You are currently on the new version of our website. Access the old version .
  • Tracked for
    Impact Factor
  • 3.1
    CiteScore
  • 21 days
    Time to First Decision

Construction Materials

Construction Materials is an international, peer-reviewed, open access journal on construction materials published bimonthly online by MDPI.

All Articles (210)

Predicting Friction Number in CRCP Using GA-Optimized Gradient Boosting Machines

  • Ali Juma Alnaqbi,
  • Waleed Zeiada and
  • Ghazi G. Al-Khateeb

Road safety and maintenance strategy optimization depend on accurate pavement surface friction prediction. In order to predict the Friction Number for Continuously Reinforced Concrete Pavement (CRCP) sections using data taken from the Long-Term Pavement Performance (LTPP) database, this study presents a hybrid machine learning framework that combines Gradient Boosting Machines (GBMs) with Genetic Algorithm (GA) optimization. Twenty input variables from the structural, climatic, traffic, and performance categories were used in the analysis of 395 data points from 33 CRCP sections. With a mean Root Mean Squared Error (RMSE) of 3.644 and a mean R-squared (R2) value of 0.830, the GA-optimized GBM model outperformed baseline models such as non-optimized GBM, Linear Regression, Random Forest, Support Vector Regression (SVR), and Artificial Neural Networks (ANN). The most significant predictors, according to sensitivity analysis, were AADT, Total Thickness, Freeze Index, and Pavement Age. The marginal effects of these variables on the expected friction levels were illustrated using partial dependence plots (PDPs). The results show that the suggested GA-GBM model offers a strong and comprehensible instrument for forecasting pavement friction, with substantial potential for improving safety evaluations and maintenance scheduling in networks of rigid pavement.

15 January 2026

Geographical distribution of the CRCP sections included in the study.

In accelerated bridge construction, precast concrete girders are connected to cast-in-place concrete slab using shear transfer reinforcement across the interface plane to ensure the composite action. The steel transverse reinforcement is prone to severe corrosion due to the extensive use of de-icing salts and severe environmental conditions. As glass fiber-reinforced polymer (GFRP) reinforcement has shown to be an effective alternative to conventional steel rebars as flexural and shear reinforcement, the present research work is exploring the performance of GFRP reinforcements as shear transfer reinforcement between precast and cast-in-place concretes. Experimental testing was carried out on forty large-scale push-off specimens. Each specimen consists of two L-shaped concrete blocks cast at different times, cold joints, where GFRP reinforcement was used as shear friction reinforcement across the interface with no special treatment applied to the concrete surface at the interface. The investigated parameters included the GFRP reinforcement shape (stirrups and headed bars), reinforcement ratio, axial stiffness, and the concrete compressive strength. The relative slip, reinforcement strain, ultimate strength, and failure modes were reported. The test results showed the effectiveness and competitive shear transfer performance of GFRP compared to steel rebars. A shear friction model for predicting the shear capacity of as-cast, cold concrete joints reinforced by GFRP reinforcement is introduced.

9 January 2026

Composite vs. non-composite action and friction shear reinforcement.

Asphalt as a Plasticizer for Natural Rubber in Accelerated Production of Rubber-Modified Asphalt

  • Bahruddin Ibrahim,
  • Zuchra Helwani and
  • Anjar Siti Mashitoh
  • + 4 authors

One of the main obstacles to producing natural rubber-modified asphalt is the difficulty of mixing Technical Specification Natural Rubber (TSNR) or its compounds with asphalt, leading to long mixing times and high costs. This study aims to evaluate the use of 60/70 penetration asphalt as a plasticizer to accelerate the mixing process and improve the rheological properties of modified asphalt using Technical Specification Natural Rubber (TSNR). The production process for technical specification natural rubber-modified asphalt involves two stages: the production of the technical specification natural rubber compound (CTSNR) and the production of CTSNR-based modified asphalt (CTSNRMA). The CTSNR production process begins with mastication of technical specification natural rubber (TSNR), followed by the addition of activators (zinc oxide, stearic acid), accelerators (Mercaptobenzothiazole sulfenamide (MBTS)), antioxidants (2,2,4-Trimethyl-1,2-dihydroquinoline (TMQ)), and 60/70 penetration asphalt as a plasticizer (at concentrations of 30%, 40%, and 50%). After homogeneous mixing for 30–60 min, the CTSNR is diluted 5–10 mm for the next mixing stage with hot asphalt at 160–170 °C. The best results of this study showed that CTSNR-modified asphalt with 4% rubber content and 50% plasticizer (CTSNRM-450) successfully reduced the mixing time to 16 min, making it more efficient than the traditional method, which takes up to 180 min. The addition of asphalt plasticizer decreased penetration to 35.6 dmm and increased the softening point to 55.4 °C. The CTSNRMA-440 formula, with 4% rubber content and 40% plasticizer, produced the best results in terms of storage stability, meeting the ASTM D5892 standard with a softening-point difference of 0.95 °C, which is well below the threshold of 2.2 °C. The CTSNRMA-440 sample achieved a Performance Grade (PG) of 76, suitable for hot-climate conditions, with a significant reduction in mixing time, greater stability, and increased resistance to high temperatures.

9 January 2026

Effect of Asphalt Plasticizer Concentration and TSNR Content on Minimum Homogenization Time CTSNR in Modified Asphalt.

Hydrophobic Modification of Concrete Using a Hydrophobizing Admixture

  • Dulat Abdrassilov,
  • Aleksej Aniskin and
  • Rauan Lukpanov
  • + 1 author

The construction industry relies on building materials that provide not only high physical and mechanical performance but also adequate thermal and durability properties. However, several factors still limit the quality and service life of concrete products. The development of the construction industry provides new opportunities for designing efficient construction facilities. To obtain enhanced design capabilities, it is very important to relieve the load on the structure, this can be achieved by reducing the mass of materials without losing strength. This study investigates the enhancement of foam concrete through the combined incorporation of mineral fibers recycled from basalt insulation waste and complex polymer modifiers. The aim was to improve the material’s mechanical performance, durability, and pore structure stability while promoting the sustainable use of industrial by-products. The experimental program included tests on density, compressive strength, water absorption, and thermal conductivity for mixtures of different densities (400–1100 kg/m3). The results demonstrated that the inclusion of mineral fibers and polymer modifiers significantly enhanced structural uniformity and pore wall integrity. Compressive strength increased by up to 35%, water absorption decreased by 25%, and thermal conductivity was reduced by 18% compared with the control mixture.

6 January 2026

Preparation of Samples for Testing.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Constr. Mater. - ISSN 2673-7108