Mounted Accelerometer Frequency Response of Adhesive Products and Aluminum Frame Quick Mounts
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources and Sensors
2.2. Mounting Techniques
2.3. Measurement and Analysis
3. Results
3.1. Consistency Between Measurements
3.2. Adhesive Mounting
3.3. Frame Mounting
3.4. Overall Mounting Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cárdenas, E.S.; Hix, J.D.; Ocampo Giraldo, L.A.; Greenhalgh, M.R.; Walker, C.M.; Johnson, J.T. A new approach to monitoring solvent extraction processes for the nuclear industry. Nucl. Sci. Technol. Open Res. 2024, 2, e26282. [Google Scholar] [CrossRef]
- Chu, T.; Nguyen, T.; Yoo, H.; Wang, J. A review of vibration analysis and its applications. Heliyon 2024, 10, e26282. [Google Scholar] [CrossRef] [PubMed]
- Hashemian, H.M. Wireless sensors for predictive maintenance of rotating equipment in research reactors. Ann. Nucl. Energy 2011, 38, 665–680. [Google Scholar] [CrossRef]
- Nandi, A.; Ahmed, H. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machine; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Park, B.; Yang, J.Y.; Lee, H.S.; Sohn, H. Sensing solutions for assessing and monitoring of nuclear power plants. In Sensor Technologies for Civil Infrastructures; Woodhead Publishing: Cambridge, UK, 2022; pp. 427–462. [Google Scholar]
- Pettigrew, M.; Taylor, C.; Fisher, N. Flow-Induced Vibration Handbook for Nuclear and Process Equipment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Casazza, M.; Barone, F.; Bonisoli, E.; Dimauro, L.; Venturini, S.; Masoero, M.; Shtrepi, L. A procedure for the characterization of a music instrument vibro-acoustic fingerprint: The case of a contemporary violin. Acta IMEKO 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Ozturk, S. Experimental and numerical modal analysis of the traditional percussion instrument “Erbane”. Int. J. Eng. Sci. 2025, 216, 104351. [Google Scholar] [CrossRef]
- Mohd Ghazali, M.H.; Rahiman, W.; Tang, G. Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock Vib. 2021, 2021, 9469318. [Google Scholar] [CrossRef]
- Tudor, E.; Vasile, I.; Lipcinski, D.; Dumitru, C.; Tănase, N.; Drăghici, F.; Popa, G. Accelerometers in Monitoring Systems for Rail Vehicle Applications: A Literature Review. Appl. Syst. Innov. 2025, 8, 70. [Google Scholar] [CrossRef]
- Karpenko, M.; Prentkovskis, O.; Skačkauskas, P. Analysing the impact of electric kick-scooters on drivers: Vibration and frequency transmission during the ride on different types of urban pavements. Eksploat. I Niezawodn.—Maint. Reliab. 2025, 27, 199893. [Google Scholar] [CrossRef]
- Karpenko, M.; Ževžikov, P.; Stosiak, M.; Skačkauskas, P.; Borucka, A.; Delembovskyi, M. Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes. Machines 2024, 12, 29. [Google Scholar] [CrossRef]
- Bagri, I.; Tahiry, K.; Hraiba, A.; Touil, A.; Mousrij, A. Vibration Signal Analysis for Intelligent Rotating Machinery Diagnosis and Prognosis: A Comprehensive Systematic Literature Review. Vibration 2024, 7, 1013–1062. [Google Scholar] [CrossRef]
- Su, X.; Liu, J.; Xu, J.; Chen, P. Recent Advances on Vibration Sensors and Calibration Methods for the Operation and Maintenance of Mechanical Equipment. Meas. Sci. Rev. 2025, 25, 122–133. [Google Scholar] [CrossRef]
- Kim, H.; Kerrigan, S.; Bourham, M.; Jiang, X. AlN Single Crystal Accelerometer for Nuclear Power Plants. IEEE Trans. Ind. Electron. 2021, 68, 5346–5354. [Google Scholar] [CrossRef]
- ISO 5348:2021; Mechanical Vibration and Shock—Mechanical Mounting of Accelerometers. International Organization for Standardization: Geneva, Switzerland, 2021.
- Dumont, M.; Cook, A.; Kinsley, N. Acceleration Measurement Optimization: Mounting Considerations and Sensor Mass Effect. In Topics in Modal Analysis & Testing, Volume 10; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2016; pp. 61–71. [Google Scholar]
- Dumont, M.; Kuntz, D.; Petzsche, T. Testing Methods for Verification of a Mounted Accelerometer Frequency Response. In Special Topics in Structural Dynamics, Volume 6; Conference Proceedings of the Society for Experimental Mechanics Series; Springer: Cham, Switzerland, 2017; pp. 53–66. [Google Scholar]
- Piersol, A.; Paez, T. Harris’ Shock and Vibration Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Cocconcelli, M.; Spaggiari, A. Mounting of accelerometers with structural adhesives: Experimental characterization of the dynamic response. J. Adhes. 2015, 93, 585–598. [Google Scholar] [CrossRef]
- Spaggiari, A.; Cocconcelli, M. Effect of Temperature on the Dynamic Response of Adhesively Mounted Accelerometers. Exp. Tech. 2018, 42, 299–309. [Google Scholar] [CrossRef]
- Miller, A.; Sburlati, D.; Duschlbauer, D. Accelerometer mounting—comparison of stud and magnetic mounting methods. In Proceedings of the Hear to Listen Acoustics, Adelaide—South Australia, Adelaide, Australia, 6–9 November 2018. [Google Scholar]
- ISO 20816-1:2016; Mechanical Vibration—Measurement and Evaluation of Machine Vibration Part 1: General Guidelines. International Organization for Standardization: Geneva, Switzerland, 2016.
- Chae, Y.H.; Kim, S.G.; Kim, H.; Kim, J.T.; Seong, P.H. A methodology for diagnosing FAC induced pipe thinning using accelerometers and deep learning models. Ann. Nucl. Energy 2020, 143, 107501. [Google Scholar] [CrossRef]
- Chung, B.; Kim, J.; Jang, D.; Kim, S.; Choi, Y. Experimental investigation of a method for diagnosing wall thinning in an artificially thinned carbon steel elbow based on changes in modal characteristics. Nucl. Eng. Technol. 2023, 55, 947–957. [Google Scholar] [CrossRef]
- Ghimire, L.; Waller, E. Small Modular Reactors: Opportunities and Challenges as Emerging Nuclear Technologies for Power Production. J. Nucl. Eng. Radiat. Sci. 2023, 9, 044501. [Google Scholar] [CrossRef]
- Li, T.; Fan, B.; Xiong, X. Multimodal Fusion-Based Fault Diagnosis of Motor in CRF Pump-Unit Under Data Imbalance. In Proceedings of the 2023 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), Xi’an, China, 2–4 November 2023; pp. 1–7. [Google Scholar]
- Lyseid Authen, T.; Adnet, J.-M.; Bourg, S.; Carrott, M.; Ekberg, C.; Galán, H.; Geist, A.; Guilbaud, P.; Miguirditchian, M.; Modolo, G.; et al. An overview of solvent extraction processes developed in Europe for advanced nuclear fuel recycling, Part 2—Homogeneous recycling. Sep. Sci. Technol. 2021, 57, 1724–1744. [Google Scholar] [CrossRef]
- Miguirditchian, M.; Vanel, V.; Marie, C.; Pacary, V.; Charbonnel, M.-C.; Berthon, L.; Hérès, X.; Montuir, M.; Sorel, C.; Bollesteros, M.-J.; et al. Americium Recovery from Highly Active PUREX Raffinate by Solvent Extraction: The EXAm Process. A Review of 10 Years of R&D. Solvent Extr. Ion Exch. 2020, 38, 365–387. [Google Scholar] [CrossRef]
- Terranova, M.L.; Tavares, O.A.P. Trends and Perspectives on Nuclear Waste Management: Recovering, Recycling, and Reusing. J. Nucl. Eng. 2024, 5, 299–317. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y. Production of nuclear grade zirconium: A review. J. Nucl. Mater. 2015, 466, 21–28. [Google Scholar] [CrossRef]
- Zhu, R.; Li, Y.; Huang, Q.; Li, S.; Zhang, X.; Li, H.; Fu, Q. Research on Vertical SEC Centrifugal Pump Multi-Fault Diagnosis Based on WPT–SVM. Energies 2023, 16, 7653. [Google Scholar] [CrossRef]
- ISO 5347-22:1997; Methods for the Calibration of Vibration and Shock Pick-Ups Part 22: Accelerometer Resonance Testing—General Methods. International Organization for Standardization: Geneva, Switzerland, 1997.
- ISO 16063-21:2003; Methods for the Calibration of Vibration and Shock Transducers Part 21: Vibration Calibration by Comparison to a Reference Transducer. International Organixation for Standardization: Geneva, Switzerland, 2003.
Accelerometer | Model | Sensitivity (mV/g) | Frequency Range (Hz) | Mass (g) |
---|---|---|---|---|
A | 333B30 | 100 | 0.5–3000 | 4.0 |
B | 352C33 | 100 | 0.5–10,000 | 5.8 |
C | 352B | 1000 | 2–10,000 | 25 |
Mount | Description | Mass (g ± 0.029) | Thickness (mm) |
---|---|---|---|
Thick Foam Tape | 3M 5925 VHB double-sided foam tape | 0.7 | 1.24 |
Foam Dot | 1″ dot polyurethane foam | 0.1 | 1.75 |
Thin Foam Tape | 3M 4905 VHB acrylic adhesive foam | 0.2 | 0.5 |
Poster Strip | 3M Command poster strips | 0.2 | 1.17 |
3D Print (Accelerometer A) | Acrylonitrile butadiene styrene (ABS) filament printed, designed based on optical table mounts, with 5-40 hardware to mount directly to the accelerometer | 22.2 | 10.25 |
3D Print (Accelerometer B/C) | ABS filament printed, designed based on optical table mounts, with 8–32 hardware to mount directly to the accelerometer | 24.1 | 10.25 |
Hose Clamp | Wrapped around a structure with an accelerometer coupled to a metal hose clamp | 24.7 | 0.95 |
Zip Tie | Two plastic zip ties wrapped around the structure and the accelerometer | 2.4 | 1.30 |
Mounting Method | Accelerometer | Highest Third Octave Band Center Frequency Prior to Exceeding Threshold (Hz) | ||
---|---|---|---|---|
5% | 10% | 3 dB | ||
Thick Foam Tape | A | 50 | 160 | 4000 |
B | 200 | 200 | 2500 | |
C | 200 | 200 | 2500 | |
Foam Dot | A | 50 | 200 | 315 |
B | 50 | 1100 | 200 | |
C | 63 | 80 | 200 | |
Thin Foam Tape | A | 160 | 2000 | 5000 |
B | 200 | 1600 | 2000 | |
C | 160 | 200 | 2500 | |
Poster Strip | A | 50 | 160 | 500 |
B | 50 | 200 | 315 | |
C | 125 | 200 | 200 |
Mounting Method | Accelerometer | Highest Third Octave Band Center Frequency Prior to Exceeding Threshold (Hz) | ||
---|---|---|---|---|
±5% | ±10% | ±3 dB | ||
3D Print | A | 160 | 200 | 1250 |
B | 250 | 1000 | 1000 | |
C | 125 | 200 | 1000 | |
Hose Clamp | A | 50 | 50 | 800 |
B | 160 | 160 | 2500 | |
C | 160 | 160 | 1600 | |
Zip Tie | A | 50 | 800 | 2000 |
B | 160 | 160 | 2500 | |
C | 160 | 630 | 800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummel, K.; Hix, J.; Cárdenas, E. Mounted Accelerometer Frequency Response of Adhesive Products and Aluminum Frame Quick Mounts. Vibration 2025, 8, 61. https://doi.org/10.3390/vibration8040061
Hummel K, Hix J, Cárdenas E. Mounted Accelerometer Frequency Response of Adhesive Products and Aluminum Frame Quick Mounts. Vibration. 2025; 8(4):61. https://doi.org/10.3390/vibration8040061
Chicago/Turabian StyleHummel, Kenton, Jay Hix, and Edna Cárdenas. 2025. "Mounted Accelerometer Frequency Response of Adhesive Products and Aluminum Frame Quick Mounts" Vibration 8, no. 4: 61. https://doi.org/10.3390/vibration8040061
APA StyleHummel, K., Hix, J., & Cárdenas, E. (2025). Mounted Accelerometer Frequency Response of Adhesive Products and Aluminum Frame Quick Mounts. Vibration, 8(4), 61. https://doi.org/10.3390/vibration8040061