A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids
Abstract
1. Introduction
2. Linear Vibration Theory in IE Method
2.1. Vibration Model of Solids with Void Damage
2.2. Conventional IE Method for Solid Void Testing and Diagnosis
3. Nonlinear Vibration Theory in IE Method
3.1. Conventional Nonlinear Resonance Acoustic Spectroscopy and Phenomenological Model
3.2. Nonlinear Constitutive Relationship of Void Solid
3.3. Nonlinear Vibrations with Polynomial Nonlinearity
3.4. Nonlinear Vibrations with Hysteretic Nonlinearity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, Y.; Wang, S.; Zhang, P.; Xu, T.; Zhuo, J. Application of Nondestructive Testing Technology in Quality Evaluation of Plain Concrete and RC Structures in Bridge Engineering: A Review. Buildings 2022, 12, 843. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Ma, X.; Wang, D.; Huang, X. Study on Impact–Echo Response of Concrete Column near the Edge: Principle of Impact–Echo Method. Appl. Sci. 2023, 13, 5590. [Google Scholar] [CrossRef]
- ASTM International. ASTM C1383-15: Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- ASTM International. ASTM C215-14: Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar] [CrossRef]
- ACI Committee 228. ACI 228.2R-13: Report on Nondestructive Test Methods for Evaluation of Concrete in Structures; American Concrete Institute: Farmington Hills, MI, USA, 2013. [Google Scholar]
- Sajid, S.; Chouinard, L.; Carino, N. Condition Assessment of Concrete Plates Using Impulse-Response Test with Affinity Propagation and Homoscedasticity. Mech. Syst. Signal Process. 2022, 178, 109289. [Google Scholar] [CrossRef]
- Carino, N.J. The Impact-Echo Method: An Overview. Building and Fire Research Laboratory; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Liu, J.; He, X.; He, Y.; Zhong, J.; Xie, J. Detecting the Defects in Concrete Components with Impact-Echo Method. In Proceedings of the Arch’13, Trogir-Split, Croatia, 2–4 October 2013; pp. 855–868. [Google Scholar]
- Jin, J.; Moreno, M.G.; Riviere, J.; Shokouhi, P. Impact-Based Nonlinear Acoustic Testing for Characterizing Distributed Damage in Concrete. J. Nondestruct. Eval. 2017, 36, 51. [Google Scholar] [CrossRef]
- Malone, C.; Sun, H.; Zhu, J. Nonlinear Impact-Echo Test for Quantitative Evaluation of ASR Damage in Concrete. J. Nondestruct. Eval. 2023, 42, 93. [Google Scholar] [CrossRef]
- Pressmair, N.; Brosch, F.; Hammerl, M.; Kromoser, B. Non-Linear Material Modelling Strategy for Conventional and High-Performance Concrete Assisted by Testing. Cem. Concr. Res. 2022, 161, 106933. [Google Scholar] [CrossRef]
- Ju, J.; Tian, X.; Zhao, W.; Yang, Y. Detection and Identification for Void of Concrete Structure by Air-Coupled Impact-Echo Method. Sensors 2023, 23, 6018. [Google Scholar] [CrossRef]
- Soedel, W. Vibrations of Shells and Plates, 3rd ed.; Marcel Dekker: New York, NY, USA; Taylor & Francis e-Library: Online, 2004. [Google Scholar]
- Mitchell, A.K.; Hazell, C.R. A Simple Frequency Formula for Clamped Rectangular Plates. J. Sound Vib. 1987, 118, 271–281. [Google Scholar] [CrossRef]
- Wang, C.M. Natural Frequencies Formula for Simply Supported Mindlin Plates. J. Vib. Acoust. 1994, 116, 536–540. [Google Scholar] [CrossRef]
- Liew, K.M.; Xiang, Y.; Kitipornchai, S. Research on Thick Plate Vibration: A Literature Survey. J. Sound Vib. 1995, 180, 163–176. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, B. Characteristic Equations and Closed-Form Solution for Free Vibrations of Rectangular Mindlin Plates. Acta Mech. Solida Sin. 2009, 22, 125–136. [Google Scholar] [CrossRef]
- Senjanović, I.; Vladimir, N.; Tomić, M. An Advanced Theory of Moderately Thick Plate Vibrations. J. Sound Vib. 2013, 332, 1868–1880. [Google Scholar] [CrossRef]
- Sansalone, M.; Streett, W.B. Impact-Echo: Nondestructive Evaluation of Concrete and Masonry; Bullbrier Press: Jersey Shore, PA, USA, 1997. [Google Scholar]
- Dethof, F.; Keßler, S. Explaining Impact-Echo Geometry Effects Using Modal Analysis Theory and Numerical Simulations. NDT E Int. 2024, 143, 103035. [Google Scholar] [CrossRef]
- Cao, R.; Agrawal, A.K. Defect Detection of Concrete Structures Through Sounding Data Analytics. In Proceedings of the 29th International Conference on Structural Health Monitoring of Intelligent Infrastructure, St. Louis, MO, USA, 4–7 August 2019. [Google Scholar]
- Nowotarski, P.; Dubas, S.; Milwicz, R. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032098. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Carmeliet, J.; Ten Cate, J.A.; Johnson, P.A. Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage. Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). J. Res. Nondestruct. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Van Den Abeele, K.E.A.; Carmeliet, J.; Ten Cate, J.A.; Johnson, P.A. Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage. Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy. J. Res. Nondestruct. Eval. 2000, 12, 31–42. [Google Scholar] [CrossRef]
- Ten Cate, J.A.; Smith, E.; Byers, L.; Shankland, T. Slow Dynamics Experiments in Solids with Nonlinear Mesoscopic Elasticity. AIP Conf. Proc. 2000, 306, 303–306. [Google Scholar] [CrossRef]
- Bentahar, M.; El Aqra, H.; El Guerjouma, R.; Griffa, M.; Scalerandi, M. Hysteretic Elasticity in Damaged Concrete: Quantitative Analysis of Slow and Fast Dynamics. Phys. Rev. B 2006, 73, 014116. [Google Scholar] [CrossRef]
- Eiras, J.N.; Payan, C.; Rakotonarivo, S.; Garnier, V. Damage Detection and Localization from Linear and Nonlinear Global Vibration Features in Concrete Slabs Subjected to Localized Thermal Damage. Struct. Health Monit. 2020, 20, 567–579. [Google Scholar] [CrossRef]
- Veksler, N.D. Resonance Acoustic Spectroscopy; Springer Science & Business Media: Berlin, Germany, 2012; ISBN 3642847951/9783642847950. [Google Scholar]
- Bittner, J.A.; Popovics, J.S. Transient Nonlinear Vibration Characterization of Building Materials in Sequential Impact Scale Experiments. Front. Built Environ. 2022, 8, 949484. [Google Scholar] [CrossRef]
- Chen, J.; Kim, J.-Y.; Kurtis, K.E.; Jacobs, L.J. Theoretical and Experimental Study of the Nonlinear Resonance Vibration of Cementitious Materials with an Application to Damage Characterization. J. Acoust. Soc. Am. 2011, 130, 2728–2737. [Google Scholar] [CrossRef] [PubMed]
- Livingston, R.; McMorris, N.; Lijeron, C.; Made, C. Non-Linear Frequency Domain Techniques for Processing Impact Echo Signals for Distributed Damage in Concrete. In Proceedings of the 2nd International Conference on Non-Destructive Testing in Civil Engineering (NDT-CE), Nantes, France, 30 June–3 July 2009. [Google Scholar]
- Zheng, Y.; Maev, R.G.; Solodov, I.Y. Nonlinear Acoustic Applications for Material Characterization: A Review. Can. J. Phys. 1999, 77, 927–967. [Google Scholar] [CrossRef]
- Park, S.-J.; Yim, H.J.; Kwak, H.-G. Nonlinear Resonance Vibration Method to Estimate the Damage Level on Heat-Exposed Concrete. Fire Saf. J. 2014, 69, 36–42. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.-J.; Yim, H.J. Nonlinear Resonance Vibration Assessment to Evaluate the Freezing and Thawing Resistance of Concrete. Materials 2019, 12, 325. [Google Scholar] [CrossRef] [PubMed]
- Payan, C.; Ulrich, T.J.; Bas, P.Y.L.; Saleh, T.; Guimaraes, M. Quantitative Linear and Nonlinear Resonance Inspection Techniques and Analysis for Material Characterization: Application to Concrete Thermal Damage. J. Acoust. Soc. Am. 2014, 136, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Dahlena, U.; Ryden, N.; Jakobsson, A. Damage Identification in Concrete Using Impact Non-Linear Reverberation Spectroscopy. NDT E Int. 2015, 75, 15–25. [Google Scholar] [CrossRef]
- Benipal, G.; Singh, A.K. Constitutive modeling of concrete: An overview. Asian J. Civ. Eng. 2005, 6, 211–246. [Google Scholar]
- Spalvier, A.; Domenech, L.; Pérez, N.; Cetrangolo, G.P. Nonlinear-Elastic Characterization of Cement-Based Materials Under Uniaxial Stress: A Comparison Between Ultrasonic and Resonance Techniques. Constr. Build. Mater. 2022, 331, 127211. [Google Scholar] [CrossRef]
- Malone, C.; Zhu, J.; Hu, J.; Snyder, A.; Giannini, E. Evaluation of Alkali-Silica Reaction Damage in Concrete Using Linear and Nonlinear Resonance Techniques. Constr. Build. Mater. 2021, 303, 124538. [Google Scholar] [CrossRef]
- Hafiz, A.; Schumacher, T.; Raad, A. A Self-Referencing Non-Destructive Test Method to Detect Damage in Reinforced Concrete Bridge Decks Using Nonlinear Vibration Response Characteristics. Constr. Build. Mater. 2022, 318, 125924. [Google Scholar] [CrossRef]
- Dvořák, R.; Topolár, L. Effect of Hammer Type on Generated Mechanical Signals in Impact-Echo Testing. Materials 2021, 14, 606. [Google Scholar] [CrossRef] [PubMed]
- Guyer, R.A.; McCall, K.R.; Boitnott, G.N. Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm. Phys. Rev. Lett. 1995, 74, 3491–3494. [Google Scholar] [CrossRef]
- Breslavsky, I.; Amabili, M.; Legrand, M. Nonlinear Vibrations of Thin Hyperelastic Plates. J. Sound Vib. 2014, 333, 4668–4681. [Google Scholar] [CrossRef]
- Breslavsky, I.; Avramov, K. Two Modes Nonresonant Interaction for Rectangular Plate with Geometrical Nonlinearity. Nonlinear Dyn. 2012, 69, 285–294. [Google Scholar] [CrossRef]
- Amabili, M. Nonlinear Vibrations and Stability of Shells and Plates; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Sathyamoorthy, M. Nonlinear Vibration Analysis of Plates: A Review and Survey of Current Developments. Appl. Mech. Rev. 1987, 40, 1553–1561. [Google Scholar] [CrossRef]
- Breslavsky, I.D.; Amabili, M.; Legrand, M. Physically and Geometrically Non-Linear Vibrations of Thin Rectangular Plates. Int. J. Non-Linear Mech. 2014, 58, 30–40. [Google Scholar] [CrossRef]
- Hao, Y.X.; Chen, L.H.; Zhang, W.; Lei, J.G. Nonlinear Oscillations, Bifurcations and Chaos of Functionally Graded Materials Plate. J. Sound Vib. 2008, 312, 862–892. [Google Scholar] [CrossRef]
- Yang, J.H.; Liu, B.D. Nonlinear Dynamics Behaviors of a Composite Laminated Cantilevered Plate under Transverse Excitation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 423, 012147. [Google Scholar] [CrossRef]
- Rand, R.H. Lecture Notes on Nonlinear Vibrations; Cornell University: Ithaca, NY, USA, 2012; Available online: https://ecommons.cornell.edu/handle/1813/28989 (accessed on 1 October 2025).
- Hu, H. Solution of a Quadratic Nonlinear Oscillator by the Method of Harmonic Balance. J. Sound Vib. 2006, 293, 462–468. [Google Scholar] [CrossRef]
- Mondal, M.M.H.; Molla, M.H.U.; Razzak, M.A.; Alam, M.S. A New Analytical Approach for Solving Quadratic Nonlinear Oscillators. Alex. Eng. J. 2017, 56, 629–634. [Google Scholar] [CrossRef]
- Mickens, R.E. Oscillations in Planar Dynamic Systems; World Scientific: Singapore, 1996. [Google Scholar] [CrossRef]
- Liu, C.-S.; Kuo, C.-L.; Chang, C.-W. Linearized Harmonic Balance Method for Seeking the Periodic Vibrations of Second- and Third-Order Nonlinear Oscillators. Mathematics 2025, 13, 162. [Google Scholar] [CrossRef]
- Yusry, O.; El-Dib, A. A Review of the Frequency-Amplitude Formula for Nonlinear Oscillators and Its Advancements. J. Low Freq. Noise Vib. Act. Control 2024, 43, 1032–1064. [Google Scholar] [CrossRef]
- El-Dib, Y.O. Insightful and Comprehensive Formularization of Frequency–Amplitude Formula for Strong or Singular Nonlinear Oscillators. J. Low Freq. Noise Vib. Act. Control 2023, 42, 89–109. [Google Scholar] [CrossRef]
- He, J.H. On the Frequency–Amplitude Formulation for Nonlinear Oscillators with General Initial Conditions. Int. J. Appl. Comput. Math. 2021, 7, 111. [Google Scholar] [CrossRef]
- He, J.H. Homotopy Perturbation Technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- Kim, R.; Woo, U.; Shin, M.; Ahn, E.; Choi, H. Evaluation of self-healing in concrete using linear and nonlinear resonance spectroscopy. Constr. Build. Mater. 2022, 335, 127492. [Google Scholar] [CrossRef]
- Oh, S.; Kim, T.; Song, J. Bouc–Wen Class Models Considering Hysteresis Mechanism of RC Columns in Nonlinear Dynamic Analysis. Int. J. Non-Linear Mech. 2023, 148, 104263. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, Z.; Cheng, X.; Sun, Z.; Chen, X. Parameter Identification of Hysteresis Model of Reinforced Concrete Columns Considering Shear Action. Structures 2023, 47, 93–104. [Google Scholar] [CrossRef]
- Cusatis, G. Strain-Rate Effects on Concrete Behavior. Int. J. Impact Eng. 2011, 38, 162–170. [Google Scholar] [CrossRef]
- Roesler, J.; Paulino, G.H.; Park, K.; Gaedicke, C. Concrete Fracture Prediction Using Bilinear Softening. Cem. Concr. Compos. 2007, 29, 300–312. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; He, L. Modeling and Simulation of the Hysteretic Behavior of Concrete Under Cyclic Tension–Compression Using the Smeared Crack Approach. Materials 2023, 16, 4442. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Franchini, G.; Ferrari, G.; Painter, B.; Karazis, K.; Amabili, M. Nonlinear Vibrations of Beams with Bilinear Hysteresis at Supports: Interpretation of Experimental Results. J. Sound Vib. 2021, 499, 115998. [Google Scholar] [CrossRef]
- Xiao, J.; Pham, T.; Ding, T.; Wang, C. Polygonal Loop Model for Hysteretic Behaviour of Frame Structures with Recycled Aggregate Concrete. Eur. J. Environ. Civ. Eng. 2016, 20, 1083–1105. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, M.; Li, Y.; Li, D. The Hysteresis Performance and Restoring Force Model for Corroded Reinforced Concrete Frame Columns. J. Eng. 2016, 2016, 7615385. [Google Scholar] [CrossRef]
- Dai, K.; Yu, X.; Jiang, Z.; Wang, D.; Qian, K. Hysteretic Model for Corroded Reinforced Concrete Columns Retrofitted with FRP. Constr. Build. Mater. 2023, 380, 131207. [Google Scholar] [CrossRef]
- Sengupta, P.; Li, B. Hysteresis Modeling of Reinforced Concrete Structures: State of the Art. ACI Struct. J. 2017, 114, 25–38. [Google Scholar] [CrossRef]
- Tarawneh, A.N.; Majdalaweyh, S.A.; Mahasneh, B.Z. The Effect of Using Hysteresis Models (Bilinear and Modified Clough) on Seismic Demands of Single Degree of Freedom Systems. Am. J. Appl. Sci. 2016, 13, 913–923. [Google Scholar] [CrossRef]
- Attinger, R.; Kluegel, J.-U. A Model for the Hysteresis of Concrete to Describe the Cyclic Fatigue of Reinforced Concrete Structures During an Earthquake. In Proceedings of the 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT 20), Espoo, Finland, 9–14 August 2009. Division V, Paper 1632. [Google Scholar]
- Shaw, S.W.; Holmes, P.J. A Periodically Forced Piecewise Linear Oscillator. J. Sound Vib. 1983, 90, 129–155. [Google Scholar] [CrossRef]
- Teich, M.C.; Keilson, S.E.; Khanna, S.M. Models of Nonlinear Vibration. II. Oscillator with Bilinear Stiffness. Acta Otolaryngol. 1989, 108, 249–256. [Google Scholar] [CrossRef]
- Kim, Y.B.; Noah, S.T. Stability and Bifurcation Analysis of Oscillators with Piecewise-Linear Characteristics: A General Approach. J. Appl. Mech. 1991, 58, 545–553. [Google Scholar] [CrossRef]
- Miles, R.N. Spectral Response of a Bilinear Oscillator. J. Sound Vib. 1993, 163, 319–326. [Google Scholar] [CrossRef]
- Natsiavas, S. On the Dynamics of Oscillators with Bi-Linear Damping and Stiffness. Int. J. Non-Linear Mech. 1990, 25, 535–554. [Google Scholar] [CrossRef]
- Pilipchuk, V.N. Analytical Study of Vibrating Systems with Strong Non-Linearities by Employing Saw-Tooth Time Transformation. J. Sound Vib. 1996, 192, 43–64. [Google Scholar] [CrossRef]
- Pilipchuk, V.N.; Vakakis, A.F.; Azeez, M.A.F. Study of a Class of Subharmonic Motions Using a Non-Smooth Temporal Transformation (NSTT). Phys. D Nonlinear Phenom. 1997, 100, 145–164. [Google Scholar] [CrossRef]
- Makris, N.; Black, C.J. Dimensional Analysis of Bilinear Oscillators under Pulse-Type Excitations. J. Eng. Mech. 2004, 130, 1019–1031. [Google Scholar] [CrossRef]
- Khan, D.; Burdzik, R. Measurement and Analysis of Transport Noise and Vibration: A Review of Techniques, Case Studies, and Future Directions. Measurement 2023, 220, 113354. [Google Scholar] [CrossRef]
- Burdzik, R.; Khan, D. An Overview of the Current State of Knowledge and Technology on Techniques and Procedures for Signal Processing, Analysis, and Accurate Inference for Transportation Noise and Vibration. Measurement 2025, 252, 117314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Sardahi, Y.; Chen, G.S.; Zatar, W.; Nghiem, H.; Yang, Z. A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids. Vibration 2025, 8, 66. https://doi.org/10.3390/vibration8040066
Sun D, Sardahi Y, Chen GS, Zatar W, Nghiem H, Yang Z. A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids. Vibration. 2025; 8(4):66. https://doi.org/10.3390/vibration8040066
Chicago/Turabian StyleSun, Denyue, Yousef Sardahi, Gang S. Chen, Wael Zatar, Hien Nghiem, and Zhaohui (Joey) Yang. 2025. "A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids" Vibration 8, no. 4: 66. https://doi.org/10.3390/vibration8040066
APA StyleSun, D., Sardahi, Y., Chen, G. S., Zatar, W., Nghiem, H., & Yang, Z. (2025). A Study on Nonlinear Vibrations in the Impact-Echo Method for Void Flaw Detection in Solids. Vibration, 8(4), 66. https://doi.org/10.3390/vibration8040066