Previous Issue
Volume 13, May
 
 

Toxics, Volume 13, Issue 6 (June 2025) – 91 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2269 KiB  
Article
Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area
by Adebayo Solanke, Lukasz Talalaj, Claire Graham and Henry Alegria
Toxics 2025, 13(6), 508; https://doi.org/10.3390/toxics13060508 (registering DOI) - 16 Jun 2025
Abstract
As polybrominated diphenyl ethers were phased out as flame retardants and plasticizers, increasing quantities of organophosphate triesters (OPEs) have been used as replacements. Despite a surge in reports on levels and profiles of OPEs, especially in indoor environments, and the potential exposure, there [...] Read more.
As polybrominated diphenyl ethers were phased out as flame retardants and plasticizers, increasing quantities of organophosphate triesters (OPEs) have been used as replacements. Despite a surge in reports on levels and profiles of OPEs, especially in indoor environments, and the potential exposure, there are still understudied areas with no data on the levels of these chemicals. We carried out the first study investigating levels and profiles of OPEs in indoor dust from such an area, the Tampa Bay (Florida) area. ∑13OPEs measured at each site ranged from 545 to 502,086 ng g−1, with overall medians and means over 64 sites of 15,447 and 36,135 ng g−1, respectively. Alkyl OPEs were predominant, with lesser levels of chlorinated and aryl OPEs. Median levels were highest for tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPHP) at 4641 and 1046 ng g−1, respectively; lower for tris(1,3–dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloropropyl) phosphate (T2CPP), and tris (2-chloroisopropyl) phosphate (TCIPP) at 530, 458, and 360 ng g−1, respectively; with others ranging from 2 to 85 ng g−1. There were differences in levels in different microenvironments (urban versus suburban; non-residential versus residential; apartments versus single-family homes; daycares versus residences and university rooms; building age; and rooms with different floor material). Estimated daily intakes for median and higher exposure scenarios for ∑13OPEs (in ng kg−1 bw day−1) were 12 and 552 for toddlers and 6 and 451 for adults, respectively. TBOEP accounted for 30% of total intake for toddlers and adults in a mean exposure scenario but 90% for high exposure scenario. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

14 pages, 558 KiB  
Article
Analysis of Mercury Concentration in Cosmetic Clays
by Agnieszka Fischer, Barbara Brodziak-Dopierała, Wiktoria Jańska, Luiza Jeyranyan and Beata Malara
Toxics 2025, 13(6), 507; https://doi.org/10.3390/toxics13060507 - 16 Jun 2025
Abstract
(1) Background: Clays are popular raw materials of natural origin used in cosmetology, beauty salons, and home care. They have moisturizing, soothing, cleansing, disinfecting, detoxifying, and regenerating properties, and can be used externally in the form of poultices or internally in solution form. [...] Read more.
(1) Background: Clays are popular raw materials of natural origin used in cosmetology, beauty salons, and home care. They have moisturizing, soothing, cleansing, disinfecting, detoxifying, and regenerating properties, and can be used externally in the form of poultices or internally in solution form. Though they are characterized by a rich and diverse mineral composition and are considered safe for the body, their use can expose users to harmful elements including mercury. (2) Materials and methods: This study analyzed mercury (Hg) concentrations in samples of cosmetic clays available on the Polish market. Hg analysis was performed using the AAS method with an AMA 254 analyzer. The clays differed in type/color and were purchased from different manufacturers. (3) Results: The mean Hg content in all the tested samples was 28.91 µg/kg, with a range of changes of 1.87–200.81 µg/kg. The highest concentrations of Hg were found in green (AM = 53.26 µg/kg) and white (AM = 52.80 µg/kg) clays, while the lowest were detected in purple (AM = 2.56 µg/kg) and blue (AM = 3.69 µg/kg) clays. The differences in Hg content between individual types of clay were statistically significant. (4) Conclusions: Due to the presence of Hg found in all the samples of cosmetic clay tested, it is likely that these products need to be tested for their metal contents. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects—2nd Edition)
Show Figures

Graphical abstract

13 pages, 2396 KiB  
Article
Toxic Effects of p-Chloroaniline on Cells of Fungus Isaria fumosorosea SP535 and the Role of Cytochrome P450
by Shicong Huang, Jiahui Gao, Lin Zhou, Liujian Gao, Mengke Song and Qiaoyun Zeng
Toxics 2025, 13(6), 506; https://doi.org/10.3390/toxics13060506 - 16 Jun 2025
Abstract
Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be explored. This study [...] Read more.
Efficient methods to remediate PCA (p-chloroaniline)-polluted environments are urgent due to the widespread persistence and toxicity of PCA in the environment. Microbial degradation presents a promising approach for remediating PCA pollution. However, the PCA-degrading fungi still have yet to be explored. This study confirmed the highly PCA-degrading efficiency of an isolated fungus, Isaria fumosorosea SP535. This fungus can achieve a PCA degradation efficiency of 100% under optimal conditions characterized by an initial PCA concentration of 1.0 mM, pH of 7.0 and a temperature of 25 °C. SEM and TEM analyses revealed that the toxicity of PCA resulted in roughened surfaces of Isaria fumosorosea SP535 hyphae, voids in the cytoplasm, and thickened cell walls. PCA addition significantly elevated the activities of cytochrome P450 monooxygenase in both cell-free extracts and microsomal fractions in the media, suggesting the important role of the P450 system in PCA metabolization by Isaria fumosorosea SP535. The results provide a microbial resource and fundamental knowledge for addressing PCA pollution. Full article
Show Figures

Figure 1

20 pages, 931 KiB  
Article
Widespread Contamination by Anticoagulant Rodenticides in Insectivorous Wildlife from the Canary Islands: Exploring Alternative Routes of Exposure
by Beatriz Martín Cruz, Andrea Acosta Dacal, Ana Macías-Montes, Cristian Rial-Berriel, Manuel Zumbado, Luis Alberto Henríquez-Hernández, Ramón Gallo-Barneto, Miguel Ángel Cabrera-Pérez and Octavio P. Luzardo
Toxics 2025, 13(6), 505; https://doi.org/10.3390/toxics13060505 - 15 Jun 2025
Abstract
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as [...] Read more.
Research on anticoagulant rodenticides (ARs) in wildlife has primarily focused on apex predators, with less attention given to their potential integration into lower trophic levels and the associated exposure pathways. At the base of the terrestrial food web, invertebrates have been suggested as potential vectors of ARs to insectivorous species such as small mammals, reptiles, and birds. To explore this hypothesis, we analyzed the presence of nine anticoagulant rodenticides—including both first-generation (FGARs) and second-generation (SGARs) rodenticides—in 36 liver samples from Yemen chameleons (Chamaeleo calyptratus) and 98 liver samples from six non-raptorial, predominantly insectivorous bird species from the Canary Islands. Through HPLC-MS/MS analysis, only SGARs were detected in both animal groups collected between 2021 and 2024. Approximately 80% of reptiles and 40% of birds tested positive for at least one SGAR, with brodifacoum being the most frequently detected compound. In more than 90% of positive cases, it was found as the sole contaminant, while co-occurrence with other SGARs was uncommon. Additionally, most concentrations were below 50 ng/g wet weight, except for two bird specimens, suggesting heterogeneous exposure scenarios and potential variability in contamination sources across individuals. These findings provide evidence of AR integration at the base of the terrestrial food web in the Canary Islands and suggest secondary exposure via invertebrates as a plausible route of contamination. Further research directly analyzing invertebrate samples is needed to confirm their role as vectors of ARs to insectivorous wildlife in insular ecosystems. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

14 pages, 998 KiB  
Article
The Paradox of Clean Eating: Neuroactive Dysbiosis and Pesticide Residues in Fruit- and Vegetable-Based Diets
by Ramona Alina Tomuța, Andrada Florina Moldovan, Loredana Matiș, Lavinia Maris, Timea Claudia Ghitea and Florin Banica
Toxics 2025, 13(6), 504; https://doi.org/10.3390/toxics13060504 - 15 Jun 2025
Abstract
(1) Background: Exposure to pesticide residues through food remains a critical issue in public health, especially given their potential cumulative neurotoxic effects. (2) Methods: This study investigated the presence of pesticide residues in commonly consumed vegetables, fruits, and cereals based on official laboratory [...] Read more.
(1) Background: Exposure to pesticide residues through food remains a critical issue in public health, especially given their potential cumulative neurotoxic effects. (2) Methods: This study investigated the presence of pesticide residues in commonly consumed vegetables, fruits, and cereals based on official laboratory reports and evaluated the intestinal microbiome profiles of individuals whose diets consisted of over 50% plant-based foods. (3) Results: Analytical results from accredited laboratories in Romania demonstrated that all tested food samples were compliant with European regulations (Regulation (EC) 396/2005), with either undetectable or below-quantification-limit pesticide residues. However, organophosphates such as chlorpyrifos and diazinon were frequently tested, indicating persistent regulatory concern due to their known neurotoxic potential. A parallel analysis of stool samples revealed significant imbalances in neuroactive gut bacteria, including consistently low levels of Bifidobacterium and Lactobacillus species, and elevated levels of Oscillibacter and Alistipes, which are implicated in modulating GABA and serotonin pathways. Markers of proinflammatory activity, such as LPS-positive bacteria and histamine producers, were also elevated. (4) Conclusions: These findings suggest that even in diets rich in plant-based foods, microbial dysbiosis with neuroactive relevance can occur, potentially linked to environmental or dietary factors. The study underscores the need for a comprehensive evaluation of food safety and microbiome function as interconnected determinants of neurological health. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

20 pages, 4387 KiB  
Article
Modification of Biochar Catalyst Using Copper for Enhanced Catalytic Oxidation of VOCs
by Nan Liu, Jin Zhang, Ya-Lan Cai, Ji-Guo Zhang, Du-Juan Ouyang, Shao-Bo Wang, Qi-Man Xu, Jia-Jun Hu, Di-Ming Chen, Guo-Wen Wang and Ji-Xiang Li
Toxics 2025, 13(6), 503; https://doi.org/10.3390/toxics13060503 - 14 Jun 2025
Abstract
Recently, research has increasingly focused on the introduction of non-precious metals and developing highly stable carriers to enhance catalyst performance. In this study, we successfully synthesized copper (Cu)-modified biochar catalysts utilizing a sequential approach involving enzymatic treatment, liquid impregnation, and activation processes, which [...] Read more.
Recently, research has increasingly focused on the introduction of non-precious metals and developing highly stable carriers to enhance catalyst performance. In this study, we successfully synthesized copper (Cu)-modified biochar catalysts utilizing a sequential approach involving enzymatic treatment, liquid impregnation, and activation processes, which effectively enhanced the dispersion and introduction efficiency of Cu onto the biochar, thereby reducing the requisite Cu loading while maintaining high catalytic activity. The experimental results showed that the toluene degradation of 10%Cu@BCL was three times higher than that of unmodified activated carbon (AC) at 290 °C. A more uniform distribution of Cu was obtained by the enzymatic and activation treatments, optimizing the catalyst’s structural properties and reducing the amount of Cu on the biochar. Moreover, the transformation between various oxidation states of Cu (from Cu0/Cu(I) to Cu(II)) facilitated the electron transfer during the degradation of toluene. To further understand the catalytic mechanisms, density functional theory (DFT) calculations were employed to elucidate the interactions between toluene molecules and the Cu-modified biochar surface. These findings reveal that the strategic modification of biochar as a carrier not only enhances the dispersion and stability of active metal species but contributes to improved catalytic performance, thereby enhancing its degradation efficiency for VOCs in high-temperature conditions. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

14 pages, 4066 KiB  
Article
Microplastics in Stormwater: Sampling and Methodology Challenges
by Andres Sanchez Garcia, Huayun Zhou, Cesar Gomez-Avila, Tariq Hussain, Aryan Roghani, Danny Reible and Balaji Anandha Rao
Toxics 2025, 13(6), 502; https://doi.org/10.3390/toxics13060502 - 14 Jun 2025
Abstract
Stormwater runoff is a significant source of microplastics to surface water. This study addresses challenges in the sampling, treatment, and characterization of microplastics in existing stormwater control measures across various regions in the United States. Stormwater sediment samples were collected via traditional stormwater [...] Read more.
Stormwater runoff is a significant source of microplastics to surface water. This study addresses challenges in the sampling, treatment, and characterization of microplastics in existing stormwater control measures across various regions in the United States. Stormwater sediment samples were collected via traditional stormwater sampling approaches for particulate and inorganic contamination with portable automatic samplers, analyzed using visible and fluorescence microscopy with Nile red as a selective stain, and subsequently confirmed through Raman spectroscopy. The inclusion of laboratory and field blanks enabled the identification of contamination at key steps during sample handling. The results reveal that the filtration process is a significant source of laboratory contamination, while the sampling process itself could be a primary contributor to overall sample contamination. Additionally, it was found that using green fluorescence as the sole emission wavelength may underestimate MP quantities, as some particles emit fluorescence exclusively in the red spectrum. Raman analysis revealed interferences caused by pigments and additives in plastics, along with challenges evaluating particles in the low micron range (≤10 microns), which complicates a comprehensive analysis. The findings of this study emphasize the importance of implementing strong quality assurance and control measures when assessing the levels of microplastics in the environment, including sample collection, processing, and analysis. Full article
(This article belongs to the Special Issue Contaminants of Emerging Concern (CECs) in the Water Cycle)
Show Figures

Graphical abstract

21 pages, 2219 KiB  
Article
Association of Per- and Polyfluoroalkyl Substances with Pan-Cancers Associated with Sex Hormones
by Elizabeth Olarewaju and Emmanuel Obeng-Gyasi
Toxics 2025, 13(6), 501; https://doi.org/10.3390/toxics13060501 - 14 Jun 2025
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants with potential endocrine-disrupting properties. This study examines the association between exposure to multiple PFASs and pan-cancers associated with sex hormones (PCSH) while accounting for potential non-linear relationships and interactions. We analyzed data from the [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous environmental contaminants with potential endocrine-disrupting properties. This study examines the association between exposure to multiple PFASs and pan-cancers associated with sex hormones (PCSH) while accounting for potential non-linear relationships and interactions. We analyzed data from the National Health and Nutrition Examination Survey (NHANES), spanning two-year cycles from 1999 to 2012 and including 14,373 participants. Serum concentrations of six PFAS—perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDE), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA)—were assessed for their relationship with PCSH. The statistical analyses included descriptive statistics, Spearman and Pearson correlation analyses, and both linear and logistic regression models. Additionally, Bayesian kernel machine regression (BKMR) was applied to capture potential nonlinear relationships and interactions. The initial t-tests showed a statistically significant difference in PFOS levels between individuals with and without PCSH (p = 0.0022), with higher mean PFOS levels in the PCSH group. Chi-square tests revealed a significant association between ethnicity and PCSH (p < 0.001). Linear and logistic regression analyses revealed significant associations for PFOS. BKMR analysis identified PFOA as having the highest posterior inclusion probability, indicating its importance in explaining PCSH risk. Univariate exposure-response analysis revealed limited individual PFAS effects. However, bivariate analysis indicated a complex U-shaped interaction pattern among many joint PFAS assessments. The overall exposure effect analysis suggested that the combined impact of all PFASs was more strongly associated with PCSH at exposure levels below the 0.5 quantile compared to higher levels. Single-variable interaction analyses highlighted PFOA and PFOS as the most interactive PFASs when evaluating their interaction with combined exposure to all other PFASs. In summary, while the initial findings suggested a positive association between PFOS and PCSH, the BKMR analysis revealed complex non-linear relationships and interactions among PFAS. These findings highlight the importance of evaluating PFASs as a mixture rather than as individual chemicals and using techniques that can capture non-linear relationships and interactions. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

19 pages, 9490 KiB  
Article
Source Analysis of Ozone Pollution in Liaoyuan City’s Atmosphere Based on Machine Learning Models and HYSPLIT Clustering Method
by Xinyu Zou, Xinlong Li, Dali Wang and Ju Wang
Toxics 2025, 13(6), 500; https://doi.org/10.3390/toxics13060500 - 13 Jun 2025
Viewed by 24
Abstract
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed [...] Read more.
Firstly, this study investigates the spatiotemporal distribution characteristics of the ozone (O3) pollution in Liaoyuan City using monitoring data from 2015 to 2024. Then, three machine learning models (ML)—random forest (RF), support vector machine (SVM), and artificial neural network (ANN)—are employed to quantify the influence of meteorological and non-meteorological factors on O3 concentrations. Finally, the HYSPLIT clustering method and CMAQ model are utilized to analyze inter-regional transport characteristics, identifying the causes of O3 pollution. The results indicate that O3 pollution in Liaoyuan exhibits a distinct seasonal pattern, with the highest concentrations found in spring and summer, peaking in the afternoon. Among the three ML models, the random forest model demonstrates the best predictive performance (R2 = 0.9043). Feature importance identifies NO2 as the primary driving factor, followed by meteorological conditions in the second quarter and land surface characteristics. Furthermore, regional transport significantly contributes to O3 pollution, with approximately 80% of air mass trajectories in heavily polluted episodes originating from adjacent industrial areas and the sea. The combined effects of transboundary precursors and O3 transport with local emissions and meteorological conditions further increase the O3 pollution level. This study highlights the need to strengthen coordinated NOX and VOCs emission reductions and enhance regional joint prevention and control strategies in China. Full article
Show Figures

Figure 1

18 pages, 1047 KiB  
Article
Heavy Metal Contamination in Yogurt from Lebanon: Evaluating Lead (Pb) and Cadmium (Cd) Concentrations Across Multiple Regions
by Sandra Sarkis, Rayan Kashmar, Nikolaos Tzenios, Maha Hoteit, Tony Tannous and Joseph Matta
Toxics 2025, 13(6), 499; https://doi.org/10.3390/toxics13060499 - 13 Jun 2025
Viewed by 49
Abstract
The toxicity of metals such as lead (Pb) and cadmium (Cd) makes heavy metal contamination in food products a major health concern. The aim of this study is to measure the levels of Pb and Cd in yogurt samples that were collected from [...] Read more.
The toxicity of metals such as lead (Pb) and cadmium (Cd) makes heavy metal contamination in food products a major health concern. The aim of this study is to measure the levels of Pb and Cd in yogurt samples that were collected from 11 distinct Lebanese locations and determine their compliance with the legal limits set by the European Commission (0.02 mg/kg for Pb and 0.005 mg/kg for Cd). A total of 165 yogurt samples were examined using atomic absorption spectrophotometry (AAS). Interestingly, the findings showed that 10.9% of samples had Pb concentrations over the allowable limit; the highest amounts were observed in Baalbeck-Hermel (0.118 mg/kg), North Area (0.125 mg/kg), and South Lebanon (0.115 mg/kg). In addition, the highest detected concentrations of Cd were found in North Area (0.094 mg/kg), Baalbeck-Hermel (0.076 mg/kg), and Akkar (0.042 mg/kg), with 14.5% of samples above the limit. The results show regional differences in contamination, which are probably caused by industrial emissions, agricultural activities, and environmental pollution. To better understand the potential health implications, the estimated daily intake (EDI) of Pb and Cd through yogurt consumption was calculated and compared to international health-based guidance values. Although the EDI values suggest a low risk from yogurt alone, the findings highlight the importance of cumulative exposure and emphasize the necessity of regular monitoring and stricter implementation of food safety laws to decrease exposure to heavy metals through dairy intake. Full article
(This article belongs to the Special Issue Toxicity and Safety Assessment of Exposure to Heavy Metals)
Show Figures

Graphical abstract

23 pages, 1729 KiB  
Article
Pharmaceutical Contaminants Occurrence and Ecological Risk Assessment Along the Romanian Black Sea Coast
by Vasile-Ion Iancu, Laura-Florentina Chiriac, Iuliana Paun, Cristina Dinu, Florinela Pirvu, Victor Cojocaru, Anda Gabriela Tenea and Ioana Antonia Cimpean
Toxics 2025, 13(6), 498; https://doi.org/10.3390/toxics13060498 - 13 Jun 2025
Viewed by 44
Abstract
The work aimed to investigate the presence of pharmaceutical compounds from the anti-inflammatory class in seawater from the Romanian Black Sea coast and to assess the ecological risk of these substances on the most sensitive organisms. Using the solid-phase extraction technique (SPE) followed [...] Read more.
The work aimed to investigate the presence of pharmaceutical compounds from the anti-inflammatory class in seawater from the Romanian Black Sea coast and to assess the ecological risk of these substances on the most sensitive organisms. Using the solid-phase extraction technique (SPE) followed by liquid chromatography separation and mass spectrometry detection (LC-MS/MS) of the compounds, the concentrations of these contaminants in selected seawater samples were determined. Ibuprofen was the most commonly detected compound with a frequency of 42.9%, followed by ketoprofen at 31.0.%, diclofenac at 23.8%, and naproxen at 21.4%. The maximum concentrations of pharmaceutical products varied between 13.4 ng/L ketoprofen and 13,575 ng/L caffeine. The order of decreasing maximum concentrations of pharmaceutical compounds in the water of the Black Sea was CAF > IBU > NAP > DIC > KET. The dominant and ubiquitous compound that was determined with the maximum concentration values was caffeine. Strong correlations were observed between three compounds (naproxen: diclofenac, diclofenac: ketoprofen) suggesting the same pollution source. Through the ecological risk assessment, it was observed that both caffeine and ibuprofen can generate high ecological risks for some echinoderms, crustaceans, and fish. Full article
Show Figures

Figure 1

18 pages, 569 KiB  
Article
Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent
by Mohssen Elbagory, Amal Zayed, Nagwa El-Khateeb, Sahar El-Nahrawy, Alaa El-Dein Omara, Ibrahim Mohamed, Marwa Yasien Helmy Elbyaly, Mahmoud El-Sharkawy, Jogendra Singh, Ana Dzaja, Boro Mioč and Ivan Širić
Toxics 2025, 13(6), 497; https://doi.org/10.3390/toxics13060497 - 13 Jun 2025
Viewed by 52
Abstract
Unregulated irrigation with partially industrial effluents may lead to heavy metal contamination in crops and pose significant human health risks, especially in developing countries like India. Therefore, the present study aimed to quantify six heavy metals (Cd, Cr, Cu, Fe, Mn, and Zn) [...] Read more.
Unregulated irrigation with partially industrial effluents may lead to heavy metal contamination in crops and pose significant human health risks, especially in developing countries like India. Therefore, the present study aimed to quantify six heavy metals (Cd, Cr, Cu, Fe, Mn, and Zn) in soil and wheat irrigated with paper mill effluent, assess plant responses, and evaluate associated health risks for consumers. For this, a field study was conducted across ten sites (five effluent-irrigated, five borewell-irrigated as control), analyzing soil and wheat tissues for metal concentrations and calculating risk indices including bioaccumulation factor (Bf), translocation factor (Tf), Dietary Intake of Metals (DIM < 1), Health Risk Index (HRI < 1), and Target Hazard Quotient (THQ < 1). Results indicated high concentrations of Cd and Cr in effluent-irrigated soils and wheat tissues (root > stem > leaves > grains) compared to control sites, with some values exceeding permissible limits. Although the THQ values for heavy metals were below 1, indicating a low immediate health risk, concentrations of Cd and Cr in both soil and crop tissues exceeded acceptable safety standards. This study provides empirical evidence supporting the need for effluent treatment and policy interventions to mitigate agricultural contamination from the use of industrial effluents and protect public health. Full article
19 pages, 6387 KiB  
Article
Degradation of Low-Molecular-Weight Diesel Fractions (C10−C16 Alkane) Drives Cd Stabilization and Pb Activation in Calcareous Soils from Karst Areas
by Yiting Huang, Yankui Tang, Zhenze Xie, Jipeng Wu, Jiajie Huang and Shaojiang Nie
Toxics 2025, 13(6), 496; https://doi.org/10.3390/toxics13060496 - 13 Jun 2025
Viewed by 56
Abstract
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how [...] Read more.
The influence of petroleum hydrocarbons (PHCs) on the transport and transformation of heavy metals may limit bioremediation efficiency. The mechanisms by which PHC degradation intermediates control heavy metal distribution in calcareous soils from karst areas require further exploration. This study systematically investigated how compositional changes in diesel fuel during aging regulated the fate of Cd and Pb in calcareous soils. The results demonstrated that the low-molecular-weight fractions of diesel fuel (C10−C16) were preferentially degraded. This degradation process altered zeta potential, cation exchange capacity (CEC), and pH, thereby promoting Cd stabilization through electrostatic attraction and speciation transformation. Particularly, reducible Cd content showed a strong positive correlation with C16 content (r = 0.88, p < 0.05). Furthermore, the degradation of C10−C16 fractions caused Pb transformation from residual to bioavailable fractions by stimulating microbial activity. Residual Pb content was positively correlated with C10−C16 fractions (r = 0.55, p < 0.05). Notably, dissolved organic matter (DOM) and CaCO3 content in calcareous soils enhanced Cd and Pb adsorption, thereby weakening the interactions between these metals and C10−C16 fractions. Consequently, multiple linear regression (MLR) models relying exclusively on C10−C16 degradation parameters showed poor fitting coefficients for Cd/Pb mobility. The present work provides scientific guidance for heavy metal bioremediation in calcareous soils. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

12 pages, 2105 KiB  
Article
Occurrence and Drivers of Antibiotic Resistance Genes Carried by Bacteriophages in Soils Following Different Fertilization Treatments
by Mingdi Zhang, Yajie Guo, Yue Zhang, Xueying Hu, Shoutao Cheng and Xuming Wang
Toxics 2025, 13(6), 495; https://doi.org/10.3390/toxics13060495 - 13 Jun 2025
Viewed by 120
Abstract
Fertilization has an important effect on soil antibiotic resistance. Most recent studies have focused on antibiotic resistance genes (ARGs) harbored by bacteria (bARGs); however, little is known about ARGs carried by soil bacteriophages (pARGs) under different fertilization treatments. Here, 24 pARG subtypes were [...] Read more.
Fertilization has an important effect on soil antibiotic resistance. Most recent studies have focused on antibiotic resistance genes (ARGs) harbored by bacteria (bARGs); however, little is known about ARGs carried by soil bacteriophages (pARGs) under different fertilization treatments. Here, 24 pARG subtypes were quantified in soils with long-term application of different fertilizers using droplet digital PCR (ddPCR). The results showed that the detection rates of the target ARGs in bacteriophages were 66.67%, 70.83%, and 75.00% in unfertilized, chemically fertilized, and organically fertilized soils, respectively. The total abundance of pARGs in soils amended with organic fertilizer was significantly higher than that in unfertilized and chemically fertilized soils. The multidrug resistance gene (mexF) exhibited the highest abundance in soils amended with organic fertilizer. A significant positive correlation was observed between bARGs and pARGs, and the detected pARG subtype abundances were one to two orders of magnitude lower than those of the corresponding bARGs. The results of variation partitioning analysis revealed that the interaction between the bacterial community and soil properties drove the variation in soil pARGs. Our findings indicate that bacteriophages are important vectors of ARGs, in addition to bacteria, in agricultural soils, and their contribution to antibiotic resistance should not be overlooked. Full article
Show Figures

Figure 1

15 pages, 2532 KiB  
Article
Distribution, Diversity, and Ecological Risks of Microplastics in Mangrove Ecosystems of a Southeastern Chinese Estuary
by Fengrun Wu, Chengyi Zhang, Xueyan Li, Sha Liu, Jinpu Wang and Weiqi Huang
Toxics 2025, 13(6), 494; https://doi.org/10.3390/toxics13060494 - 12 Jun 2025
Viewed by 120
Abstract
Mangrove ecosystems, serving as critical barriers at land–sea interfaces, face increasing threats from microplastic pollution. This study investigates the spatial distribution, diversity, and ecological risks of microplastics in sediments from the Zhangjiang Estuary mangroves, in southeastern China. Sampling was conducted along two gradients: [...] Read more.
Mangrove ecosystems, serving as critical barriers at land–sea interfaces, face increasing threats from microplastic pollution. This study investigates the spatial distribution, diversity, and ecological risks of microplastics in sediments from the Zhangjiang Estuary mangroves, in southeastern China. Sampling was conducted along two gradients: upstream–downstream and interior–edge habitats. The results revealed an average microplastic abundance of 219.5 ± 21.7 items·kg−1, dominated by fragments (53.3%) and fibers (35.0%). Additionally, 27.8% of the particles were in the 63–200 μm range, while 38.3% fell within the 200–500 μm range. A longitudinal decline in abundance from upstream to downstream was observed. Meanwhile, interior habitats exhibited significantly higher microplastic accumulation (292.86 ± 31.49 items·kg−1) than edge zones (142.50 ± 17.87 items·kg−1) (p < 0.05). The diversity index decreased downstream, with higher diversity in interior habitats, likely due to reduced terrestrial microplastic inputs and stronger tidal sorting in those areas. The ecological risk assessments indicated lower risks in Zhangjiang mangroves compared to global counterparts, though risks were elevated in interior habitats due to higher abundances of hazardous polymers (PVC, PS, PE). This study highlights the role of mangroves as microplastic sinks and advocates for multidimensional risk assessments integrating physical characteristics to guide conservation strategies in vulnerable estuarine ecosystems. Full article
Show Figures

Graphical abstract

21 pages, 656 KiB  
Review
Metal-Induced Genotoxic Events: Possible Distinction Between Sporadic and Familial ALS
by William Wu Kim, Gregory Zarus, Breanna Alman, Patricia Ruiz, Moon Han, Paul Mehta, Chao Ji, Hoormat Qureshi, James Antonini and Mohammad Shoeb
Toxics 2025, 13(6), 493; https://doi.org/10.3390/toxics13060493 - 12 Jun 2025
Viewed by 199
Abstract
Metal exposure is a potential risk factor for amyotrophic lateral sclerosis (ALS). Increasing evidence suggests that elevated levels of DNA damage are present in both familial (fALS) and sporadic (sALS) forms of ALS, characterized by the selective loss of motor neurons in the [...] Read more.
Metal exposure is a potential risk factor for amyotrophic lateral sclerosis (ALS). Increasing evidence suggests that elevated levels of DNA damage are present in both familial (fALS) and sporadic (sALS) forms of ALS, characterized by the selective loss of motor neurons in the brain, brainstem, and spinal cord. However, identifying and differentiating initial biomarkers of DNA damage response (DDR) in both forms of ALS remains unclear. The toxicological profiles from the Agency for Toxic Substances and Disease Registry (ATSDR) and our previous studies have demonstrated the influence of metal exposure-induced genotoxicity and neurodegeneration. A comprehensive overview of the ATSDR’s toxicological profiles and the available literature identified 15 metals (aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), uranium (U), vanadium (V), and zinc (Zn)) showing exposure-induced genotoxicity indicators associated with ALS pathogenesis. Genetic factors including mutations seen in ALS types and with concomitant metal exposure were distinguished, showing that heavy metal exposure can exacerbate the downstream effect of existing genetic mutations in fALS and may contribute to motor neuron degeneration in sALS. Substantial evidence associates heavy metal exposure to genotoxic endpoints in both forms of ALS; however, a data gap has been observed for several of these endpoints. This review aims to (1) provide a comprehensive overview of metal exposure-induced genotoxicity in ALS patients and experimental models, and its potential role in disease risk, (2) summarize the evidence for DNA damage and associated biomarkers in ALS pathogenesis, (3) discuss possible mechanisms for metal exposure-induced genotoxic contributions to ALS pathogenesis, and (4) explore the potential distinction of genotoxic biomarkers in both forms of ALS. Our findings support the association between metal exposure and ALS, highlighting under or unexplored genotoxic endpoints, signaling key data gaps. Given the high prevalence of sALS and studies showing associations with environmental exposures, understanding the mechanisms and identifying early biomarkers is vital for developing preventative therapies and early interventions. Limitations include variability in exposure assessment and the complexity of gene–environment interactions. Studies focusing on longitudinal exposure assessments, mechanistic studies, and biomarker identification to inform preventative and therapeutic strategies for ALS is warranted. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

18 pages, 6109 KiB  
Article
The Impact of Boron Carbide Nanoparticle (B4C-NPs) Toxicity on Caenorhabditis elegans Models
by Sen-Ting Huang, Erin P. Bulaon, Kai-Jie Yang, Adriana Taw, Lemmuel L. Tayo, Ping-Heng Hsieh, Jen-Hsiung Tsai, Jian-He Lu, Jheng-Jie Jiang, Hsing-Hsien Wu and How-Ran Chao
Toxics 2025, 13(6), 492; https://doi.org/10.3390/toxics13060492 - 12 Jun 2025
Viewed by 158
Abstract
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a [...] Read more.
Boron carbide (B4C) is a widely recognized ceramic prized for its remarkable properties, including exceptional hardness, low density, and excellent chemical and mechanical stability. To date, limited research has explored the possible health risks associated with B4C nanoparticles (B4C-NPs). This study utilized a Caenorhabditis elegans (C. elegans) in vivo model to investigate the toxicological effects of B4C-NPs at concentrations of 40, 80, 160, and 320 mg/L. Larval nematodes were subjected to prolonged exposure, and their locomotion (head thrashing and body bending), reproduction (brood size), development (body length), lifespan, and gene expression (linked to oxidative stress, metal detoxification, apoptosis, and neurotransmitter synthesis) were assessed. Regarding survival rates, lethality was significantly increased to 5.41% at 320 mg/L of B4C-NPs and lifespan was significantly shortened across all concentrations compared with the controls. Development and reproduction showed slight reductions between 40 and 320 mg/L, while locomotion was markedly impaired at the doses from 80 to 320 mg/L. Gene expression related to antioxidants, apoptosis, cell cycle arrest, neurotransmitter synthesis, and metal detoxification rose significantly at 160–320 mg/L in C. elegans, suggesting that B4C-NPs may induce reproductive and neurological toxicity, delay development, reduce lifespan, and potentially cause genotoxicity in C. elegans. Full article
(This article belongs to the Special Issue Toxicity Assessment and Safety Management of Nanomaterials)
Show Figures

Figure 1

18 pages, 1544 KiB  
Article
Associations Between Individual Health Risk Perceptions and Biomarkers of PAH Exposure Before and After PM2.5 Pollution in the Suburbs of Chiang Mai Province
by Sobia Kausar, Xianfeng Cao, Sumed Yadoung, Anurak Wongta, Kai Zhou, Natthapol Kosashunhanan and Surat Hongsibsong
Toxics 2025, 13(6), 491; https://doi.org/10.3390/toxics13060491 - 11 Jun 2025
Viewed by 224
Abstract
This study examines how seasonal air pollution affects health perceptions, risk awareness, and preventive behaviors among a sample of 150 individuals, particularly within vulnerable people living in Thailand. Many participants were older adults (54.7% aged ≥ 60), female (76.7%), and had a low [...] Read more.
This study examines how seasonal air pollution affects health perceptions, risk awareness, and preventive behaviors among a sample of 150 individuals, particularly within vulnerable people living in Thailand. Many participants were older adults (54.7% aged ≥ 60), female (76.7%), and had a low income (less than 10,000 THB/month (USD 295), 92.6%). Polycyclic Aromatic Hydrocarbon (PAH) exposure, as indicated by urinary 1-Hydroxypyrene (1-OHP), significantly increased during high-pollution periods (p < 0.001), while benzo[a]pyrene diol epoxide (BPDE) levels did not show significant changes. Farmers exhibited the highest PAH exposure (p = 0.018). Risk perception and preventive behavior scores rose from 0.711 to 0.748 and from 0.505 to 0.707, respectively. Notable items with high factor loadings included “burning pollutes the air and spreads pollution” (Q2.1 = 0.998) and “avoid burning of any kind” (Q4.2 = 1.007). Neurological symptoms, such as loss of consciousness, increased from 0.956 to 1.049, while respiratory problems like pneumonia went up from 0.673 to 1.07. Environmental risk knowledge-related perceptions experienced a slight decline (from 0.609 to 0.576). These results highlight the need for targeted education through community workshops and strategies like mask distribution, indoor air filtration, and early warning systems for vulnerable populations. Full article
Show Figures

Graphical abstract

18 pages, 4589 KiB  
Article
Immunotoxicity of Four Per- and Polyfluoroalkyl Substances Following 28-Day Oral Repeat Dosing in Rats Assessed by the Anti-Sheep Red Blood Cell IgM Response
by Michael F. Hughes, Michael J. DeVito, Grace Patlewicz, Russell S. Thomas, Linda D. Adams, Jeffrey L. Ambroso, Xi Yang, Bindu G. Upadhyay, Stefanie C. M. Burleson and Elaina M. Kenyon
Toxics 2025, 13(6), 490; https://doi.org/10.3390/toxics13060490 - 10 Jun 2025
Viewed by 206
Abstract
Some PFASs are immunotoxic in rodent models and associated with diminished vaccine response in exposed humans. This study assessed the immunotoxicity of four PFASs via the T cell-dependent IgM antibody response (TDAR) to sheep red blood cells (SRBCs) in adult male rats following [...] Read more.
Some PFASs are immunotoxic in rodent models and associated with diminished vaccine response in exposed humans. This study assessed the immunotoxicity of four PFASs via the T cell-dependent IgM antibody response (TDAR) to sheep red blood cells (SRBCs) in adult male rats following 28-day oral repeat dosing. The PFASs included 1H,1H,9H-perfluorononyl acrylate (PFNAC), 1H,1H,2H,2H-perfluorohexyl iodide (PFHI), 2-chlorotetrafluoropropionic acid (CTFPA), and 3,3,4,4,5,5,5-heptafluoropentan-2-one (MHFPK), administered in corn oil. The positive control was cyclophosphamide (CPS). Rats were dosed with vehicle or PFAS from Days 0 to 27. On Day 22, an immunogenic dose of SRBCs was administered intravenously. Positive control animals were administered CPS by intraperitoneal injection from Days 22–27. On Day 28, the animals were euthanized; blood, thymus, and spleen samples were collected and weighed. Serum IgM was quantified by enzyme-linked immunosorbent assay. Body weights were unaffected in PFAS-treated rats, except for 3 and 10 mg/kg/day PFNAC-treated rats on Days 24, 27, and 28. Relative spleen and thymus weights and serum IgM levels were not affected by the PFASs at the doses tested, whereas CPS-treated animals had significant decreases in these parameters. The rat TDAR, as assessed by the anti-SRBC IgM response, was not affected by these four PFAS test agents following a 28-day oral exposure. Full article
(This article belongs to the Special Issue PFAS Toxicology and Metabolism—2nd Edition)
Show Figures

Graphical abstract

16 pages, 832 KiB  
Article
Association of Urinary Cadmium and Antimony with Osteoporosis Risk in Postmenopausal Brazilian Women: Insights from a 20 Metal(loid) Biomonitoring Study
by Carlos Tadashi Kunioka, Vanessa Cristina de Oliveira Souza, Bruno Alves Rocha, Fernando Barbosa Júnior, Luís Belo, Maria Conceição Manso and Márcia Carvalho
Toxics 2025, 13(6), 489; https://doi.org/10.3390/toxics13060489 - 10 Jun 2025
Viewed by 253
Abstract
Osteoporosis is a major public health concern, particularly among postmenopausal women. Environmental exposure to metals has been proposed as a potential contributor to osteoporosis, but human data remain limited and inconsistent. This study investigated changes in urinary concentrations of 20 metal(loid)s in patients [...] Read more.
Osteoporosis is a major public health concern, particularly among postmenopausal women. Environmental exposure to metals has been proposed as a potential contributor to osteoporosis, but human data remain limited and inconsistent. This study investigated changes in urinary concentrations of 20 metal(loid)s in patients with osteoporosis, as well as the association of these elements with bone mineral density (BMD), in a cohort of 380 postmenopausal women aged 50–70 years from Cascavel, Paraná, Brazil. Demographic, lifestyle, and clinical data were collected, and urinary concentrations of aluminum (Al), barium (Ba), cadmium (Cd), cobalt (Co), cesium (Cs), copper (Cu), mercury (Hg), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), rubidium (Rb), antimony (Sb), selenium (Se), tin (Sn), strontium (Sr), thallium (Tl), uranium (U), and zinc (Zn) were measured by inductively coupled plasma mass spectrometry. BMD was assessed at the lumbar spine, femoral neck, and total hip using dual-energy X-ray absorptiometry. Osteoporosis was diagnosed in 73 participants (19.2%). Osteoporotic women had significantly higher urinary concentrations of Cd, Mn, Pb, Sb, Sn, and Zn (p < 0.05). Statistically significant negative correlations were observed between BMD and urinary concentrations of Al, Cd, Hg, Mn, Sb, and U. After adjustment for confounders, elevated urinary concentrations of Cd, Mn, Pb, and Sb remained independently and significantly associated with higher odds of osteoporosis, with Cd (aOR = 1.495; p = 0.026) and Sb (aOR = 2.059; p = 0.030) showing the strongest associations. In addition, women with urinary concentrations above the 90th percentile for both Cd and Sb had a significantly higher prevalence of osteoporosis compared to those with lower levels (44.4% vs. 18.0%; p = 0.011). Longitudinal studies are needed to confirm causality and inform prevention strategies. Full article
Show Figures

Graphical abstract

16 pages, 4138 KiB  
Article
PM2.5 Induced Nasal Mucosal Barrier Dysfunction and Epithelial–Mesenchymal Transition to Promote Chronic Rhinosinusitis Through IL4I1-AhR Signaling Pathway
by Yue Wang, Bowen Zheng, Panhui Xiong, Yijun Liu, Longlan Shu, Yang Shen, Tao Lu and Yucheng Yang
Toxics 2025, 13(6), 488; https://doi.org/10.3390/toxics13060488 - 10 Jun 2025
Viewed by 271
Abstract
Environmental pollutants like PM2.5 contribute to chronic rhinosinusitis (CRS). The aryl hydrocarbon receptor (AhR), a contaminant sensor linked to tryptophan metabolites, is regulated by IL4I. However, how PM2.5 stimulation via IL4I1 influences AhR activation and CRS pathogenesis remains unclear. This study explored the [...] Read more.
Environmental pollutants like PM2.5 contribute to chronic rhinosinusitis (CRS). The aryl hydrocarbon receptor (AhR), a contaminant sensor linked to tryptophan metabolites, is regulated by IL4I. However, how PM2.5 stimulation via IL4I1 influences AhR activation and CRS pathogenesis remains unclear. This study explored the IL4I1-AhR pathway in CRS using patient tissues, HNEpCs, and murine models. Methods included IHC, qRT-PCR, and WB under PM2.5 exposure, with further investigation into downstream effects on CYP1B1 and epithelial–mesenchymal transition (EMT). Significant upregulation of IL4I1, AhR, and CYP1B1 was observed in CRS tissues, with higher expression levels in CRS patients. Exposure to PM2.5 activated the IL4I1-AhR pathway, leading to decreased E-cadherin, increased N-cadherin and vimentin, and impaired nasal mucosal barrier function. In vitro experiments demonstrated that PM2.5-induced EMT in HNEpCs was mediated by IL4I1-dependent AhR activation. CH223191 reduced cell migration and EMT, while IL4I1 knockdown attenuated AhR activation and EMT marker expression. Murine models further confirmed that PM2.5 exacerbated nasal polyp formation and tissue remodeling via the IL4I1-AhR pathway. This study underscores the critical role of the IL4I1-AhR signaling pathway in PM2.5-induced nasal mucosal barrier dysfunction and EMT in CRS. IL4I1, as an upstream regulator of AhR, promotes EMT and nasal mucosal barrier disruption. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

24 pages, 10345 KiB  
Article
Intratracheal Administration of Polystyrene Micro(nano)plastics with a Mixed Particle Size Promote Pulmonary Fibrosis in Rats by Activating TGF-β1 Signaling and Destabilizing Mitochondrial Dynamics and Mitophagy in a Dose- and Time-Dependent Manner
by Shuang Xia, Chunli Yuan, Wei Long, Zongcheng Wu, Xiuqin Li, Nan Wang, Mumu Gao, Zhe Li, Peilun Li, Peng Liu, Xiaoxi Qu and Lina Sun
Toxics 2025, 13(6), 487; https://doi.org/10.3390/toxics13060487 - 9 Jun 2025
Viewed by 239
Abstract
Background: Microplastics (MPs) can be inhaled by people. However, the relationships between long-term exposure to inhaled MPs, pulmonary fibrosis, and mitochondrial dysfunction are not completely clear. Methods: SD rats were exposed to a 0.0125, 0.125, 0.31, or 1.25 mg/day dosage of mixed polystyrene [...] Read more.
Background: Microplastics (MPs) can be inhaled by people. However, the relationships between long-term exposure to inhaled MPs, pulmonary fibrosis, and mitochondrial dysfunction are not completely clear. Methods: SD rats were exposed to a 0.0125, 0.125, 0.31, or 1.25 mg/day dosage of mixed polystyrene MPs (PS-MPs), with the particle sizes ranging from 500 nm to 4 µm, via intratracheal administration, for 7 to 35 consecutive days. Results: PS-MPs with particle sizes ranging from 1 µm to 4 µm were deposited in the lungs. The contents of NFκB-mediated proinflammatory cytokines were increased in the lungs of the rats after 7 days of PS-MP exposure. After exposure to PS-MPs, the degree of collagen deposition and the expression of TGF-β1/Smad increased significantly, and the levels of phosphorylated Akt (p-Akt) and nuclear β-catenin decreased significantly. The number of healthy mitochondria decreased, the expression of mitochondrial fission and fusion proteins increased, and the level of PINK1/Parkin-mediated mitophagy decreased in the lungs of the rats after 7 days of PS-MP exposure. A benchmark dose (BMD) of 0.151 mg/day and a benchmark dose lower confidence limit (BMDL) of 0.031 mg/day were identified on the basis of the subchronic effects of the intratracheal administration of the PS-MPs. Conclusions: Our study provides an in-depth understanding of the potential impacts of MP pollution on respiratory diseases. Full article
(This article belongs to the Special Issue Health Effects and Toxicology Studies of Emerging Contaminants)
Show Figures

Graphical abstract

18 pages, 2112 KiB  
Article
Plastics Biodegradation in the Short Term in a Mediterranean Soil and the Effect of Organic Amendment
by Rafael Boluda, Nadia Redondo, Luis Roca-Pérez, Eva Fernández-Gómez and Oscar Andreu-Sánchez
Toxics 2025, 13(6), 486; https://doi.org/10.3390/toxics13060486 - 9 Jun 2025
Viewed by 166
Abstract
The main problem with the conventional plastics presently used is that they are too slow to degrade, and thus, accumulate in the natural environment. This situation occurs on farmlands because low-density polyethylene (LDPE) is widely used in agriculture. Different authors propose employing biodegradable [...] Read more.
The main problem with the conventional plastics presently used is that they are too slow to degrade, and thus, accumulate in the natural environment. This situation occurs on farmlands because low-density polyethylene (LDPE) is widely used in agriculture. Different authors propose employing biodegradable plastics (bioplastics) to solve this problem, and the most studied and promising candidates are poly(hydroxybutyrate) acid (PHB) and poly(lactic) acid (PLA). This work centers on the short-term evaluation of the biodegradability of the three above-mentioned plastic materials in soil type Mediterranean Alfisol and the effect of adding organic amendment (cow manure; CM) on their biodegradation. Two experiments were run for each plastic material: one without this organic amendment and the other by adding CM. Their biodegradation was determined by the procedure described in Standard ISO 17556. The results confirm that PHB is a highly biodegradable polymer, whereas the biodegradability of PLA and LDPE is poor. Using CM did not facilitate plastic polymer biodegradation in our soil. The nature and properties of soil can significantly impact plastics biodegradation. Bioplastics are still not the panacea to solve the plastics pollution problem, so other management options must be considered, such as prevention, reduction, and/or reuse in situ. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

27 pages, 818 KiB  
Review
Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods
by Eleonora Di Salvo, Giovanni Bartolomeo, Rossella Vadalà, Rosaria Costa and Nicola Cicero
Toxics 2025, 13(6), 485; https://doi.org/10.3390/toxics13060485 - 9 Jun 2025
Viewed by 378
Abstract
Mycotoxins are a large family of secondary metabolites produced by filamentous fungi species that may be present in food following fungal growth. Mycotoxins are found in a variety of crops, including wheat, millet, maize, sorghum, peanut, soybean, and their by-products. In recent years, [...] Read more.
Mycotoxins are a large family of secondary metabolites produced by filamentous fungi species that may be present in food following fungal growth. Mycotoxins are found in a variety of crops, including wheat, millet, maize, sorghum, peanut, soybean, and their by-products. In recent years, the consumption of ready-to-eat food (RTE) has increased exponentially. An increasing number of consumers have elected to purchase and consume ready-made meals, a choice that allows for a more expedient and convenient dining experience. The aim of this review was to investigate recent literature to find a link between the consumption of mycotoxin-contaminated RTEs, modern detection methods (artificial intelligence), and potential health risks to consumers. The regular exchange of information between the Member States and the European Community (EU) concerning the monitoring of contaminants and undesirable chemical substances, and the subsequent communication of the findings to the EFSA, provides the foundation for the evolution of the legislative framework with the objective of enhancing food safety and reducing the risks associated with the consumption of food. It is imperative that governments, the food industry, and the scientific community collaborate to reduce this risk and ensure consumer safety. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

11 pages, 2213 KiB  
Brief Report
Acute PM2.5 Exposure in Distinct NSCLC Cell Lines Reveals Strong Oxidative Stress and Therapy Resistance Signatures Through Transcriptomic Analysis
by Aussara Panya, Saruda Thongyim, Pachara Sattayawat and Sahutchai Inwongwan
Toxics 2025, 13(6), 484; https://doi.org/10.3390/toxics13060484 - 8 Jun 2025
Viewed by 302
Abstract
Acute PM2.5 exposure has been implicated in lung cancer progression, yet its impact on genetically distinct NSCLC cells remains underexplored. This study investigates how mutation-specific transcriptional responses influence susceptibility to PM2.5-induced oncogenic alterations, focusing on A549 and NCI-H1975 cells. This provides preliminary insight [...] Read more.
Acute PM2.5 exposure has been implicated in lung cancer progression, yet its impact on genetically distinct NSCLC cells remains underexplored. This study investigates how mutation-specific transcriptional responses influence susceptibility to PM2.5-induced oncogenic alterations, focusing on A549 and NCI-H1975 cells. This provides preliminary insight into the transcriptomic effects of acute PM2.5 exposure in NSCLC cells with distinct oncogenic mutations (A549 and NCI-H1975), serving as a guide for understanding mutation-specific responses to environmental stress. Cells were exposed to PM2.5 (200 µg/mL, 24 h), followed by RNA sequencing and analysis. Gene ontology and pathway enrichment analyses were conducted to identify key molecular alterations associated with tumour progression. NCI-H1975 cells exhibited a stronger transcriptional response, with a higher fold change in differentially expressed genes (DEGs), indicating greater PM2.5 susceptibility. Upregulated genes were linked to oxidative stress, carcinogen activation, metabolic reprogramming, and therapy resistance, reinforcing tumour survival under PM2.5 stress. Conversely, the downregulation of tumour suppressor genes suggests immune suppression and potential immunotherapy resistance. This study reveals that acute PM2.5 exposure induces mutation-specific transcriptomic alterations in NSCLC, with EGFR-mutant cells exhibiting heightened oxidative stress, metabolic shifts, and immune evasion. The upregulation of key genes highlights the profound molecular impact of short-term exposure, paving the way for future studies on pollution-driven oncogenic mechanisms and resistance pathways. Full article
Show Figures

Figure 1

15 pages, 9245 KiB  
Article
An Integrated Approach Involving Metabolomics and Transcriptomics Reveals Arsenic-Induced Toxicity in Human Renal Cells
by Lin Rong, Xinxin Liang, Xingfang Zhang, Yajun Qiao, Guoqiang Li, Yuancan Xiao, Hongtao Bi and Lixin Wei
Toxics 2025, 13(6), 483; https://doi.org/10.3390/toxics13060483 - 8 Jun 2025
Viewed by 283
Abstract
Accumulating epidemiological evidence has indicated that arsenic exposure can lead to kidney injury. However, the underlying mechanisms of arsenic-induced nephrotoxicity have not been fully elucidated. In this study, the effect of sodium arsenite on the cell viability of HEK-293 cells was studied using [...] Read more.
Accumulating epidemiological evidence has indicated that arsenic exposure can lead to kidney injury. However, the underlying mechanisms of arsenic-induced nephrotoxicity have not been fully elucidated. In this study, the effect of sodium arsenite on the cell viability of HEK-293 cells was studied using a CCK-8 assay. Metabolomic and transcriptomic analyses were applied to identify differential metabolites (DMs) and differentially expressed genes (DEGs) in human renal cells exposed to arsenite, respectively. The results showed that the IC50 of arsenite on HEK-293 cells was 25 μM. A total of 621 DMs were identified in arsenic-treated cells (VIP > 1, p < 0.05). The results of the metabolome analysis revealed that purine metabolism was the major affected pathway, with 21 DMs enriched within this pathway. Additionally, 9831 DEGs were obtained after arsenic exposure (|log2FC| > 1, Padj < 0.05). The results of the transcriptome analysis showed that ECM–receptor interaction and cell adhesion molecules were the major altered KEGG pathways, with 54 and 70 enriched DEGs, respectively. Integrated metabolomics and transcriptomics analyses revealed that the predominant mechanisms underlying arsenic-induced nephrotoxicity were associated with the perturbations of lipid metabolism and purine metabolism. Overall, the present study provided comprehensive insights into the metabolic and transcriptional alterations in human renal cells in response to arsenic exposure, providing a referable scientific basis for subsequent arsenic-induced nephrotoxicity studies. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

11 pages, 216 KiB  
Article
Absence of Adverse Effects on Pulmonary Histopathology and Functions Following Inhalation Exposure to Chloromethylisothiazolinone/Methylisothiazolinone
by Sam Kacew and Esref Demir
Toxics 2025, 13(6), 482; https://doi.org/10.3390/toxics13060482 - 6 Jun 2025
Viewed by 275
Abstract
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, [...] Read more.
In South Korea, issues have been raised regarding exposure to humidifier disinfectant products containing certain chemicals postulated to induce lung diseases in consumers. Several rodent studies utilizing whole-body inhalation, which comprises freely moving animals breathing through the nares, and intranasal instillation involving restraint, were conducted by various Korean Governmental Agencies on these products to investigate whether there is a causal relationship between these products and the development of lung diseases. In particular, the humidifier disinfectant product Kathon, containing chloromethylisothiazolinone and methylisothiazolinone (CMIT and MIT), when directly introduced into inhalation chambers at varying concentrations for up to 13 weeks, produced no significant histopathological alterations and no marked changes in pulmonary function parameters. Further, there was no evidence of cytotoxicity; total and differential cell counts did not differ from control. In addition, the levels of cytokine markers of inflammation were not markedly altered. In contrast to published papers utilizing intratracheal and intranasal instillation, where the animal is anesthetized and chemical bypasses the defense mechanisms in the respiratory tract, then reaches the pulmonary region, ignoring recommended dose levels was found to initiate fibrotic responses in mice and rats. However, the usefulness of experimental results to extrapolate to humans obtained following intratracheal and intranasal instillation studies is of limited value because the data generated did not use a realistic design and appropriate dosimetry. Therefore, these findings have significant drawbacks in their use to characterize an inhalation risk for pulmonary fibrosis in humans and cannot be used for the extrapolation of such risk to humans. It is thus evident that the inhalation data generated by the Korean Regulatory Agencies are more realistic and show that exposure to CMIT and MIT does not initiate pulmonary fibrosis. Although inhalation studies still do not fully replicate real-world human exposure scenarios and have limitations for direct extrapolation to humans, they are nevertheless more appropriate than intratracheal or intranasal instillation models. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
Show Figures

Graphical abstract

17 pages, 2051 KiB  
Article
Comparative Toxicokinetics and Biomarker Responses of Typical Psychiatric Pharmaceuticals in Daphnia magna
by Haohan Yang, Hao Xing, Zhuoyu Chen, Linghui Kong, Hanyu Jiang and Tengyi Zhu
Toxics 2025, 13(6), 481; https://doi.org/10.3390/toxics13060481 - 6 Jun 2025
Viewed by 227
Abstract
The widespread availability and pseudo-persistence of typical psychiatric pharmaceuticals (PDs) can have serious impacts on aquatic ecosystems and even human health. However, the toxicokinetics of typical PDs and the corresponding enzymatic biomarker responses are unclear. In this study, eight typical PDs [carbamazepine (CBZ), [...] Read more.
The widespread availability and pseudo-persistence of typical psychiatric pharmaceuticals (PDs) can have serious impacts on aquatic ecosystems and even human health. However, the toxicokinetics of typical PDs and the corresponding enzymatic biomarker responses are unclear. In this study, eight typical PDs [carbamazepine (CBZ), citalopram (CIT), sertraline (SER), venlafaxine (VLF), amitriptyline (AMT), chlorpromazine (CPM), quetiapine (QTP) and clozapine (CLZ)] were selected to study the uptake, depuration and biological effects of PDs in Daphnia magna. The results found that the uptake rates (Ku) were in the sequence of VLF < QTP < CBZ < CLZ < CIT < AMT < SER < CPM, while the depuration rates (Kd) were in the order of CLZ < AMT < CIT < SER < QTP < CBZ < CPM < VLF. Correspondingly, the bioconcentration factors (BCFs) followed on as VLF < QTP < CBZ < CIT < AMT < CLZ < SER < CPM. Both pH-dependent octanol–water partition coefficients (log Dow) and liposome–water partition coefficients (log Dlip-w) exhibited positive correlations with the log BCF of PDs (p < 0.05), indicating the important roles of ionization degree and biological phospholipid contents on bioconcentration. Superoxide dismutase (SOD) activities were evidently induced in the SER and CPM groups, while ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) activities were significantly induced only in the CBZ group. Acetylcholinesterase (AChE) activity was obviously induced by CBZ, SER and AMT, with levels 1.73, 1.62 and 2.44 times that of the control group (p < 0.05). The Ku of PDs, oxidative stress and metabolic level of D. magna combine to affect BCF levels together. In conclusion, this study contributes to a better understanding of the toxicokinetics and biochemical responses of PDs in D. magna and potential mechanisms of action, which may allow for a better assessment of their environmental health risks to aquatic ecosystems. Full article
Show Figures

Graphical abstract

17 pages, 7191 KiB  
Article
Network Toxicology and Molecular Docking to Elucidate the Mechanisms of Intestinal Toxicity Induced by P-Phenylenediamine Antioxidants and Their Quinone Derivatives
by Hui Zou, Yumei Tan, Xiyi Ren, Zhu Li and Yongxiang Liu
Toxics 2025, 13(6), 480; https://doi.org/10.3390/toxics13060480 - 6 Jun 2025
Viewed by 349
Abstract
P-phenylenediamines (PPDs) and their quinone derivatives (PPDQs), emerging pollutants widespread in urban environments, exhibit biotoxicological risks. Epidemiological studies suggest their adverse impacts on intestinal health, yet the underlying mechanisms remain unclear. This study aimed to investigate the potential mechanisms of enterotoxicity induced by [...] Read more.
P-phenylenediamines (PPDs) and their quinone derivatives (PPDQs), emerging pollutants widespread in urban environments, exhibit biotoxicological risks. Epidemiological studies suggest their adverse impacts on intestinal health, yet the underlying mechanisms remain unclear. This study aimed to investigate the potential mechanisms of enterotoxicity induced by 13 PPDs and PPDQs using network toxicology and molecular docking approaches. Through the SuperPred, STITCH, GeneCards, and OMIM databases, 182 potential targets associated with PPD- and PPDQ-induced enterotoxicity were identified. Thirty hub targets, including SRC, EGFR, CASP3, and others, were prioritized using STRING and Cytoscape tools. GO and KEGG enrichment analyses via the DAVID and FUMA databases revealed significant enrichment of core enterotoxicity-related targets in the MAPK signaling pathway and the calcium signaling pathway. Molecular docking with AutoDock confirmed strong binding affinities between PPDs/PPDQs and core targets. These results suggest that PPDs and PPDQs may promote the onset and progression of bowel cancer and intestinal inflammation by modulating cancer cell death, proliferation, and inflammatory signaling pathways. This research provides a theoretical framework for elucidating the molecular mechanisms of PPD- and PPDQ-induced enterotoxicity, offering insights for the prevention of associated diseases. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Figure 1

22 pages, 2881 KiB  
Article
Characteristics of Ship-Emitted VOCs and Their Contributions to Urban Atmospheric VOCs in Guangzhou, China
by Xueying Zeng, Liwei Wang, Haining Wu, Chenglei Pei, Hong Ju, Junjie He, Ming Liu, Mei Li, Daiwei Chen, Yongjiang Xu, Wenlong Tang, Jinchi Li and Chunlei Cheng
Toxics 2025, 13(6), 479; https://doi.org/10.3390/toxics13060479 - 5 Jun 2025
Viewed by 305
Abstract
With the implementation of China’s low-sulfur fuel policy, the characteristics of volatile organic compounds (VOCs) emitted from ship exhausts have changed significantly, and the influence of these emissions on the local atmosphere of port cities needs to be evaluated. In this study, the [...] Read more.
With the implementation of China’s low-sulfur fuel policy, the characteristics of volatile organic compounds (VOCs) emitted from ship exhausts have changed significantly, and the influence of these emissions on the local atmosphere of port cities needs to be evaluated. In this study, the characteristics of localized source profiles of ship-emitted VOCs with respect to different ship types, fuel types, and engine operating conditions were analyzed in Guangzhou Port. Oxygenated VOCs (OVOCs) dominated in ferry (91.1%), cargo ship (87.0%), and tugboat (54.4% ± 7.9%) emissions (diesel fuel), while alkanes (56.3% ± 1.6%) and alkenes (36.0% ± 0.9%) were major species in multi-purpose ship (LNG fuel) emissions. These results suggest the dominance of OVOCs in the exhaust emissions of diesel-type ships and the prominent difference in ship-emitted VOCs between diesel and LNG fuel ships, which also influenced the emission characteristics of VOCs from main and auxiliary engines. Based on the measured source profiles, ship emissions contributed 18.2% ± 0.8% (summer), 8.7% ± 1.9% (winter), 6.0% ± 1.1% (spring), and 5.6% ± 1.7% (autumn) to VOCs in the port area, and 7.8% ± 1.5% in July and 5.0% ± 0.5% in September in the urban area. An air mass trajectory analysis revealed that the south wind transported the ship exhaust emissions to the port area and inland urban area, which explained the higher contributions of ship emissions in summer and more ship emissions received in the port area than in the urban area. Therefore, estimating the influence of ship emissions on ambient air quality in port cities requires integrating local ship source profiles, locations, and meteorological conditions. This study provides insights into the ship-emitted VOC characteristics given China’s low-sulfur fuel policy and their differential contributions to urban atmospheric VOCs. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop