Journal Description
Vibration
Vibration
is a peer-reviewed, open access journal of vibration science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22 days after submission; acceptance to publication is undertaken in 3.7 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
1.9 (2023);
5-Year Impact Factor:
2.0 (2023)
Latest Articles
Advancement in Intelligent Control for Dampening Structural Vibrations
Vibration 2024, 7(3), 844-862; https://doi.org/10.3390/vibration7030045 - 4 Sep 2024
Abstract
►
Show Figures
In this study, we introduce progress in intelligent control for reducing structural vibrations. The field of intelligent control for dampening structural vibrations is evolving rapidly, driven by advancements in materials science, AI, and actuator technology. These innovations have led to more efficient, reliable,
[...] Read more.
In this study, we introduce progress in intelligent control for reducing structural vibrations. The field of intelligent control for dampening structural vibrations is evolving rapidly, driven by advancements in materials science, AI, and actuator technology. These innovations have led to more efficient, reliable, and adaptable vibration-control systems with applications ranging from civil engineering to aerospace. The use of smart materials has opened new avenues for vibration control of piezoelectric materials. When mechanical stress is applied to these materials, an electric charge response is formed, allowing for precise control over the vibrations. Improved computational models and simulations play crucial roles in the design and testing of vibration-control systems. Finite element analysis helps in accurately predicting the behavior of structures under various loads, thereby aiding in the design of effective vibration-control systems. In our work, we use intelligent control theory to dampen structural vibrations in engineering structures.
Full article
Open AccessArticle
Tunable High-Static-Low-Dynamic Stiffness Isolator under Harmonic and Seismic Loads
by
Giovanni Iarriccio, Antonio Zippo, Fatemeh Eskandary-Malayery, Sinniah Ilanko, Yusuke Mochida, Brian Mace and Francesco Pellicano
Vibration 2024, 7(3), 829-843; https://doi.org/10.3390/vibration7030044 - 25 Aug 2024
Abstract
High-Static-Low-Dynamic Stiffness (HSLDS) mechanisms exploit nonlinear kinematics to improve the effectiveness of isolators, preserving controlled static deflections while maintaining low natural frequencies. Although extensively studied under harmonic base excitation, there are still few applications considering real seismic signals and little experimental evidence of
[...] Read more.
High-Static-Low-Dynamic Stiffness (HSLDS) mechanisms exploit nonlinear kinematics to improve the effectiveness of isolators, preserving controlled static deflections while maintaining low natural frequencies. Although extensively studied under harmonic base excitation, there are still few applications considering real seismic signals and little experimental evidence of real-world performance. This study experimentally demonstrates the beneficial effects of HSLDS isolators over linear ones in reducing the vibrations transmitted to the suspended mass under near-fault earthquakes. A tripod mechanism isolator is presented, and a lumped parameter model is formulated considering a piecewise nonlinear–linear stiffness, with dissipation taken into account through viscous and dry friction forces. Experimental shake table tests are conducted considering harmonic base motion to evaluate the isolator transmissibility in the vertical direction. Excellent agreement is observed when comparing the model to the experimental measurements. Finally, the behavior of the isolator is investigated under earthquake inputs, and results are presented using vertical acceleration time histories and spectra, demonstrating the vibration reduction provided by the nonlinear isolator.
Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
A Method for Applying the Use of a Smart 4 Controller for the Assessment of Drill String Bottom-Part Vibrations and Shock Loads
by
Serhii Landar, Andrii Velychkovych, Liubomyr Ropyak and Andriy Andrusyak
Vibration 2024, 7(3), 802-828; https://doi.org/10.3390/vibration7030043 - 9 Aug 2024
Abstract
Optimization of drilling processes for oil and gas and geothermal wells requires the effective use of mechanical energy for the destruction of rocks. When constructing a well, an important indicator of the drilling stage is the mechanical speed. Therefore, when performing drilling operations,
[...] Read more.
Optimization of drilling processes for oil and gas and geothermal wells requires the effective use of mechanical energy for the destruction of rocks. When constructing a well, an important indicator of the drilling stage is the mechanical speed. Therefore, when performing drilling operations, operators usually use blade bits of an aggressive design and often use forced drilling modes. Drill bits under forced operation modes generate a wide range of vibrations in the drilling tools; in turn, a drill string, being a long-dimensional deformable body, causes the development, amplification, and interconnection of vibrations of different types. Vibration loads reduce the technical and economic indicators of drilling, with destructive effects on drill string elements, and cause complications and emergencies. The authors initiated the creation of an informational and analytical database on emergency situations that occurred as a result of excessive vibrations of the drill string during the construction of deep wells in the deposits of the Dnipro–Donetsk Basin. For the first time, the suitability and effectiveness of using the Smart 4 controller (“Innova Power Solutions”, Calgary, Canada) for monitoring the vibration load of the drilling tool was tested in industrial conditions, while the controller was used as a separate element in the drill string. A special module was developed for the reliable installation of the Smart 4 controller, with a power battery in the layout of the lower part of the drill string. During the testing of the proposed device for measuring vibrations in the process of drilling an inclined well, verification of the registered data was carried out with the help of a high-cost telemetry system. The implementation of the proposed innovation will allow each operator to assess the significance of the impact of vibrations and shocks on the production process and, if necessary, adjust the drilling modes or apply vibration protection devices. In addition, service departments that operate and repair drilling equipment will be able to obtain an evidence base for resolving warranty disputes or claims.
Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
Verification of the Therapeutic Pain Inhibition and Neurophysiological Response by Combined Vibration and Thermal Stimulation to the Abdomen
by
Yukio Furusaka, Kei Yasukawa, Anna Sasaki, Honoka Nagae, Hayato Shigetoh, Takayuki Kodama and Junya Miyazaki
Vibration 2024, 7(3), 791-801; https://doi.org/10.3390/vibration7030042 - 31 Jul 2024
Abstract
►▼
Show Figures
This study investigated the pain inhibition and neurophysiological responses elicited by combined vibration and thermal stimulation applied to the abdomen. Eighteen healthy male volunteers participated in a crossover study comparing vibratory stimulation to the abdomen alone with combined vibratory and thermal stimulation. The
[...] Read more.
This study investigated the pain inhibition and neurophysiological responses elicited by combined vibration and thermal stimulation applied to the abdomen. Eighteen healthy male volunteers participated in a crossover study comparing vibratory stimulation to the abdomen alone with combined vibratory and thermal stimulation. The primary outcomes measured were the pressure pain threshold (PPT), autonomic nervous function (using heart rate variability), and brain wave activity (using EEG). The results showed no significant differences between the conditions in PPT, comfort levels, autonomic nervous, or brain wave activities. However, significant correlations were observed between PPT and autonomic nervous activities and between brain waves and autonomic nervous activities in the combined condition, suggesting a neurophysiological interaction. Specifically, increased parasympathetic activity was associated with reduced pain perception, indicating potential vagus nerve involvement. This study suggests that while combined stimulation does not enhance pain inhibition more than vibration alone, it does indicate complex neurophysiological interactions. Further studies should explore these mechanisms and the clinical potential of combined stimulation for pain relief, particularly in cases where direct stimulation is challenging.
Full article
Figure 1
Open AccessArticle
Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
by
Zhifei Yuan, Serhii Shevchenko, Mykola Radchenko, Oleksandr Shevchenko, Anatoliy Pavlenko, Andrii Radchenko and Roman Radchenko
Vibration 2024, 7(3), 776-790; https://doi.org/10.3390/vibration7030041 - 13 Jul 2024
Abstract
►▼
Show Figures
There is a constant demand for higher equipment parameters, such as the pressure of a sealing medium and shaft rotation speed. However, as the parameters increase, it becomes more difficult to ensure hermetization efficiency. The rotor of a multi-stage machine rotates in non-contact
[...] Read more.
There is a constant demand for higher equipment parameters, such as the pressure of a sealing medium and shaft rotation speed. However, as the parameters increase, it becomes more difficult to ensure hermetization efficiency. The rotor of a multi-stage machine rotates in non-contact seals. Seals’ parameters have a great influence on vibration characteristics. Non-contact seals are considered to be hydrostatodynamic supports that can effectively dampen rotor oscillations. The force coefficients of gap seals are determined by geometric and operational parameters. A purposeful choice of these parameters can influence the vibration state of the rotor. It is shown for the first time that the initially dynamically flexible rotor, in combination with properly designed seals, can become dynamically rigid. Analytical dependencies for the computation of the dynamic characteristics are obtained. The resulting equations make it possible to calculate the radial-angular vibrations of the rotor of a centrifugal machine in the seals and construct the amplitude–frequency characteristics. By purposefully changing the parameters of non-contact seals, an initially flexible rotor can be made rigid, and its vibration resistance increases. Due to this, the environmental safety of critical pumping equipment increases.
Full article
Figure 1
Open AccessArticle
Ultrasound B-Mode Visualization of Imperceptible Subwavelength Vibration in Magnetomotive Ultrasound Imaging
by
Wei-Hsiang Shen, Tzu-Min Yeh, Mei-Yi Liao and Meng-Lin Li
Vibration 2024, 7(3), 764-775; https://doi.org/10.3390/vibration7030040 - 12 Jul 2024
Abstract
Magnetomotive ultrasound (MMUS) is a promising imaging modality for detecting magnetic nanoparticles. In MMUS, an external oscillating magnetic field induces the motion of the injected magnetic nanoparticles within tissue, and phase-based tracking algorithms are used to detect the motion. However, the subwavelength scale
[...] Read more.
Magnetomotive ultrasound (MMUS) is a promising imaging modality for detecting magnetic nanoparticles. In MMUS, an external oscillating magnetic field induces the motion of the injected magnetic nanoparticles within tissue, and phase-based tracking algorithms are used to detect the motion. However, the subwavelength scale of these displacements (often a few micrometers) makes direct visualization on conventional ultrasound B-mode images impossible. In this work, we adapt the Eulerian motion magnification technique to create a novel ultrasound display mode for identifying the nanoparticle locations, eliminating the need for displacement tracking algorithms. Phantom and in vivo experiments demonstrate that our technique successfully magnifies magnetomotion and the associated shear wave propagation in ultrasound B-mode imaging and pinpoints the nanoparticle vibration source, even in low-concentration scenarios.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures
Figure 1
Open AccessArticle
Operational Modal Analysis of CNC Machine Tools Based on Flank-Milled Surface Topography and Cepstrum
by
Liwen Guan, Yanyu Chen and Zijian Wang
Vibration 2024, 7(3), 738-763; https://doi.org/10.3390/vibration7030039 - 10 Jul 2024
Abstract
Conducting research on the dynamics of machine tools can prevent chatter during high-speed operation and reduce machine tool vibration, which is of significance in enhancing production efficiency. As one of the commonly used methods for studying dynamic characteristics, operational modal analysis is more
[...] Read more.
Conducting research on the dynamics of machine tools can prevent chatter during high-speed operation and reduce machine tool vibration, which is of significance in enhancing production efficiency. As one of the commonly used methods for studying dynamic characteristics, operational modal analysis is more closely aligned with the actual working state of mechanical structures compared to experimental modal analysis. Consequently, it has attracted widespread attention in the field of CNC machine tool dynamic characteristics research. However, in the current operational modal analysis of CNC machine tools, discrepancies between the excitation methods and the actual working state, along with unreasonable vibration response signal acquisition, affect the accuracy of modal parameter identification. With the development of specimen-based machine tool performance testing methods, the practice of identifying machine tool characteristics based on machining results has provided a new approach to enhance the accuracy of CNC machine tool operational modal analysis. Existing research has shown that vibration significantly influences surface topography in flank milling. Therefore, a novel operational modal analysis method is proposed for the CNC machine tool based on flank-milled surface topography. First, the actual vibration displacement of the tooltip during flank milling is obtained by extracting vibration signals from surface topography, which enhances the accuracy of machine tool operational modal analysis from both the aspects of the excitation method and signal acquisition. A modified window function based on compensation pulses is proposed based on the quefrency domain characteristics of the vibration signals, which enables accurate extraction of system transfer function components even when the high-frequency periodic excitation of the machine tool causes overlap between the system transfer function components and the excitation components. Experimental results demonstrate that the proposed method can obtain accurate operational modal parameters for CNC machine tools.
Full article
(This article belongs to the Special Issue Vibrations in Materials Processing Machines)
►▼
Show Figures
Figure 1
Open AccessArticle
Rat-Tail Models for Studying Hand-Arm Vibration Syndrome: A Comparison between Living and Cadaver Rat Tails
by
Christopher M. Warren, Xueyan S. Xu, Mark Jackson, Walter G. McKinney, John Z. Wu, Daniel E. Welcome, Stacey Waugh, Phillip Chapman, Erik W. Sinsel, Samantha Service, Kristine Krajnak and Ren G. Dong
Vibration 2024, 7(3), 722-737; https://doi.org/10.3390/vibration7030038 - 10 Jul 2024
Abstract
Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers
[...] Read more.
Over-exposure of the hand-arm system to intense vibration and force over time may cause degeneration of the vascular, neurological, and musculoskeletal systems in the fingers. A novel animal model using rat tails has been developed to understand the health effects on human fingers exposed to vibration and force when operating powered hand tools or workpieces. The biodynamic responses, such as vibration stress, strain, and power absorption density, of the rat tails can be used to help evaluate the health effects related to vibration and force and to establish a dose-effect relationship. While the biodynamic responses of cadaver rat tails have been investigated, the objective of the current study was to determine whether the biodynamic responses of living rat tails are different from those of cadaver rat tails, and whether the biodynamic responses of both living and cadaver tails change with exposure duration. To make direct comparisons, the responses of both cadaver and living rat tails were examined on four different testing stations. The transfer function of each tail under a given contact force (2 N) was measured at each frequency in the one-third octave bands from 20 to 1000 Hz, and used to calculate the mechanical system parameters of the tails. The transfer functions were also measured at different exposure durations to determine the time dependency of the response. Differences were observed in the vibration biodynamic responses between living and cadaver tails, but the general trends were similar. The biodynamic responses of both cadaver and living rat tails varied with exposure duration.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures
Figure 1
Open AccessArticle
Numerical Simulation of Folding Tail Aeroelasticity Based on the CFD/CSD Coupling Method
by
Di Zhou, Weitao Lu, Jiangpeng Wu, Tongqing Guo, Binbin Lv, Hongtao Guo and Hongya Xia
Vibration 2024, 7(3), 705-721; https://doi.org/10.3390/vibration7030037 - 5 Jul 2024
Abstract
►▼
Show Figures
This paper presents a CFD/CSD coupling method for aeroelastic simulation of folding tail morphing aircraft. The unsteady aerodynamic analysis is based on an in-house computational fluid dynamics (CFD) solver for the Euler equations, and emphasis is made on developing an efficient dynamic mesh
[...] Read more.
This paper presents a CFD/CSD coupling method for aeroelastic simulation of folding tail morphing aircraft. The unsteady aerodynamic analysis is based on an in-house computational fluid dynamics (CFD) solver for the Euler equations, and emphasis is made on developing an efficient dynamic mesh method for the tail’s hybrid fold motion/elastic vibration deformation. The structural dynamic analysis is based on the computational structural dynamics (CSD) technique for solving the structural equation of motion in modal space. The aeroelastic coupling was achieved through successive iterations of CFD and CSD computations in the time domain. An adaptive multi-functional morphing aircraft allowing tail fold motion was selected to be studied. By using the developed method, aeroelastic simulation and mechanism analysis for fixed configurations at different folding angles and for variable configurations during the folding process were performed. The influence of folding rate on tail aeroelasticity and its influence mechanism were also analyzed.
Full article
Figure 1
Open AccessArticle
Modal, Structural, and Comfort Analyses for Improving Customized Bicycles for Recreational Ridings of People with Disabilities
by
Andrey Maciel Araújo da Silva, Sérgio de Souza Custódio Filho, Leonardo Dantas Rodrigues, Fábio Antônio do Nascimento Setúbal, Sérgio Aruana Elarrat Canto, Girlan Lucas da Costa Oliveira, Ana Lídia Nascimento Moraes dos Santos, Wellington Lima Botelho and Alexandre Luiz Amarante Mesquita
Vibration 2024, 7(3), 687-704; https://doi.org/10.3390/vibration7030036 - 4 Jul 2024
Abstract
►▼
Show Figures
Leisure activities are known to be especially important for the health of people with disabilities. In Belém, PA, an Amazonian city in Brazil, a nonprofitable organization has promoted leisure ridings in bicycles for those people in Utinga State Park, a large green area
[...] Read more.
Leisure activities are known to be especially important for the health of people with disabilities. In Belém, PA, an Amazonian city in Brazil, a nonprofitable organization has promoted leisure ridings in bicycles for those people in Utinga State Park, a large green area for physical and leisure activities. The handcrafted bikes have a sidecar attached for users with disabilities which are ridden by trained volunteers. Since such bikes have been empirically manufactured, they require some minor improvements in safety, comfort, and handling, and verification of structural strength. Therefore, ergonomic, modal, and forced vibration analyses assessed the user’s comfort and safety and a structural analysis with the use of strain gauges evaluated the bicycle’s structural strength. Initially, a numerical modal analysis was performed using the finite element method, and the modal model obtained was validated by an experimental modal analysis employing shaker excitation. ISO-2631-based evaluations of forced vibration and human body comfort were conducted regarding whole-body vibration in vehicles and mechanical equipment. Vibration measurements at the position of the rider and sidecar occupant were obtained during rides on the bicycle and, according to the results, in general, when subjected to loads, the bicycle showed low stress levels far from the yield stress of the material, promoting an excellent safety factor in relation to its structural integrity. The modal, comfort, and forced vibration analyses revealed a mode of vibration in the sidecar that caused discomfort to the back of the users. Ergonomics analysis pointed out changes in the handlebars, the bicycle seat, the coupling between the sidecar and the bike, and the dimensions of the sidecar will provide greater comfort and safety. This paper presents and discusses the proposed modifications to both bicycle and sidecar.
Full article
Figure 1
Open AccessArticle
Modeling and Evaluation of a Multi-Stable Hybrid Energy Harvester
by
Haining Li, Kefu Liu and Jian Deng
Vibration 2024, 7(3), 662-686; https://doi.org/10.3390/vibration7030035 - 1 Jul 2024
Abstract
►▼
Show Figures
This article develops a multi-stable hybrid energy harvester (MSHEH) which consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH). By tuning two parameters, the MSHEH can achieve a mono-stable, bi-stable, and tri-stable state, respectively. A numerical procedure is developed
[...] Read more.
This article develops a multi-stable hybrid energy harvester (MSHEH) which consists of a piezoelectric energy harvester (PEH) and an electromagnetic energy harvester (EMEH). By tuning two parameters, the MSHEH can achieve a mono-stable, bi-stable, and tri-stable state, respectively. A numerical procedure is developed to compute the EMEH’s transduction factor. The obtained result is validated experimentally. Using the equivalent magnetic 2-point dipole theory, the restoring force model of the magnetic spring is established. The obtained model is verified experimentally. The energy harvesting performances of the MSHEH under the four different configurations (linear, mono-stable, bi-stable and tri-stable) subjected to frequency sweep excitations are evaluated by simulation and validated by experiment. The comparative analysis focuses on power output, accumulated harvested energy, and effective energy-harvesting bandwidth. The optimum load resistances are investigated by Pareto front optimizations. The following key findings are obtained. When subjected to high-level frequency sweep excitation, the tri-stable configuration exhibits the widest frequency bandwidth and the highest total accumulated harvested energy. When subjected to low-level frequency sweep excitation, the bi-stable configuration is more efficient in energy harvesting. The best performance trade-off between the PEH and EMEH can be achieved by selecting the optimum load resistances properly.
Full article
Figure 1
Open AccessArticle
The Reduced-Order Modeling Approach for a Double-Damper Concept: A Comparison with a Single Damper for Comfort Analysis
by
Behzad Hamedi, Sudarshan Shrikanthan and Saied Taheri
Vibration 2024, 7(3), 644-661; https://doi.org/10.3390/vibration7030034 - 1 Jul 2024
Cited by 1
Abstract
This paper explores the modeling and simulation of an innovative double-damper suspension system, evaluating its effectiveness through different test scenarios. The double damper integrates two individual dampers into a unified assembly. The modeling process involves representing the damper as two distinct dampers and
[...] Read more.
This paper explores the modeling and simulation of an innovative double-damper suspension system, evaluating its effectiveness through different test scenarios. The double damper integrates two individual dampers into a unified assembly. The modeling process involves representing the damper as two distinct dampers and a body block, accounting for the additional degree of freedom introduced by combining the two dampers. Simulink/MATLAB is employed for modeling the pressure, discharge, and force equations of the damper. A simplified quarter-car model is designed to conduct simulations for different road profiles, evaluating the efficacy of this double-damper model. The reduced-order modeling approach, suitable for complex systems like dampers, is utilized. Dedicated mathematical models are utilized to examine both single- and double-damper configurations, with the resulting non-linear equations solved using Newton’s iterative method. The equations derived for the single damper provide the basis for modeling the double-damper system. In this model, two separate dampers, each possessing similar properties, are simulated and considered to be rigidly linked at their connection point. Consequently, it is assumed that a portion of the force and velocity experienced by the lower damper is transmitted to the upper damper, and vice versa. Simulation results demonstrate that the innovative double-damper design outperforms a single passive damper in attenuating the oscillations of both the sprung and unsprung masses. Moreover, this innovative concept offers increased adaptability to balance between ride comfort and road holding, a feature previously limited to passive suspension systems.
Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
►▼
Show Figures
Figure 1
Open AccessArticle
Stability and Bandgap Characteristics of Periodic Marine Risers
by
Miead Nikfarjam and Amr Baz
Vibration 2024, 7(3), 627-643; https://doi.org/10.3390/vibration7030033 - 26 Jun 2024
Abstract
►▼
Show Figures
This paper presents the concept of periodic marine risers, which is investigated in a comprehensive theoretical manner to establish tools for the design and prediction of the performance characteristics of this class of risers. The presented concept of periodic risers introduces an optimally
[...] Read more.
This paper presents the concept of periodic marine risers, which is investigated in a comprehensive theoretical manner to establish tools for the design and prediction of the performance characteristics of this class of risers. The presented concept of periodic risers introduces an optimally placed and designed array of periodic inserts that reinforce the conventional riser to, on the one hand, enhance its elastic instability threshold to internal flows and, on the other hand, introduce stop/pass band characteristics that can trap the vortex shedding excitations in order to mitigate their effects. Such a concept has not been investigated in the literature. The effectiveness of the concept is investigated and demonstrated theoretically by modeling the dynamics of these risers using finite element analysis and developing their instability threshold to internal flows, as well as their bandgap characteristics by extracting the eigenvalues of the associated transfer matrices. Comparisons are established between the performance characteristics of these periodic risers and conventional risers to demonstrate the merits and limitations of the proposed concept.
Full article
Figure 1
Open AccessArticle
A Novel Semi-Active Control Approach for Flexible Structures: Vibration Control through Boundary Conditioning Using Magnetorheological Elastomers
by
Jomar Morales and Ramin Sedaghati
Vibration 2024, 7(2), 605-626; https://doi.org/10.3390/vibration7020032 - 18 Jun 2024
Abstract
►▼
Show Figures
This research study explores an alternative method of vibration control of flexible beam type structures via boundary conditioning using magnetorheological elastomer at the support location. The Rayleigh–Ritz method has been used to formulate dynamic equations of motions of the beam with MRE support
[...] Read more.
This research study explores an alternative method of vibration control of flexible beam type structures via boundary conditioning using magnetorheological elastomer at the support location. The Rayleigh–Ritz method has been used to formulate dynamic equations of motions of the beam with MRE support and to extract its natural frequencies and mode shapes. The MRE-based adaptive continuous beam is then converted into an equivalent single-degree-of-freedom system for the purpose of control implementation, assuming that the system’s response is dominated by its fundamental mode. Two different types of control strategies are formulated including proportional–integral–derivative control and on–off control. The performance of controllers is evaluated for three different loading conditions including shock, harmonic, and random vibration excitations.
Full article
Figure 1
Open AccessArticle
Acute Whole-Body Vibration Does Not Alter Passive Muscle Stiffness in Physically Active Males
by
Marco Spadafora, Federico Quinzi, Carmen Giulia Lia, Francesca Greco, Katia Folino, Loretta Francesca Cosco and Gian Pietro Emerenziani
Vibration 2024, 7(2), 595-604; https://doi.org/10.3390/vibration7020031 - 13 Jun 2024
Abstract
►▼
Show Figures
Whole-body vibration (WBV) is a widely used training method to increase muscle strength and power. However, its working mechanisms are still poorly understood, and studies investigating the effects of WBV on muscle stiffness are scant. Therefore, the aim of this study is to
[...] Read more.
Whole-body vibration (WBV) is a widely used training method to increase muscle strength and power. However, its working mechanisms are still poorly understood, and studies investigating the effects of WBV on muscle stiffness are scant. Therefore, the aim of this study is to investigate the acute effects of WBV on stiffness and countermovement jump (CMJ). Twenty-four recreationally active males, on separate days and in random order, performed a static squat under two different conditions: with WBV (WBV) or without vibration (CC). Muscle stiffness was assessed through the Wartenberg pendulum test, and CMJ was recorded. RM-ANOVA was employed to test differences between conditions in the above-mentioned variables. In the CC condition, stiffness was significantly lower after the exposure to the static squat (p = 0.006), whereas no difference was observed after the exposure to WBV. WBV and CC did not affect CMJ. No significant correlation was observed between changes in CMJ and changes in stiffness. Our results show that WBV may mitigate the reduction in muscle stiffness observed after static squats. However, current results do not support the notion that WBV exposure may account for an increase in CMJ performance.
Full article
Figure 1
Open AccessArticle
Finite Element Analysis versus Empirical Modal Analysis of a Basketball Rim and Backboard
by
Daniel Winarski, Kip P. Nygren and Tyson Winarski
Vibration 2024, 7(2), 582-594; https://doi.org/10.3390/vibration7020030 - 7 Jun 2024
Abstract
The first goal of this research was to document the process of using the MODAL analysis system of the ANSYS 2024R1 student edition to create a finite element model of the modes and frequencies of vibration of one basketball rim and backboard design.
[...] Read more.
The first goal of this research was to document the process of using the MODAL analysis system of the ANSYS 2024R1 student edition to create a finite element model of the modes and frequencies of vibration of one basketball rim and backboard design. This finite element model included the use of steel for the rim and its mount, a tempered glass backboard, and an aluminum frame behind the backboard. After a mesh was created, fixed support boundary conditions were applied to the four corners of the aluminum frame, followed by the theoretical modal analysis. The second goal was to validate this model by comparing the finite element calculated mode shapes and frequencies to the empirical modal analysis previously measured at the United States Military Academy at West Point, New York. Five mode shapes and frequencies agreed rather well between the theoretical finite element analysis and previously published empirical modal analysis, specifically where the rim was vibrating in the vertical direction, which was the direction that the accelerometer was aligned for the empirical modal analysis. These five modes were addressed from a finite element model validation standpoint by a 99.5% confidence in a 98.09% cross-correlation with empirical modal analysis data, and from a verification standpoint by employing a refined-mesh. However, three theoretical mode shapes missed by the empirical modal analysis were found where the vibration of the rim was confined to the horizontal plane, which was orthogonal to the orientation of our accelerometer.
Full article
(This article belongs to the Special Issue Vibrations in Sports)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Remaining Useful Life Prediction Method Enhanced by Data Augmentation and Similarity Fusion
by
Huaqing Wang, Ye Li, Ye Jin, Shengkai Zhao, Changkun Han and Liuyang Song
Vibration 2024, 7(2), 560-581; https://doi.org/10.3390/vibration7020029 - 5 Jun 2024
Abstract
►▼
Show Figures
Precise prediction of the remaining useful life (RUL) of rolling bearings is crucial for ensuring the smooth functioning of machinery and minimizing maintenance costs. The time-domain features can reflect the degenerative state of the bearings and reduce the impact of random noise present
[...] Read more.
Precise prediction of the remaining useful life (RUL) of rolling bearings is crucial for ensuring the smooth functioning of machinery and minimizing maintenance costs. The time-domain features can reflect the degenerative state of the bearings and reduce the impact of random noise present in the original signal, which is often used for life prediction. However, obtaining ideal training data for RUL prediction is challenging. Thus, this paper presents a bearing RUL prediction method based on unsupervised learning sample augmentation, establishes a VAE-GAN model, and expands the time-domain features that are calculated based on the original vibration signals. By combining the advantages of VAE and GAN in data generation, the generated data can better represent the degradation state of the bearings. The original data and generated data are mixed to realize data augmentation. At the same time, the dynamic time warping (DTW) algorithm is introduced to measure the similarity of the dataset, establishing the mapping relationship between the training set and target sequence, thereby enhancing the prediction accuracy of supervised learning. Experiments employing the XJTU-SY rolling element bearing accelerated life test dataset, IMS dataset, and pantograph data indicate that the proposed method yields high accuracy in bearing RUL prediction.
Full article
Figure 1
Open AccessArticle
A Deep Transfer Learning Model for the Fault Diagnosis of Double Roller Bearing Using Scattergram Filter Bank 1
by
Mohsin Albdery and István Szabó
Vibration 2024, 7(2), 521-559; https://doi.org/10.3390/vibration7020028 - 5 Jun 2024
Abstract
►▼
Show Figures
In this study, a deep transfer learning model was developed using ResNet-101 architecture to diagnose double roller bearing defects. Vibration data were collected for three different load scenarios, including conditions without load, and for five different rotational speeds, ranging from 500 to 2500
[...] Read more.
In this study, a deep transfer learning model was developed using ResNet-101 architecture to diagnose double roller bearing defects. Vibration data were collected for three different load scenarios, including conditions without load, and for five different rotational speeds, ranging from 500 to 2500 RPM. Significantly, the speed condition of 2500 RPM has not previously been investigated, therefore offering a potential avenue for future investigations. This study offers a thorough examination of bearing conditions using multidirectional vibration data collected from accelerometers positioned in both vertical and horizontal orientations. In addition to transfer learning using ResNet-101, four additional models (VGG-16, VGG19, ResNet-18, and ResNet-50) were trained. Transfer learning using ResNet-101 consistently achieved the highest accuracy in all scenarios, with accuracy rates ranging from 90.78% to 99%. Scattergram Filter Bank 1 was used as the image input for training as a preprocessing method to enhance feature extraction. Research has effectively applied transfer learning to improve fault diagnosis accuracy, especially in limited data scenarios. This shows the capability of the method to differentiate between normal and faulty bearing conditions using signal-to-image transformation, emphasizing the potential of transfer learning to augment diagnostic performance in scenarios with limited training data.
Full article
Figure 1
Open AccessArticle
Simulation on Buffet Response and Mitigation of Variant-Tailed Aircraft in Maneuver State
by
Dawei Liu, Peng Zhang, Binbin Lv, Hongtao Guo, Li Yu, Yanru Chen and Bo Lu
Vibration 2024, 7(2), 503-520; https://doi.org/10.3390/vibration7020027 - 27 May 2024
Abstract
This study proposes a computational fluid dynamics and computational structure dynamics (CFD/CSD) coupled method for calculating the buffet response of a variant tail wing. The large-scale separated flow in the buffet is simulated by the detached vortex approach, vibration deformation of the tail
[...] Read more.
This study proposes a computational fluid dynamics and computational structure dynamics (CFD/CSD) coupled method for calculating the buffet response of a variant tail wing. The large-scale separated flow in the buffet is simulated by the detached vortex approach, vibration deformation of the tail wing is solved by the dynamic mesh generation technique, and structural modeling is based on the mode method. The aerodynamic elastic coupling is calculated through the cyclic iteration of aerodynamics and the structural solution in the time domain. We verify the correctness of the proposed method through a typical delta wing calculation case, further simulate the buffet response of a variant tail wing in maneuver state, and finally realize buffet mitigation using an active excitation method. Overall, this study can provide an important reference for the design of variant-tailed aircraft.
Full article
(This article belongs to the Topic Advances on Structural Engineering, 2nd Volume)
►▼
Show Figures
Figure 1
Open AccessArticle
Stick–Slip Suppression in Drill String Systems Using a Novel Adaptive Sliding Mode Control Approach
by
Fourat Zribi, Lilia Sidhom and Mohamed Gharib
Vibration 2024, 7(2), 479-502; https://doi.org/10.3390/vibration7020026 - 23 May 2024
Abstract
►▼
Show Figures
A novel control technique is presented in this paper, which is based on a first-order adaptive sliding mode that ensures convergence in a finite time without any prior information on the upper limits of the parametric uncertainties and/or external disturbances. Based on an
[...] Read more.
A novel control technique is presented in this paper, which is based on a first-order adaptive sliding mode that ensures convergence in a finite time without any prior information on the upper limits of the parametric uncertainties and/or external disturbances. Based on an exponent reaching law, this controller uses two dynamically adaptive control gains. Once the sliding mode is reached, the dynamic gains decrease in order to loosen the system’s constraints, which guarantees minimal control effort. The proof of convergence was demonstrated according to Lyapunov’s criterion. The proposed algorithm was applied to a drill string system to evaluate its performance because such systems present variable operating conditions caused by, for example, the type of rock. The effectiveness of the proposed controller was evaluated by conducting a comparative study that involved comparing it against a commonly used sliding mode controller, as well as other recent adaptive sliding mode control techniques. The different mathematical performance measures included energy consumption. The proposed algorithm had the best performance measures with the lowest energy consumption and it was able to significantly improve the functioning of the drill string system. The results indicated that the proposed controller had 20% less chattering than the classic SM controller. Finally, the proposed controller was the most robust to uncertainties in system parameters and external disturbances, thus demonstrating the auto-adjustable features of the controller.
Full article
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Actuators, Materials, Micromachines, Sensors, Vibration
Advances in Piezoelectric/Ultrasonic Sensors and Actuators-2nd Volume
Topic Editors: Junhui Hu, Ming YangDeadline: 31 December 2024
Conferences
Special Issues
Special Issue in
Vibration
Analysis and Design of Wind Turbine Towers
Guest Editors: Christoforos Dimopoulos, Charis J. GantesDeadline: 15 September 2024
Special Issue in
Vibration
Nonlinear Vibration of Mechanical Systems
Guest Editors: Francesco Pellicano, Yuri Mikhlin, Konstantin Avramov, Antonio ZippoDeadline: 30 September 2024
Special Issue in
Vibration
Vibrations in Materials Processing Machines
Guest Editors: Pavlo Krot, Volodymyr Gurski, Vitaliy Korendiy, Alhussein AlbarbarDeadline: 15 December 2024
Special Issue in
Vibration
Machine Learning Applications to Vibration Problems
Guest Editor: Maria ChierichettiDeadline: 20 March 2025