Open AccessTechnical Note
Mechanical and Thermal Characterization of Sustainable Polyester Composites Reinforced with Mill Scale
by
Mário C. O. Spinelli, Salomão S. Batista, Polyane A. Santos, Kenedy Marconi G. Santos, Crescencio R. L. Neto, Elvio P. Silva, Leonardo S. Caires, Ronaldo M. Lima, Amélia M. Santos, Sergio M. O. Tavares, Rui A. S. Moreira, Décio R. M. Faria, Jose A. D. Amado, João E. S. Marques and Luiz G. M. Souza
Abstract
The reuse of industrial residues has gained importance due to environmental and public health concerns associated with improper waste disposal. Steel scale (CDA), a by-product of machining and rolling operations, represents a residue with technological potential for incorporation into polymer composites. This study
[...] Read more.
The reuse of industrial residues has gained importance due to environmental and public health concerns associated with improper waste disposal. Steel scale (CDA), a by-product of machining and rolling operations, represents a residue with technological potential for incorporation into polymer composites. This study developed a low-cost and sustainable material by reinforcing an orthophthalic polyester matrix with CDA and systematically evaluated its mechanical, thermal, and structural properties. Four formulations were prepared based on the maximum feasible filler loading: R (pure resin), C1 (50% CDA), C2 (100% CDA), and C3 (150% CDA). Composites were manufactured by cold-press molding under a two-ton compressive load. Characterization included tensile, flexural, and impact testing, thermogravimetric analysis (TGA), thermal conductivity, apparent density, liquid absorption, and morphological assessment by scanning electron microscopy (SEM). CDA incorporation reduced tensile and flexural strength but increased elastic modulus, impact toughness, and thermal conductivity. The C3 composite exhibited the highest thermal stability, retaining more than 50% of its initial mass at 500 °C. Density and liquid absorption increased proportionally with filler loading, and SEM revealed heterogeneous microstructures with particle agglomeration, sedimentation, and interfacial gaps, explaining the mechanical and thermal trends. The findings demonstrate the feasibility of producing dense and low-cost polyester composites reinforced with steel scale. The structure–property relationships identified in this study establish a foundation for subsequent investigations focusing on additional functional behaviors of this waste-derived material system.
Full article
►▼
Show Figures