You are currently viewing a new version of our website. To view the old version click .

Intelligent Infrastructure and Construction

Intelligent Infrastructure and Construction is an international, peer-reviewed, open access journal that focuses on the advancement of field of infrastructure and construction industry by seamlessly integrating information technologies throughout all phases of the construction life cycle.
This journal is published quarterly online by MDPI.

All Articles (9)

  • Technical Note
  • Open Access

Nonlinear Regression Expansion Model for Fissured Highly Expansive Soils

  • Shuangping Li,
  • Bin Zhang and
  • Lin Gao
  • + 6 authors

This study presents a nonlinear regression expansion model tailored to the characteristics of fissured highly expansive soils. Through in-depth investigations, fissure ratio (Kr), dry density (ρd), initial water content (w0), and overburden stress (ln(1 + σ)) were identified as critical factors influencing expansion behavior. Experimental results revealed linear relationships between ultimate expansion (δep) and w0, ρd, and ln(1 + σ), and an exponential relationship with Kr. A multivariate nonlinear regression model was developed and validated, demonstrating high predictive accuracy. The model highlights the significant role of fissure infill materials, particularly gray-green clay, on soil expansiveness. It provides a reliable tool for predicting the expansion characteristics of fissured expansive soils under various conditions, offering theoretical and practical support for engineering applications in expansive soil regions. This study uses a single highly expansive clay from the Nanyang section. The soil is a transported Middle Pleistocene alluvial–proluvial clay (al-plQ2) in which fissures are predominantly filled by 2–5 mm gray-green clay. Accordingly, the proposed regression is most applicable to fissure systems that are largely infilled; extrapolation to open or partially infilled fissures should be made with caution.

31 October 2025

Fissure-Filled Highly Expansive Soil. Reproduced from [17]. Note: The typical width of the filled fissure is approximately 10 cm.
  • Systematic Review
  • Open Access

The Role of Internet of Things in Managing Carbon Emissions in the Construction Industry: A Systematic Review

  • Hayford Pittri,
  • Samuel Aklashie and
  • Godawatte Arachchige Gimhan Rathnagee Godawatte
  • + 3 authors

Given the construction industry’s significant contribution of approximately 39% of global CO2 emissions, implementing effective carbon reduction strategies is becoming increasingly critical. In this context, Internet of Things (IoT) technologies present promising solutions for monitoring and reducing emissions. However, there is a lack of comprehensive understanding regarding specific IoT applications, implementation barriers, and opportunities for carbon reduction in construction practices. This study investigates the role of IoT in reducing carbon emissions in the construction industry. Following PRISMA guidelines, this study analyzed bibliometric data from Scopus and Web of Science databases using VOSviewer for science mapping visualization. Content analysis was conducted on 17 carefully selected articles to identify key research topics and applications. The analysis identified four mainstream application areas: (1) IoT-based smart monitoring systems for carbon emissions, (2) energy efficiency and management applications, (3) sustainable construction implementation frameworks, and (4) smart cities and other built environment applications. Key findings highlight growing research interest in IoT applications for sustainable construction, with China, the United States, and the United Kingdom leading collaborative efforts. Despite demonstrated carbon reduction potential, significant implementation barriers exist, including technical limitations, organizational resistance, skill gaps, and economic constraints. Key opportunities include Artificial Intelligence (AI) integration, Building information modeling (BIM)-IoT synergies, energy prosumer models, and standardization frameworks. This study provides the first focused review of IoT applications specifically targeting carbon reduction in construction, highlighting a critical technology-practice gap where organizational factors frequently outweigh technological barriers. A proposed socio-technical integration framework in this study bridges technical and organizational elements to overcome adoption barriers.

26 September 2025

PRISMA-based SLR flow diagram. Source: Figure created by authors.

Digitalization has become a driving force for significant advancements in property/facility management (PFM). It is necessary to identify the research gaps and future research directions, which could enable the effective development of digital technologies (DTs) in the context of PFM. This paper aims to review how DTs emerge to drive digitalization in PFM and identify gaps that need to be addressed in future research. The findings reveal that research on integrating BIM, IoT, AR, AI, and big data in sustainable transformations, real-time data, and energy optimization is limited, with challenges in data security, privacy, and system interoperability. Future research should focus on BIM for sustainability, real-time data, and AR applications, alongside IoT and blockchain integration for security. Investigating VR in maintenance, AI for energy optimization, improved prediction accuracy, and enhanced NLP for chatbots are also critical areas for exploration. This state-of-the-art review summarized the gaps from the existing literature of property management digitalization and provides an update on research gaps and directions for the digitalization in PFM.

19 September 2025

Flow diagram of the literature retrieval.

Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety.

25 August 2025

Prefabricated double crack numerical model.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Intell. Infrastruct. Constr. - ISSN 3042-4720Creative Common CC BY license