Yiqing Yang, Wenshuo Ma and Wenjing Wu
Vibration 2025, 8(3), 40; https://doi.org/10.3390/vibration8030040 - 8 Jul 2025
Abstract
►▼
Show Figures
Vibration control constitutes a critical consideration in structural design, as excessive oscillations may precipitate fatigue damage, operational instability, and catastrophic failures. Dynamic vibration absorbers (DVAs), serving as passive control devices, demonstrate remarkable efficacy in mitigating structural vibrations across engineering applications. This study systematically
[...] Read more.
Vibration control constitutes a critical consideration in structural design, as excessive oscillations may precipitate fatigue damage, operational instability, and catastrophic failures. Dynamic vibration absorbers (DVAs), serving as passive control devices, demonstrate remarkable efficacy in mitigating structural vibrations across engineering applications. This study systematically investigates the design of DVAs for vibration suppression of a cantilevered plate through integrated theoretical modeling, parameter optimization, structural implementation, and experimental validation. Key methodologies encompass receptance coupling substructure analysis (RCSA) for system dynamics characterization and H∞ optimization for absorber parameter identification. Experimental results reveal 74.2–85.7% vibration amplitude reduction in target mode, validating the proposed design framework. Challenges pertaining to boundary condition uncertainties and manufacturing tolerances are critically discussed, providing insights for practical implementations.
Full article

Figure 1
Open AccessArticle
A Parameter Sensitivity Analysis of Two-Body Wave Energy Converters Using the Monte Carlo Parametric Simulations Through Efficient Hydrodynamic Analytical Model
by
Elie Al Shami and Xu Wang
Vibration 2025, 8(3), 39; https://doi.org/10.3390/vibration8030039 - 7 Jul 2025
Abstract
►▼
Show Figures
This paper introduces a novel approach by employing a Monte Carlo simulation to investigate the impact of various design parameters on the performance of two-body wave energy converters. The study uses a simplified analytical model that eliminates the need for complex simulations such
[...] Read more.
This paper introduces a novel approach by employing a Monte Carlo simulation to investigate the impact of various design parameters on the performance of two-body wave energy converters. The study uses a simplified analytical model that eliminates the need for complex simulations such as boundary elements or computational fluid dynamics methods. Instead, this model offers an efficient means of predicting and calculating converter performance output. Rigorous validation has been conducted through ANSYS AQWA simulations, affirming the accuracy of the proposed analytical model. The parametric investigation reveals new insights into design optimization. These findings serve as a valuable guide for optimizing the design of two-body point absorbers based on specific performance requirements and prevailing sea state conditions. The results show that in the early design stages, device dimensions and hydrodynamics affect performance more than the PTO’s stiffness and damping. Furthermore, for lower frequencies, adjustments to the buoy’s height emerge as a favorable strategy, whereas augmenting the buoy radius proves more advantageous for enhancing performance at higher frequencies.
Full article

Figure 1
Open AccessArticle
Chaos Suppression in Spiral Bevel Gears Through Profile Modifications
by
Milad Asadi, Farhad S. Samani, Antonio Zippo and Moslem Molaie
Vibration 2025, 8(3), 38; https://doi.org/10.3390/vibration8030038 - 6 Jul 2025
Abstract
►▼
Show Figures
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during
[...] Read more.
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during the meshing of the gear teeth affected by the tooth profile. To address these challenges, this research developed a comprehensive dynamic model with eight degrees of freedom, capturing both translational and rotational movements of the system’s components. The study focused on evaluating the effects of two different tooth profile modifications, namely topology and flank modifications, on the vibration characteristics of the system. The system comprised a spiral bevel gear pair with mesh stiffness in forward rotation. The results highlighted that optimizing the tooth profile and minimizing tooth surface deviation significantly reduce vibration amplitudes and improve dynamic stability. These findings not only enhance the performance and lifespan of spiral bevel gears but also provide a robust foundation for the design and optimization of advanced gear systems in industrial applications, ensuring higher efficiency and reliability. In this paper, it was observed that some modifications led to a 68% reduction in vibration levels. Additionally, three modifications helped improve the vibrational behavior of the system, preventing chaotic behavior, which can lead to system failure, and transforming the system’s behavior into periodic motion.
Full article

Figure 1
Open AccessArticle
Modeling Hysteretically Nonlinear Piezoelectric Composite Beams
by
Abdulaziz H. Alazemi and Andrew J. Kurdila
Vibration 2025, 8(3), 37; https://doi.org/10.3390/vibration8030037 - 6 Jul 2025
Abstract
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects.
[...] Read more.
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. This paper develops a cascade model that integrates a high-dimensional linear piezoelectric composite beam representation with a nonlinear Krasnosel’skii–Pokrovskii (KP) hysteresis operator. The resulting system is formulated using a state-space model where the input voltage undergoes a history-dependent transformation. Through modal expansion and discretization of the Preisach plane, we derive a tractable numerical implementation that preserves essential nonlinear phenomena. Numerical investigations demonstrate how system parameters, including the input voltage amplitude, and hysteresis parameters significantly influence the dynamic response, particularly the shape and amplitude of limit cycles. The results reveal that while the model accurately captures memory-dependent nonlinearities, it depends on numerous real and distributed parameters, highlighting the need for efficient reduced-order modeling approaches. This work provides a foundation for understanding and predicting the complex behavior of piezoelectric systems with hysteresis, with potential applications in vibration control, energy harvesting, and precision actuation.
Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
The Association Between Vibrotactile and Thermotactile Perception Thresholds and Personal Risk Factors in Workers Exposed to Hand-Transmitted Vibration
by
Fabiano Barbiero, Andrea Miani, Marcella Mauro, Flavia Marrone, Enrico Marchetti, Francesca Rui, Angelo Tirabasso, Carlotta Massotti, Marco Tarabini, Francesca Larese Filon and Federico Ronchese
Vibration 2025, 8(3), 36; https://doi.org/10.3390/vibration8030036 - 4 Jul 2025
Abstract
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal
[...] Read more.
Background: Hand–arm vibration syndrome (HAVS) is a well-recognized occupational condition resulting from prolonged exposure to hand-transmitted vibration (HTV), characterized by vascular, neurological, and musculoskeletal impairments. While vibration exposure is a known risk factor for HAVS, less is understood about the role of personal risk factors and, particularly regarding neurosensory dysfunction. This study aimed to examine the association between vibrotactile (VPT) and thermotactile perception thresholds (TPT) and individual risk factors and comorbidities in HTV-exposed workers. Methods: A total of 235 male HTV workers were evaluated between 1995 and 2005 at the University of Trieste’s Occupational Medicine Unit. Personal, occupational, and health-related data were collected, and sensory function was assessed in both hands. VPTs at 31.5 and 125 Hz and TPTs (for warm and cold) were measured on fingers innervated by the median and ulnar nerves. Results: Multivariable regression analysis revealed that impaired VPTs were significantly associated with age, higher daily vibration exposure (expressed as 8 h energy-equivalent A(8) values), BMI ≥ 25, smoking, vascular/metabolic disorders, and neurosensory symptoms. In contrast, TPTs showed weaker and less consistent associations, with some links to smoking and alcohol use. Conclusions: These findings suggest that, in addition to vibration exposure, individual factors such as aging, overweight, smoking, and underlying health conditions significantly contribute to neurosensory impairment and may exacerbate neurosensory dysfunction in a context of HAVS. The results underscore the importance of including personal health risk factors in both clinical assessment and preventive strategies for HAVS and may inform future research on its pathogenesis.
Full article
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Special Issues
Special Issue in
Vibration
Geotechnical Seismic Isolation System: Development and Challenges
Guest Editor: Ivan BanovićDeadline: 10 October 2025
Special Issue in
Vibration
Nonlinear Vibration of Mechanical Systems
Guest Editors: Francesco Pellicano, Yuri Mikhlin, Konstantin Avramov, Antonio ZippoDeadline: 15 November 2025
Special Issue in
Vibration
Vibration Damping
Guest Editors: Mohamed Hamdaoui, Kouider BendineDeadline: 15 December 2025
Special Issue in
Vibration
Whole-Body Vibration and Hand-Arm Vibration Related to ISO-TC108-SC4 Published Standards
Guest Editors: Setsuo Maeda, Marco TarabiniDeadline: 31 December 2025