Skip Content
You are currently on the new version of our website. Access the old version .

All Articles (398)

In a sentinel health event investigation of a back disorder claim, the vibration exposure and ergonomic function of a modified suspension seat were assessed. Background: In a forensic occupational injury investigation, an aftermarket-altered operator seat in a railroad rail-track tamper machine was evaluated. Methods: Detailed whole-body vibration (WBV) exposure measurements were conducted according to current applicable technical standards and guidelines (i.e., ISO 2631-1:1997) on a 09-16 DYNACAT Continuous Action Tamper with Stabilizer during routine track repair services. The modified Grammer Mfg. suspension operator seat was evaluated for performance and ergonomic features (i.e., adjustability, posture, and suspension quality). Results: The tested seat appeared to underperform and was overloaded with the aftermarket control devices, attachments and modifications. The suspension system’s end-stopper was damaged. The seat system had excessive play and wobbles; it was not firmly braced and attached. The vector sum (av) results ranged from 0.26 m/s2 (no tamping) to a maximal 0.55 m/s2 (tamping). The seat transfer (SEAT) analysis showed magnification of vibration input and variable performance of the suspension depending on operational tasks. Conclusions: The modified suspension seat underperformed and seemed to magnify and worsen the vibration, jolts and shock exposures of the seated operator. The heavy and bulky seat modifications likely limited the suspension function. The malfunctioning seat was more likely than not a contributing factor in the pathogenesis of the spinal disorders of the injured machine operator.

10 February 2026

Operator seat system with attached side consoles and monitors showing seat pad sensor location (view from top) (© E. Johanning).

Editorial for the Special Issue of Vibration: Nonlinear Vibration of Mechanical Systems

  • Francesco Pellicano,
  • Yuri V. Mikhlin and
  • Antonio Zippo
  • + 1 author

Nonlinear vibration phenomena play a central role in modern engineering, spanning applications from large-scale civil infrastructure to microscale and nanoscale systems [...]

5 February 2026

A new lumped-parameter matrix method is proposed to model the decoupled, in-plane longitudinal and transverse free undamped vibrations of a collinear system with fixed ends and formed of two end flexible and prismatic members linked by a middle rigid connector. The method calculates the natural frequencies associated with the system’s three degrees of freedom by solving a linear algebraic characteristic equation related to the dynamic matrix, which is obtained from the system compliance and mass matrices. The linear, small-displacement model characterizes either long or short beams by adequately formulating the compliance and mass matrices. The lumped-parameter model is comprehensively validated by two separate distributed-parameter models, which determine the system’s longitudinal-vibration and long-beam, bending-vibration natural frequencies. Numerical simulations are performed with the lumped-parameter model to identify the sensitivity of the natural frequencies to system parameters variations and model variants. The system’s matrices are also utilized to perform frequency-domain analysis of the three-member system in a displacement/acceleration sensing application. The method can be adapted and expanded to describe more complex configurations with multiple, non-collinear, and non-prismatic members.

2 February 2026

With the development of aerospace technology, hypersonic flight vehicles are evolving towards larger size, lighter weight, and higher performance. Their cross-domain maneuverability and extreme flight environment led to the rigid–flexible coupling effect and became the core bottleneck restricting performance improvement, seriously affecting flight stability and control accuracy. This paper systematically reviews the research status in the field of control for high-speed rigid–flexible coupling aircraft and conducts a review focusing on two core aspects: dynamic modeling and control strategies. In terms of modeling, the modeling framework based on the average shafting, the nondeformed aircraft fixed-coordinate system, and the transient coordinate system is summarized. In addition, the dedicated modeling methods for key issues, such as elastic mode coupling and liquid sloshing in the fuel tank, are also presented. The research progress and challenges of multi-physical field (thermal–structure–control, fluid–structure–control) coupling modeling are analyzed. In terms of control strategies, the development and application of linear control, nonlinear control (robust control, sliding mode variable structure control), and intelligent control (model predictive control, neural network control, prescribed performance control) are elaborated. Meanwhile, it is pointed out that the current research has limitations, such as insufficient characterization of multi-physical field coupling, neglect of the closed-loop coupling characteristics of elastic vibration, and lack of adaptability to special working conditions. Finally, the relevant research directions are prospected according to the priority of “near-term engineering requirements–long-term frontier exploration”, providing Refs. for the breakthrough of the rigid–flexible coupling control technology of the new-generation high-speed aircraft.

27 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Vibration - ISSN 2571-631X