Journal Description
Construction Materials
Construction Materials
is an international, peer-reviewed, open access journal on construction materials published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), Scopus and other databases.
- Journal Rank: CiteScore - Q2 (Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.6 days after submission; acceptance to publication is undertaken in 4.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Construction Materials is a companion journal of Materials.
- Journal Cluster of Civil Engineering and Built Environment: Architecture, Buildings, CivilEng, Construction Materials, Infrastructures, Intelligent Infrastructure and Construction, NDT and Vibration.
Latest Articles
Establishing Rational Processing Parameters for Dry Finish-Milling of SLM Ti6Al4V over Metal Removal Rate and Tool Wear
Constr. Mater. 2025, 5(3), 53; https://doi.org/10.3390/constrmater5030053 - 5 Aug 2025
Abstract
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need
[...] Read more.
The study is motivated by the application of dry finish milling for post-build processing of additive Ti6Al4V blanks, since the use of neither lubricant nor coolants has been attracting increasing attention due to its environmental benefits, non-toxicity, and the elimination of the need for additional cleaning processes. For end mills, wear patterns were investigated upon finish milling of the SLM Ti6Al4V samples under various machining conditions (by varying the values of radial depth of cut and feed values at a constant level of axial depth of cut and cutting speed). When using all the applied milling modes, the identical tool wear mechanism was revealed. Built-up edges mainly developed on the leading surfaces, increasing the surface roughness on the SLM Ti6Al4V samples but protecting the cutting edges. However, abrasive wear was mainly characteristic of the flank surfaces that accelerated peeling of the protective coatings and increased wear of the end mills. The following milling parameters have been established as being close to rational ones: Vc = 60 m/min, Vf = 400 mm/min, ap = 4 mm, and ae = 0.4 mm. They affected the surface roughness of the SLM Ti6Al4V samples in the following way: max cutting thickness—8 μm; built-up edge at rake surface—50 ± 3 μm; max wear of flank surface—15 ± 1 μm; maximum adherence of workpiece. Mode III provided the maximum MRR value and negligible wear of the end mill, but its main disadvantage was the high average surface roughness on the SLM Ti6Al4V sample. Mode II was characterized by both the lowest average surface roughness and the lowest wear of the end mill, as well as an insufficient MRR value. Since these two modes differed only in their feed rates, their values should be optimized in the range from 200 to 400 mm/min.
Full article
(This article belongs to the Special Issue Mineral and Metal Materials in Civil Engineering)
►
Show Figures
Open AccessArticle
Mechanical Performance of Sustainable Asphalt Mixtures Incorporating RAP and Panasqueira Mine Waste
by
Hernan Patricio Moyano-Ayala and Marisa Sofia Fernandes Dinis-Almeida
Constr. Mater. 2025, 5(3), 52; https://doi.org/10.3390/constrmater5030052 - 4 Aug 2025
Abstract
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot
[...] Read more.
The increasing demand for sustainable practices in road construction has prompted the search for environmentally friendly and cost-effective materials. This study explores the incorporation of reclaimed asphalt pavement (RAP) and Panasqueira mine waste (greywacke aggregates) as full replacements for virgin aggregates in hot mix asphalt (HMA), aligning with the objectives of UN Sustainable Development Goal 9. Three asphalt mixtures were prepared: a reference mixture (MR) with granite aggregates, and two modified mixtures (M15 and M20) with 15% and 20% RAP, respectively. All mixtures were evaluated through Marshall stability, stiffness modulus, water sensitivity, and wheel tracking tests. The results demonstrated that mixtures containing RAP and mine waste met Portuguese specifications for surface courses. Specifically, the M20 mixture showed the highest stiffness modulus, improved moisture resistance, and the best performance against permanent deformation. These improvements are attributed to the presence of stiff aged binder in RAP and the mechanical characteristics of the greywacke aggregates. Overall, the findings confirm that the combined use of RAP and mining waste provides a technically viable and sustainable alternative for asphalt pavement construction, contributing to resource efficiency and circular economy goals.
Full article
(This article belongs to the Special Issue Advances in the Sustainability and Durability of Waste-Based Construction Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by
Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 - 31 Jul 2025
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to
[...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete.
Full article
(This article belongs to the Topic Rehabilitation and Strengthening Techniques for Reinforced Concrete)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Natural Fiber Characteristics on Properties of Cementitious Composites: A Comparison of Recycled Pulp from Beverage Cartons, Bamboo, and Eucalyptus Fibers
by
Phouthanouthong Xaysombath, Nattakan Soykeabkaew, Darunee Wattanasiriwech and Suthee Wattanasiriwech
Constr. Mater. 2025, 5(3), 50; https://doi.org/10.3390/constrmater5030050 - 31 Jul 2025
Abstract
►▼
Show Figures
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF
[...] Read more.
This study evaluates the influence of fiber type, geometry, and interfacial behavior on the physical and mechanical performance of cementitious composites reinforced with recycled pulp from beverage cartons (RPBC), bamboo fiber (BF), and eucalyptus fiber (EF) as the sole reinforcing agents. The BF was rounded in shape and had the highest aspect ratio, while the ribbon-shaped EF exhibited the highest tensile strength index. The RPBC fibers were fibrillated and the shortest, with a ribbon shape. Flexural strength results showed that RPBCC achieved a maximum strength that was 47.6% higher than the control specimen (0% fiber), outperforming both BF- and EF-reinforced counterparts. This superior performance is attributed to the higher fibrillation level of the ribbon-shaped RPBC fibers, which promoted better fiber–matrix bonding. As the fiber content increased, the bulk density of EFC and BFC decreased linearly, while RPBC composites showed only a modest decrease in density. Porosity steadily increased in EFC and BFC, whereas a non-linear trend was observed in RPBCC, likely due to its unique morphology and fibrillation. Conversely, EFC exhibited significantly higher maximum fracture toughness (3600 J/m2 at 10 wt.%) compared to PBFCC (1600 J/m2 at 14 wt.%) and BFC (1400 J/m2 at 14 wt.%). This enhancement is attributed to extensive fiber pullout mechanisms and increased energy absorption during crack propagation. Overall, all composite types demonstrated flexural strength values above 4 MPa, placing them in the Grade I category. Those reinforced with 10–14% RPBC exhibited strengths of 11–12 MPa, categorizing them as Grade II according to ASTM C1186-02.
Full article

Figure 1
Open AccessReview
A Review of the Performance Properties of Geopolymer Pavement-Quality Concrete
by
Saikrishna Chelluri, Nabil Hossiney, Sarath Chandra, Patrick Bekoe and Mang Tia
Constr. Mater. 2025, 5(3), 49; https://doi.org/10.3390/constrmater5030049 - 25 Jul 2025
Abstract
The construction of concrete pavements has increased due to their better durability, lifespan, and lower maintenance costs. However, this has resulted in the increased consumption of Portland cement, which is one of the major contributors to carbon emissions. Consequently, the research on alternative
[...] Read more.
The construction of concrete pavements has increased due to their better durability, lifespan, and lower maintenance costs. However, this has resulted in the increased consumption of Portland cement, which is one of the major contributors to carbon emissions. Consequently, the research on alternative binders such as geopolymer concrete has increased in recent times. There are several research studies that investigate the feasibility of geopolymer concrete as a construction material, with limited studies exploring its application in concrete pavements. Therefore, this review study explores the material properties of geopolymer concrete pertinent to the performance of concrete pavements. It also discusses the potential of various industrial and agricultural waste as precursor material in geopolymer concrete. The findings of this paper show that most of the studies used fly ash and ground granulated blast furnace slag (GGBFS) as precursor material in geopolymer pavement-quality concrete, and there is a vast scope in the exploration of other industrial and agricultural waste as precursor material. The mechanical and durability properties of geopolymer pavement-quality concrete are superior to conventional pavement concrete. It is also observed that the drying shrinkage and coefficient of thermal expansion of geopolymer pavement-quality concrete are lower than those of conventional pavement concrete, and this will positively benefit the long-term performance of concrete pavements. The results of fatigue analysis and mechanical load test on the geopolymer pavement-quality concrete indicate its improved performance when compared to the conventional pavement concrete.
Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by
Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary
[...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs.
Full article
(This article belongs to the Special Issue Advances in the Sustainability and Durability of Waste-Based Construction Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by
Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Abstract
►▼
Show Figures
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and
[...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure.
Full article

Figure 1
Open AccessArticle
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by
Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction
[...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity.
Full article
(This article belongs to the Special Issue Advances in the Sustainability and Durability of Waste-Based Construction Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation of the Rheological Properties and Ageing Susceptibility of Bitumen Bio-Modified with Spent Coffee Grounds
by
Stavros Kalampokis, Jan Valentin, Evangelos Manthos and Avraam A. Konstantinidis
Constr. Mater. 2025, 5(3), 45; https://doi.org/10.3390/constrmater5030045 - 8 Jul 2025
Abstract
►▼
Show Figures
The present study concerns the utilization of spent coffee grounds (SCGs) as an alternative bio-based modifier for a petroleum-based penetration grade 70/100 bitumen at 5%, 10% and 15% by weight of bitumen. The conventional properties of the binders were examined with a series
[...] Read more.
The present study concerns the utilization of spent coffee grounds (SCGs) as an alternative bio-based modifier for a petroleum-based penetration grade 70/100 bitumen at 5%, 10% and 15% by weight of bitumen. The conventional properties of the binders were examined with a series of penetration, ring and ball, elastic recovery, dynamic viscosity and storage stability tests. Their rheological properties were assessed with a Dynamic Shear Rheometer. The aforementioned tests were conducted before and after applying a short-term ageing protocol to quantify the ageing susceptibility of the binders using different rheological ageing metrics. Furthermore, a statistical analysis was conducted to discover whether any correlations exist between the conventional and rheological properties of the binders. It was observed that spent coffee grounds can be incorporated into bitumen at an optimal content of up to 5% without downgrading the binder’s rheological properties or its structural integrity. Additionally, the bio-modifier slightly improved the ageing resistance of bitumen. Finally, the ring and ball test’s results had the strongest correlation with the DSR findings.
Full article

Figure 1
Open AccessArticle
Alternatives to Lime Plaster: Evaluation of Paints with Inorganic Pigments for the Conservation of Heritage Buildings in Peru
by
Carlos Guillermo Vargas Febres, Juan Serra Lluch, Ana Torres Barchino and Edwin Roberto Gudiel Rodríguez
Constr. Mater. 2025, 5(3), 44; https://doi.org/10.3390/constrmater5030044 - 4 Jul 2025
Abstract
►▼
Show Figures
Lime plaster has historically been a key material in the preservation of architectural heritage in Peru; however, its availability has been restricted by state regulations that limit its production and commercialization. This study evaluates the performance of paints formulated with inorganic pigments extracted
[...] Read more.
Lime plaster has historically been a key material in the preservation of architectural heritage in Peru; however, its availability has been restricted by state regulations that limit its production and commercialization. This study evaluates the performance of paints formulated with inorganic pigments extracted from soils in the Cusco valley, combined with natural and synthetic binders, as a sustainable alternative for the protection of heritage buildings in this Andean region characterized by high altitude, wide thermal variations, and high solar radiation. Adhesion, hardness, drying time, and weather resistance tests were conducted according to applicable ASTM standards for architectural coatings. The results show that these formulations exhibit good adhesion to historic surfaces and greater durability against extreme environmental conditions compared to traditional lime plaster. Their potential compatibility with historic substrates and lower environmental impact suggest that these paints represent a viable alternative in sustainable conservation strategies; however, further studies are needed to more accurately characterize the mineralogical composition of the pigments used.
Full article

Figure 1
Open AccessFeature PaperArticle
Dielectric-Based Estimation of HMA Dynamic Modulus
by
Konstantina Georgouli and Andreas Loizos
Constr. Mater. 2025, 5(3), 43; https://doi.org/10.3390/constrmater5030043 - 26 Jun 2025
Abstract
►▼
Show Figures
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were
[...] Read more.
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were controlled to achieve different air voids. The measurements of dielectric constant were performed with a Percometer, and E* values were obtained using standard laboratory tests. For DG mixtures, a clear correlation was observed between dielectric constant, air void content and effective binder ratio. The less consistent relationships for OG mixtures were likely due to the more heterogeneous structure of the OG mixtures, the conductive slag aggregates and a limited dataset. Using dielectric values, two predictive models were developed (DIME_DG and DIME_OG), with the former showing higher reliability. Verification with independent specimens confirmed model robustness. This dielectric-based approach offers a practical, cost-effective alternative to traditional modulus testing. The key innovation of this study is the integration of the asphalt mix dielectric constant into established dynamic modulus predictive models, offering a novel approach that enhances the sensitivity of these models to mixture-specific characteristics beyond traditional volumetric and binder properties.
Full article

Figure 1
Open AccessArticle
Stress–Strain Relationship of Rubberized Geopolymer Concrete with Slag and Fly Ash
by
Sunday U. Azunna, Farah N. A. A. Aziz, Raizal S. M. Rashid and Ernaleza B. Mahsum
Constr. Mater. 2025, 5(3), 42; https://doi.org/10.3390/constrmater5030042 - 25 Jun 2025
Cited by 1
Abstract
►▼
Show Figures
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses
[...] Read more.
Rubberized concrete is a more environmentally friendly material than natural concrete as it helps to reduce rubber disposal issues and has superior impact resistance. Geopolymer concrete, on the other hand, is an economical concrete with higher mechanical properties than nominal concrete that uses fly ash and slag, among other industrial solid wastes, to lower carbon footprints. Rubberized geopolymer concrete (RuGPC) combines the advantages of both concrete types, and a thorough grasp of its dynamic compressive characteristics is necessary for its use in components linked to impact resistance. Despite the advantages of RuGPC, predicting its mechanical characteristics is sometimes difficult because of variations in binder type and combination. This research investigated the combined effect of ground granulated blast furnace slag (GGBFS) and fly ash (FA) on the workability, compressive strength, and stress–strain characteristics of RuGPC with rubber at 0%, 10%, and 20% fine aggregate replacement. Thereafter, energy absorption and ductile characteristics were evaluated through the concrete toughness and ductility index. Numerical models were proposed for the cube compressive strength, modulus of elasticity, and peak strain of RuGPC at different percentages of crumb rubber. It was found that RuGPC made with GGBFS/FA had similar stress–strain characteristics to FA- and MK-based RuGPC. At 20% of crumb rubber aggregate replacement, the workability, compressive strength, modulus of elasticity, and peak stress of RuGPC reduced by 8.33%, 34.67%, 43.42%, and 44.97%, while Poisson’s ratio, peak, and ultimate strain increased by 30.34%, 8.56%, and 55.84%, respectively. The concrete toughness and ductility index increased by 22.4% and 156.67%. The proposed model’s calculated results, with R2 values of 0.9508, 0.9935, and 0.9762, show high consistency with the experimental data. RuGPC demonstrates high energy absorption capacity, making it a suitable construction material for structures requiring high-impact resistance.
Full article

Figure 1
Open AccessArticle
Marés Stone and Structural Slenderness: A Material-Based Diagnostic Study of Palma Cathedral
by
Rubén Rodríguez Elizalde
Constr. Mater. 2025, 5(2), 41; https://doi.org/10.3390/constrmater5020041 - 18 Jun 2025
Abstract
►▼
Show Figures
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique,
[...] Read more.
The Palma Cathedral, a landmark of Mediterranean Gothic architecture, features some of the most structurally daring slender piers in European ecclesiastical design. This study examines the role of marés stone—a local marine calcarenite—in enabling such architectural feats despite its inherent fragility. A multi-technique, non-invasive diagnostic campaign was conducted, including visual inspection, portable microscopy, and infrared thermography, to evaluate the physical condition and behavior of the stone under structural and environmental stress. The results reveal widespread deterioration processes—granular disintegration, alveolization, biological colonization, and structural cracking—exacerbated by the stone’s high porosity and exposure to marine aerosols and thermal fluctuations. Thermographic analysis highlighted moisture retention zones and hidden material discontinuities, while crack monitoring confirmed long-standing, localized structural strain. These findings demonstrate that the Cathedral’s formal audacity was grounded in a refined empirical understanding of marés’ properties. The study underscores the importance of material-based diagnostics for the sustainable conservation of Gothic heritage architecture.
Full article

Figure 1
Open AccessArticle
Marshall-Based Thermal Performance Analysis of Conventional and Polymer-Modified Asphalt Binders
by
Mustafa Mohammed Jaleel, Mustafa Albdairi and Ali Almusawi
Constr. Mater. 2025, 5(2), 40; https://doi.org/10.3390/constrmater5020040 - 12 Jun 2025
Abstract
Iraq’s extreme summer temperatures pose critical challenges to pavement durability, as conventional asphalt mixtures often fail under prolonged thermal stress. This paper provides a comparative evaluation of the high-temperature performance of unmodified (40/50 penetration grade) and polymer-modified (PG 76-10) asphalt mixtures for the
[...] Read more.
Iraq’s extreme summer temperatures pose critical challenges to pavement durability, as conventional asphalt mixtures often fail under prolonged thermal stress. This paper provides a comparative evaluation of the high-temperature performance of unmodified (40/50 penetration grade) and polymer-modified (PG 76-10) asphalt mixtures for the asphalt course layer. Marshall stability, flow, and stiffness were measured at elevated temperatures of 60 °C, 65 °C, 70 °C, and 75 °C after short-term (30 min) and extended (24 h) conditioning. Results show that while both mixtures experienced performance degradation as the temperature increased, the polymer-modified mixture consistently exhibited superior thermal resistance, retaining approximately 9% higher stability and 28% higher stiffness, and displaying 18% lower flow deformation at 75 °C compared to the unmodified mixture. Stability degradation rate (SDR), stiffness degradation rate (SiDR), and flow increase rate (FIR) analyses further confirmed the enhanced resilience of PG 76-10, showing nearly 39% lower FIR under thermal stress. Importantly, PG 76-10 maintained performance within specification thresholds under all tested conditions, unlike the conventional 40/50 mixture. These findings emphasize the necessity of adapting mix design standards to regional climatic realities and support the broader adoption of polymer-modified asphalt binders to enhance pavement service life in hot-climate regions like Iraq.
Full article
(This article belongs to the Special Issue Innovative Materials and Technologies for Road Pavements)
►▼
Show Figures

Figure 1
Open AccessArticle
Utilization of Different Types of Plastics in Concrete Mixtures
by
Ramzi Abduallah, Lisa Burris, Jose Castro and Halil Sezen
Constr. Mater. 2025, 5(2), 39; https://doi.org/10.3390/constrmater5020039 - 6 Jun 2025
Abstract
Incorporation of plastic waste into concrete mitigates harm to the environment through encapsulation of plastics in concrete. This study presents a comprehensive investigation of the effects of using six commonly used plastic materials (i.e., polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC),
[...] Read more.
Incorporation of plastic waste into concrete mitigates harm to the environment through encapsulation of plastics in concrete. This study presents a comprehensive investigation of the effects of using six commonly used plastic materials (i.e., polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS)) in cement paste and mortar mixtures. The heat of hydration investigations revealed that plastic powders did not significantly affect rates or extents of hydration. Among the different types of plastic-aggregate mortars, PET performed the worst, while PS was the best. Fractures in the samples generally occurred due to debonding between the plastic particles and the cement matrix. Plastic particle shape influences the microstructure of the interfacial transition zone and consequently affects the overall strength of the mortar.
Full article
(This article belongs to the Special Issue Design, Process, Energy, and Evaluation in Construction Material Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Models for the Analysis of the Structural Capacity of Railway Bridges in Peru in Accordance with the American Railway Engineering and Maintenance-of-Way Association Standard
by
Juan Zapata and Doris Esenarro
Constr. Mater. 2025, 5(2), 38; https://doi.org/10.3390/constrmater5020038 - 3 Jun 2025
Abstract
This scientific research presents the most significant aspects of the structural analysis and verification of the main steel railway bridges in Peru in accordance with the American standard. To this end, linear and finite element analyses (FEMs) were performed using calculation notes in
[...] Read more.
This scientific research presents the most significant aspects of the structural analysis and verification of the main steel railway bridges in Peru in accordance with the American standard. To this end, linear and finite element analyses (FEMs) were performed using calculation notes in MATHCAD and structural validation software (SAP2000, CSI Bridge, IDEA STATICA and GE05), among others, based on on-site inspections, which allowed results to be obtained to analyze, evaluate and determine the structural performance factors (RF) of the main railway bridges in Peru. For this, data obtained from several railway corridors in Peru were taken into consideration, such as the lines of the Southern Railway Train, Central Andean Railway, Huancayo–Huancavelica Railway Train and the Tacna–Arica Train; in addition to the feasibility studies on the Interoceanic Train project: Iquitos–Yurimaguas; projects administered through Public–Private Partnership PPP as well as by the Regionals Government and MTC-Peru. These data were used in order to be able to warn of certain technical aspects that would influence the recommendations for a locomotive replacement project in which new units had different load distributions between the axles, which would make it necessary to review the tracks and bridges of the same in order to determine if they would be able to withstand the new forces safely, as well as to reinforce structural elements according to the material and the structural condition, and finally, to assess the variation in the increase in train speed in some road corridors to achieve a better FRA (Federal Railway Administration) classification of Class 3, where the presence of structures dating back to the last century has been verified as well (1851–1856–1908). Likewise, the seismic criteria and geotechnical conditions of the most representative areas of the country (acceleration 0.30 g) were included in order to also be able to make technical recommendations that would allow us to ensure the useful life of the structure in service, operation and maintenance conditions.
Full article
(This article belongs to the Topic New Trends in Advanced Construction Technology, Sustainable Construction Materials and High-Performance Building Structures)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Analysis of Scientific Papers on LCA Applied to Nanoparticulated Building Materials
by
Marco Antonio Sánchez-Burgos, Begoña Blandón-González, Esperanza Conradi-Galnares, Paula Porras-Pereira and Pilar Mercader-Moyano
Constr. Mater. 2025, 5(2), 37; https://doi.org/10.3390/constrmater5020037 - 30 May 2025
Abstract
►▼
Show Figures
Nanomaterials have emerged as versatile components revolutionizing diverse industries, yet their environmental and health impacts remain insufficiently explored. This paper delves into the latent hazards accompanying their evolution and integration, particularly within the construction sector. It addresses the critical gap in assessing their
[...] Read more.
Nanomaterials have emerged as versatile components revolutionizing diverse industries, yet their environmental and health impacts remain insufficiently explored. This paper delves into the latent hazards accompanying their evolution and integration, particularly within the construction sector. It addresses the critical gap in assessing their life-cycle impacts, emphasizing the necessity of explicit reporting on nanoparticle emissions. Employing a Life Cycle Assessment (LCA) approach, this research evaluates the sustainability of nanomaterial applications. The absence of nanoparticle-specific data in existing product databases underscores the need for comprehensive life-cycle emission reporting. Since direct impact calculations remain unfeasible, incorporating predicted emissions and risk assessments into LCA studies is recommended. This study advocates for incorporating nanoparticle risk evaluations into LCA methodologies to enhance sustainability and environmental safety. By prioritizing precise emission data and predictive risk analysis, it advances nanomaterial environmental assessments, contributing to the responsible implementation of nanomaterials in construction.
Full article

Figure 1
Open AccessArticle
Dual-Channel CNN-Based Framework for Automated Rebar Detection in GPR Data of Concrete Bridge Decks
by
Sepehr Pashoutani, Mohammadsajjad Roudsari and Jinying Zhu
Constr. Mater. 2025, 5(2), 36; https://doi.org/10.3390/constrmater5020036 - 29 May 2025
Cited by 1
Abstract
Ground Penetrating Radar (GPR) is widely used for assessing the deterioration of concrete bridge decks. GPR surveys generate large amounts of data in the form of B-scan images, which display rebar traces as hyperbolas. Accurate analysis of the GPR scans relies on the
[...] Read more.
Ground Penetrating Radar (GPR) is widely used for assessing the deterioration of concrete bridge decks. GPR surveys generate large amounts of data in the form of B-scan images, which display rebar traces as hyperbolas. Accurate analysis of the GPR scans relies on the effective extraction of rebar locations and amplitudes. This paper presents two automated rebar detection algorithms based on Convolutional Neural Network (CNN) machine learning techniques. Two models are proposed: CNN-1 and CNN-2. CNN-1 was trained on raw GPR images to identify hyperbolas, while CNN-2 model used both raw and migrated GPR images for enhanced analysis. The models were evaluated using GPR data collected from three bridges with different overlay types. Performance was assessed through the visual comparison of the generated bridge amplitude maps against ground-truth data, as well as precision, recall, and F1-score metrics. The results demonstrate that CNN-2 outperforms CNN-1 in terms of accuracy and efficiency for rebar detection.
Full article
(This article belongs to the Special Issue Design, Process, Energy, and Evaluation in Construction Material Science)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of the Rutting Performance of Hot-Mix Asphalt Concrete Containing Ferrochrome Slag Aggregate
by
Hossam F. Hassan, Khalid Al-Shamsi, Khalifa Al-Jabri and Saba Al Amri
Constr. Mater. 2025, 5(2), 35; https://doi.org/10.3390/constrmater5020035 - 28 May 2025
Abstract
Ferrochrome (FeCr) slag is a by-product of high-carbon ferrochromium, which is used in the manufacturing of stainless steel. In this study, FeCr was evaluated as a replacement for natural aggregates in hot-mix asphalt (HMA) bituminous base and wearing course layers. Four mixes were
[...] Read more.
Ferrochrome (FeCr) slag is a by-product of high-carbon ferrochromium, which is used in the manufacturing of stainless steel. In this study, FeCr was evaluated as a replacement for natural aggregates in hot-mix asphalt (HMA) bituminous base and wearing course layers. Four mixes were designed according to the Superpave mix design procedure, one control and three mixes, with FeCr slag replacing coarse, fine, or total aggregate. FeCr slag exhibited higher angularity and surface roughness than natural aggregates, resulting in an increased number of voids in mineral aggregate (VMA) and increased binder content. Performance testing using dynamic modulus, finite element analysis, and rutting evaluation using the MEPDG rut model showed that rutting increased with increased slag content. However, mixes with coarse aggregate replacement performed better than those with fine aggregate replacement. TCLP testing indicated that the FeCr slag is environmentally safe. The heavy metal leachate content was well below regulatory limits. Economic analysis showed material cost savings of up to 44% and 4% in the bituminous base and wearing course layers, respectively. The findings support the use of FeCr slag as a coarse aggregate replacement in asphalt mixes, offering both environmental and economic benefits.
Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials for Asphalt Pavements)
►▼
Show Figures

Figure 1
Open AccessArticle
Sintering Behavior and Chlorine Volatilization Mechanism of Cl-Containing Solid Waste in Clay Brick Production: Implications for Tunnel Kiln Applications
by
Zhu Liu, Shupeng Wen, Jian Wang, Yi Li, Linqiang Mao, Yang Yang and Zhongquan Liu
Constr. Mater. 2025, 5(2), 34; https://doi.org/10.3390/constrmater5020034 - 27 May 2025
Abstract
The use of tunnel kiln firing in clay brick production offers a promising approach for disposing of Cl-containing solid waste, with lower chlorine (Cl) and heavy metal volatilization compared to cement kiln processes. However, the effects of Cl salts on brick properties and
[...] Read more.
The use of tunnel kiln firing in clay brick production offers a promising approach for disposing of Cl-containing solid waste, with lower chlorine (Cl) and heavy metal volatilization compared to cement kiln processes. However, the effects of Cl salts on brick properties and the volatilization mechanisms remain unclear. This study investigates the behaviors of NaCl, KCl, and CaCl2 during sintering. Adding 15 wt% Cl salts significantly alters pore structure, increasing water absorption by 80–100% and reducing compressive strength by 70–80%. At 1050 °C, 10.8–16.4% of Cl volatilizes mainly as HCl (g), 24.4–26.2% remains in original salt form, and over half is immobilized within the brick matrix. Thermodynamic and TG-MS analyses reveal Cl salts are stable below 800 °C but release HCl (g) at higher temperatures due to lower reaction energy barriers than Cl2 (g). Density functional theory (DFT) calculations show that H+ for HCl (g) formation primarily originates from water vapor (H2O), with organic decomposition having minimal effect. The presence of Cl salts promotes feldspar and silicate phase formation, enhancing densification but increasing porosity from HCl release. To reduce HCl emissions, a two-stage temperature control strategy is proposed: organic decomposition and moisture removal below 600 °C, followed by sintering at 800–1000 °C. This work clarifies the volatilization mechanisms of Cl salts and provides guidance for optimizing industrial brick production using Cl-containing waste.
Full article
(This article belongs to the Special Issue Advances in the Sustainability and Durability of Waste-Based Construction Materials)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Buildings, CivilEng, Construction Materials, Infrastructures, Materials
Sustainable Materials and Resilient Structures: Interdisciplinary Approaches
Topic Editors: Anderson Chu, Adil Tamimi, Haodao Li, Yucun Gu, Baoquan ChengDeadline: 31 August 2025
Topic in
Buildings, CivilEng, Construction Materials, Materials, Solids
Novel Cementitious Materials
Topic Editors: Peiyu Yan, Yao Luan, Chunsheng ZhouDeadline: 31 October 2025
Topic in
Buildings, Construction Materials, Materials, Sustainability
Green Construction Materials and Construction Innovation
Topic Editors: Ahmed Senouci, Walid MaherziDeadline: 20 December 2025
Topic in
Buildings, CivilEng, Climate, Construction Materials, Energies, Sustainability, Architecture
Advances in Building Sector for Achieving Net Zero Emission by 2050
Topic Editors: Md Morshed Alam, Iqbal Hossain, Jiaolan ZhuDeadline: 20 March 2026

Special Issues
Special Issue in
Construction Materials
Advances in Sustainable Construction Materials for Asphalt Pavements
Guest Editors: Fabricio Leiva, Adriana Vargas-NordcbeckDeadline: 15 August 2025
Special Issue in
Construction Materials
Innovative Materials and Technologies for Road Pavements
Guest Editors: Giovanni Giacomello, Andrea BalielloDeadline: 20 August 2025
Special Issue in
Construction Materials
Design, Process, Energy, and Evaluation in Construction Material Science
Guest Editors: M. Serkan Kirgiz, Jamal KhatibDeadline: 28 August 2025
Special Issue in
Construction Materials
Advances in the Sustainability and Durability of Waste-Based Construction Materials
Guest Editors: Rute Eires, Raphaele MalheiroDeadline: 30 November 2025