Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Soil, Water, Effluent Collection and Analysis Processing
2.3. Plant Growth Indices and Accumulation Factors
2.4. Health Risk Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Water, Effluent, and Agricultural Soil
3.2. Effects on Wheat Plant Attributes
3.3. Heavy Metal Accumulation in Wheat Tissues Under Different Irrigation Regimes
3.4. Bioaccumulation Factor (Bf) of Heavy Metals
3.5. Translocation Factor (Tf) of Heavy Metals
3.6. Health Risk Assessment of Heavy Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of Heavy Metals in Leaf Vegetables from Agricultural Soils and Associated Potential Health Risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. A Review of Wastewater Irrigation: Environmental Implications. Resour. Conserv. Recycl. 2021, 168, 105454. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, A.; Shukla, P. Estimation of Heavy Metal Contamination in the Hindon River, India: An Environmetric Approach. Appl. Water Sci. 2021, 11, 2. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Iqbal, S.; Ashfaq, A.; Bashir, H.; Mehmood, N.; Dogan, Y. Evaluation of Heavy Metals Uptake by Wheat Growing in Sewage Water Irrigated Soil. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1409–1420. [Google Scholar] [CrossRef]
- Adewuyi, S.O.; Ibigbami, B.T.; Mmuoegbulam, A.O.; Abimbade, F.S.; Abiodun, O.M.; Klink, M.J.; Nelana, S.M.; Malomo, D.; Ayanda, O.S. Toxicity and Health Implications of Pesticides and the Need To Remediate Pesticide-Contaminated Wastewater Through the Advanced Oxidation Processes. Water Conserv. Manag. 2024, 8, 97–108. [Google Scholar] [CrossRef]
- Singh, G.; Nagora, P.R.; Haksar, P.; Kulshrestha, S.; Rani, A. Assessing Soil Quality and Biomass Productivity Under Wastewater Irrigation in the Indian Arid Region. Environ. Qual. Manag. 2025, 34, e70051. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, X.; Tang, X.; Jiang, L.; He, R. Uncovering Anaerobic Oxidation of Methane and Active Microorganisms in Landfills by Using Stable Isotope Probing. Environ. Res. 2025, 271, 121139. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Lentini, P.; Zanoli, L.; Granata, A.; Signorelli, S.S.; Castellino, P.; Dell’Aquila, R. Kidney and Heavy Metals—The Role of Environmental Exposure (Review). Mol. Med. Rep. 2017, 15, 3413–3419. [Google Scholar] [CrossRef]
- Lawal, K.K.; Ekeleme, I.K.; Onuigbo, C.M.; Ikpeazu, V.O.; Obiekezie, S.O. A Review on the Public Health Implications of Heavy Metals. World J. Adv. Res. Rev. 2021, 10, 255–265. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Gupta, R.K.; Pradhan, T.; Raj, A.; Singh, S.K.; Kaushalendra; Pandey, K.D.; Kumar, A. Contamination of Soil and Food Chain through Wastewater Application. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2023; Volume 9, pp. 109–132. ISBN 9780443193880. [Google Scholar]
- Hasheminasab, K.S.; Shahbazi, K.; Marzi, M.; Zare, A.; Yeganeh, M.; Bazargan, K.; Kharazmi, R. A Study on Wheat Grain Zinc, Iron, Copper, and Manganese Concentrations and Their Relationship with Grain Yield in Major Wheat Production Areas of Iran. J. Agric. Food Res. 2023, 14, 100913. [Google Scholar] [CrossRef]
- Nowwar, A.I.; Farghal, I.I.; Ismail, M.A.; Amin, M.A. Impact of Irrigation with Wastewater on Accumulation of Heavy Metals in Phaseolus vulgaris L. and Its Remediation. J. Soil. Sci. Plant Nutr. 2023, 23, 761–777. [Google Scholar] [CrossRef]
- AL-Huqail, A.A.; Kumar, P.; Eid, E.M.; Adelodun, B.; Abou Fayssal, S.; Singh, J.; Arya, A.K.; Goala, M.; Kumar, V.; Širić, I. Risk Assessment of Heavy Metals Contamination in Soil and Two Rice (Oryza sativa L.) Varieties Irrigated with Paper Mill Effluent. Agriculture 2022, 12, 1864. [Google Scholar] [CrossRef]
- Qu, J.; Li, Y.; Bi, F.; Liu, X.; Dong, Z.; Fan, H.; Yin, M.; Fu, L.; Cao, W.; Zhang, Y. Smooth Vetch (Vicia villosa var.) Coupled with Ball-Milled Composite Mineral Derived from Shell Powder and Phosphate Rock for Remediation of Cadmium-Polluted Farmland: Insights into Synergetic Mechanisms. ACS EST Eng. 2024, 4, 2054–2067. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- AOAC International. AOAC Official Methods of Analysis, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Su, S.; Zhou, Y.; Qin, J.G.; Yao, W.; Ma, Z. Optimization of the Method for Chlorophyll Extraction in Aquatic Plants. J. Freshw. Ecol. 2010, 25, 531–538. [Google Scholar] [CrossRef]
- Shah, R.A.; Achyuthan, H.; Krishnan, H.; Lone, A.M.; Saju, S.; Ali, A.; Lone, S.A.; Malik, M.S.; Dash, C. Heavy Metal Concentration and Ecological Risk Assessment in Surface Sediments of Dal Lake, Kashmir Valley, Western Himalaya. Arab. J. Geosci. 2021, 14, 187. [Google Scholar] [CrossRef]
- Montgeomery, E.G. Correlation Studies in Corn. Neb. Agric. Exp. Station. Annu. Rep. 1911, 24, 108–159. [Google Scholar]
- He, J.; Reddy, G.V.P.; Liu, M.; Shi, P. A General Formula for Calculating Surface Area of the Similarly Shaped Leaves: Evidence from Six Magnoliaceae Species. Glob. Ecol. Conserv. 2020, 23, e01129. [Google Scholar] [CrossRef]
- Kanwal, A.; Farhan, M.; Sharif, F.; Hayyat, M.U.; Shahzad, L.; Ghafoor, G.Z. Effect of Industrial Wastewater on Wheat Germination, Growth, Yield, Nutrients and Bioaccumulation of Lead. Sci. Rep. 2020, 10, 11361. [Google Scholar] [CrossRef]
- Alagic, S.C.; Serbula, S.S.; Tosic, S.B.; Pavlovic, A.N.; Petrovic, J.V. Bioaccumulation of Arsenic and Cadmium in Birch and Lime from the Bor Region. Arch. Environ. Contam. Toxicol. 2013, 65, 671–682. [Google Scholar] [CrossRef]
- Odjadjare, E.E.; Okoh, A.I. Physicochemical Quality of an Urban Municipal Wastewater Effluent and Its Impact on the Receiving Environment. Environ. Monit. Assess. 2010, 170, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.L.; Bastida, F.; Ros, M.; Hernández, T.; García, C. Soil Organic Carbon Buffers Heavy Metal Contamination on Semiarid Soils: Effects of Different Metal Threshold Levels on Soil Microbial Activity. Eur. J. Soil. Biol. 2009, 45, 220–228. [Google Scholar] [CrossRef]
- Zamani, N.; Merzouki, M.; Talbi, F.Z.; Najy, M.; Janati-Iddrissi, A. Risk Assessment of Groundwater and Surface Water Contamination by Waste Leachate from the Guercif Open Dump, Morocco. Int. J. Environ. Stud. 2025, 82, 201–222. [Google Scholar] [CrossRef]
- Mansour, H.; Ahmed, S.A.; Zaghloul, A.; Kabary, H.; Nassar, H.F. Seasonal Variation Effect on Water Quality and Sed-Iments Criteria and Its Influence on Soil Pollution: Fayoum Governorate, Egypt. Environ. Sci. Eur. 2024, 36, 132. [Google Scholar] [CrossRef]
- Arienzo, M.; Christen, E.W.; Jayawardane, N.S.; Quayle, W.C. The Relative Effects of Sodium and Potassium on Soil Hydraulic Conductivity and Implications for Winery Wastewater Management. Geoderma 2012, 173, 303–310. [Google Scholar] [CrossRef]
- Kandasamy, S.; Dhandayuthapani, U.N.; Subramanian, V.; Palanisamy, J.; Shanmugam, M.K.; Dhakshanamoorthy, D.; Na-gappan, S. Assessment of Brewery Wastewater as an Alternative Irrigation Source: Impacts on Soil Health and Nutrient Uptake by Maize in Tamil Nadu, India. BMC Agric. 2025, 1, 2. [Google Scholar] [CrossRef]
- Salakinkop, S.R.; Hunshal, C.S. Domestic Sewage Irrigation on Dynamics of Nutrients and Heavy Metals in Soil and Wheat (Triticum aestivum L.) Production. Int. J. Recycl. Org. Waste Agric. 2014, 3, 8. [Google Scholar] [CrossRef]
- Ghanem, M.F.; Afzal, S.; Nesar, H.; Imran, Z.; Ahmad, W. Impact of Metal Polluted Sewage Water on Soil Nematode Assemblages in Agricultural Settings of Aligarh, India. Soil. Ecol. Lett. 2024, 6, 230193. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Sun, H.; Li, X.; Fu, L.; Zhang, C.; Zhou, D. Assessing the Impact of Low Organic Loading on Effluent Safety in Wastewater Treatment: Insights from an Activated Sludge Reactor Study. J. Hazard. Mater. 2024, 465, 133083. [Google Scholar] [CrossRef]
- Akter, J.; Islam, M.T.; Jahan, N.; Rahman, M.M.; Amin, M.M.; Hossain, M.T.; Adham, A.K.M. Impact of Dairy Wastewater on Paddy Rice Cultivation, Leachate Microbes, and Soil Health under Alternate Wetting and Drying Irrigation. Paddy Water Environ. 2025, 23, 179–195. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Mazahreh, N. Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Commun. Soil. Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Adugna, D.B.; Ante, A.A.; Aschale, M.; Maja, M.M. Characterization of Physicochemical and Bacteriological Properties of Harar Brewery Wastewater and Its Suitability for Irrigation. Environ. Chall. 2024, 16, 100967. [Google Scholar] [CrossRef]
- Nepal, A.; Antonious, G.F.; Bebe, F.N.; Webster, T.C.; Gyawali, B.R.; Neupane, B. Heavy Metal Accumulation in Three Varieties of Mustard Grown under Five Soil Management Practices. Environments 2024, 11, 77. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Q.; Liu, Y.; Ze, Y.; Wang, Y.; Wu, Y.; Qi, J.; Qu, J.; Zhang, Y. Co-Incorporation of Nitrogen and Boron into Microscale Zero-Valent Iron via Mechanochemical Ball-Milling Method Improved Cr(VI) Elimination: Performance and Mechanism Investigation. Chem. Eng. J. 2025, 506, 160050. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Mbarki, S.; Skalicky, M.; Noedoost, F.; Raeisi, M.; Brestic, M. Effect of Wastewater Irrigation on Photo-Synthesis, Growth, and Anatomical Features of Two Wheat Cultivars (Triticum aestivum L.). Water 2020, 12, 607. [Google Scholar] [CrossRef]
- Ullah, S.; Naeem, A.; Praspaliauskas, M.; Vaskeviciene, I.; Hosney, A.; Barcauskaite, K. Comparative Toxicity of Copper and Zinc Contaminated Wastewater Irrigation on Growth, Physiology, and Mineral Absorption of Wheat. Water Environ. Res. 2025, 97, e70001. [Google Scholar] [CrossRef]
- Singh, M.; Singh, H.; Kumar, A.; Kumar, N.; Kumar, M.; Barthwal, S.; Thakur, A. Soil Nitrogen Availability Determines the CO2 Fertilization Effect on Tree Species (Neolamarckia cadamba): Growth and Physiological Evidence. Environ. Sustain. 2024, 7, 53–60. [Google Scholar] [CrossRef]
- Ofori, S.; Abebrese, D.K.; Klement, A.; Provazník, D.; Tomášková, I.; Růžičková, I.; Wanner, J. Impact of Treated Wastewater on Plant Growth: Leaf Fluorescence, Reflectance, and Biomass-Based Assessment. Water Sci. Technol. 2024, 89, 1647–1664. [Google Scholar] [CrossRef]
- Shqerat, N.; Al-Tabbal, J. Potential Reuse of Greywater for Irrigation of Tomato (Solanum lycopersicum) Plants and Its Effect on Plants Growth and Soil. Int. J. Phytoremediation 2025, 27, 561–582. [Google Scholar] [CrossRef]
- Malik, I.S. Effect of Different Concentrations of Municipal Solid Waste on Metal Uptake of Wheat (Triticum aestivum). Pure Appl. Biol. 2019, 8, 2193–2203. [Google Scholar] [CrossRef]
- Letey, C.G.; Abagale, F.K.; Osei, R.A. Reduction of Heavy Metal Uptake by Lettuce (Lactuca sativa) Under Synthetic Wastewater Irrigation Using Adsorbents for Soil Amendment. Clean. Waste Syst. 2025, 11, 100263. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, B.; Wang, D.; Pu, Y.; Zhan, M.; Xu, X.; Jiao, W. A Review on the Chemical Speciation and Influencing Factors of Heavy Metals in Municipal Solid Waste Landfill Humus. Waste Dispos. Sustain. Energy 2024, 6, 209–218. [Google Scholar] [CrossRef]
- Ullah, S.; Naeem, A.; Praspaliauskas, M.; Vaskeviciene, I.; Hosney, A.; Drapanauskaite, D.; Barcauskaite, K. Compost Application Modulates Growth, Physiology and Metal Uptake by Pisum Sativum Grown in Two Different PH Soils Irrigated with Contaminated Wastewater. Plant Soil. 2025, 1–19. [Google Scholar] [CrossRef]
- Zhao, P.; Yan, X.; Wan, Y.; Xiong, Y.; Li, Q.; Yang, Z.; Yang, W. Cooperation of Selenium, Iron and Phosphorus for Sim-Ultaneously Minimizing Cadmium and Arsenic Concentrations in Rice Grains. Sci. Total Environ. 2024, 949, 175193. [Google Scholar] [CrossRef]
- Vasudhevan, P.; Suresh, A.; Singh, S.; Sharma, K.; Sridevi, G.; Dixit, S.; Thangavel, P. Cadmium Accumulation, Sub-Cellular Distribution and Interactions with Trace Metals (Cu, Zn, Fe, Mn) in Different Rice Varieties under Cd Stress. Environ. Geochem. Health 2025, 47, 130. [Google Scholar] [CrossRef]
- Abou Fayssal, S.; Kumar, P.; Popescu, S.M.; ud-din Khanday, M.; Sardar, H.; Ahmad, R.; Gupta, D.; Kumar Gaur, S.; Alharby, H.F.; Al-Ghamdi, A.G. Health Risk Assessment of Heavy Metals in Saffron (Crocus sativus L.) Cultivated in Domestic Wastewater and Lake Water Irrigated Soils. Heliyon 2024, 10, e27138. [Google Scholar] [CrossRef]
- Kaur, R.; Das, S.; Bansal, S.; Singh, G.; Sardar, S.; Dhar, H.; Ram, H. Heavy Metal Stress in Rice: Uptake, Transport, Signaling, and Tolerance Mechanisms. Physiol. Plant 2021, 173, 430–448. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, J.; Xu, K.; Sharon, B.; Li, L.; Guo, J.; Liu, L.; Ge, J.; Lin, H.; Tian, S.; et al. Citrus Yellow Vein Clearing Virus Infection Triggers Phloem Remobilization of Iron- and Zinc-Nicotianamine in Citrus. Plant Physiol. 2025, 197, kiaf091. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Chawla, M.; Thakur, M.; Bakshi, P.; Jasrotia, R.; Radziemska, M.; Kumar, R. Advancements in Understanding Beryllium Contamination: Novel Insights Into Environmental Risk Assessment. Land. Degrad. Dev. 2024, 36, 350–362. [Google Scholar] [CrossRef]
- Ahmad, W.; Najeeb, U.; Zia, M.H. Soil Contamination with Metals: Sources, Types and Implications. Sources, Types and Implications. In Soil Remediation and Plants: Prospects and Challenges; (an imprint of Elsevier Science & Technology Books); Sabir, M., Öztürk, M., Mermut, A.R., Eds.; Academic Press: London, UK, 2015; pp. 37–61. ISBN 9780127999135. [Google Scholar]
- Utazi, E.B.; Oyewole, O.A.; Yakubu, J.G.; Yetu, T.P.; Omoregie, I.P.; Adetunji, C.O.; Mathew, J.T.; Igiku, V.; Eniola, K.I.T.; Yerima, M.B. Toxicological Effects of Nanobiofertilizer on Water Body, Water Quality, Lower Plants, Zooplanktons, and Beneficial Microorganisms. In Handbook of Agricultural Biotechnology; Wiley: Hoboken, NJ, USA, 2024; Volume V, pp. 201–232. [Google Scholar] [CrossRef]
- Tong, S.; Yang, L.; Gong, H.; Wang, L.; Li, H.; Yu, J.; Li, Y.; Deji, Y.; Nima, C.; Zhao, S.; et al. Bioaccumulation Characteristics, Transfer Model of Heavy Metals in Soil-Crop System and Health Assessment in Plateau Region, China. Ecotoxicol. Environ. Saf. 2022, 241, 113733. [Google Scholar] [CrossRef]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Pathak, H. Metal(Loid)s (As, Hg, Se, Pb and Cd) in Paddy Soil: Bioavailability and Potential Risk to Human Health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Liu, Q.; Wang, S.; Jan, A.U.; Sharif, H.M.A.; Ditta, A.; Cheng, H. Sources, Impacts, Factors Affecting Cr Uptake in Plants, and Mechanisms behind Phytoremediation of Cr-Contaminated Soils. Sci. Total Environ. 2023, 899, 165726. [Google Scholar] [CrossRef] [PubMed]
- Vasilachi, I.C.; Stoleru, V.; Gavrilescu, M. Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils. Agriculture 2023, 13, 1983. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Sharma, S.; Kumar, R. Biofortification and Bioavailability of Zn, Fe and Se in Wheat: Present Status and Future Prospects. Theor. Appl. Genet. 2021, 134, 1–35. [Google Scholar] [CrossRef]
- Huda, M.N.; Harun-Ur-Rashid, M.; Hosen, A.; Akter, M.; Islam, M.M.; Emon, S.Z.; Ismail, M. A Potential Toxicological Risk Assessment of Heavy Metals and Pesticides in Irrigated Rice Cultivars near Industrial Areas of Dhaka, Bangladesh. Environ. Monit. Assess. 2024, 196, 794. [Google Scholar] [CrossRef]
- Da Silva, C.P.; de Almeida, T.E.; Zittel, R.; de Oliveira Stremel, T.R.; Domingues, C.E.; Kordiak, J.; de Campos, S.X. Translocation of Metal Ions from Soil to Tobacco Roots and Their Concentration in the Plant Parts. Environ. Monit. Assess. 2016, 188, 663. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation–A Review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Luo, Q.; Bai, B.; Xie, Y.; Yao, D.; Zhang, D.; Chen, Z.; Wu, J. Effects of Cd Uptake, Translocation and Redistribution in Different Hybrid Rice Varieties on Grain Cd Concentration. Ecotoxicol. Environ. Saf. 2022, 240, 113683. [Google Scholar] [CrossRef]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Saqib, H.S.A.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, Translocation, and Ac-Cumulation of Cd and Its Interaction with Mineral Nutrients (Fe, Zn, Ni, Ca, Mg) in Upland Rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef]
- Akinyele, I.O.; Shokunbi, O.S. Concentrations of Mn, Fe, Cu, Zn, Cr, Cd, Pb, Ni in Selected Nigerian Tubers, Legumes and Cereals and Estimates of the Adult Daily Intakes. Food Chem. 2015, 173, 702–708. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc Absorption in Plants: Uptake, Transport, Translocation and Accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Tang, Z.; Song, J.-J.; Huang, X.-Y.; Wang, P. Toxic Metals and Metalloids: Uptake, Transport, Detoxification, Phytoremediation, and Crop Improvement for Safer Food. Mol. Plant 2022, 15, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, A.O.; Hassan, U.F.; Adamu, H.M.; Boryo, D.E.A. Translocation of Trace Metals in Selected Crops Grown At Rimin Zayam Mining Area–Toro, Local Government, Bauchi State, Nigeria. ChemClass J. 2025, 9, 298–312. [Google Scholar]
- Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Al Jabri, H. The Carcinogenic and Non-Carcinogenic Health Risks of Metal(Oid)s Bioaccumulation in Leafy Vegetables: A Consumption Advisory. Front. Environ. Sci. 2021, 9, 742269. [Google Scholar] [CrossRef]
- Navaretnam, R.; Soong, A.C.; Goo, A.Q.; Isa, N.M.; Aris, A.Z.; Haris, H.; Looi, L.J. Human Health Risks Associated with Metals in Paddy Plant (Oryza Sativa) Based on Target Hazard Quotient and Target Cancer Risk. Environ. Geochem. Health 2023, 45, 2309–2327. [Google Scholar] [CrossRef]
- Llobet, J.M.; Falco, G.; Casas, C.; Teixido, A.; Domingo, J.L. Concentrations of Arsenic, Cadmium, Mercury, and Lead in Common Foods and Estimated Daily Intake by Children, Adolescents, Adults, and Seniors of Catalonia, Spain. J. Agric. Food Chem. 2003, 51, 838–842. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Zhang, X.; Zheng, D.; Zhang, Z.; Zhang, S. Population Health Risk Due to Dietary Intake of Heavy Metals in the Industrial Area of Huludao City, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Vinceti, M. Dietary Intake of Cadmium, Chromium, Copper, Manganese, Selenium and Zinc in a Northern Italy Community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef]
- Ferreira, S.L.; Cerda, V.; Cunha, F.A.; Lemos, V.A.; Teixeira, L.S.; dos Santos, W.N.; de Jesus, R.F. Application of Human Health Risk Indices in Assessing Contamination from Chemical Elements in Food Samples. Trends Anal. Chem. 2023, 167, 117281. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public. Health 2018, 15, 895. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation Strategies for Soils Contaminated with Heavy Metals: Modifications and Future Perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Li, H.; Zhao, Y.; Shao, M.; Zhang, H.; Liu, M. Assessing Soil Water Balance to Optimize Irrigation Schedules of Flood-Irrigated Maize Fields with Different Cultivation Histories in the Arid Region. Agric. Water Manag. 2022, 265, 107543. [Google Scholar] [CrossRef]
- Li, H.; Tao, Y.; Xu, T.; Wang, H.; Yang, M.; Chen, Y.; Wang, A. Real-Time Quantification of Activated Sludge Concentration and Viscosity through Deep Learning of Microscopic Images. Environ. Sci. Ecotechnol. 2025, 24, 100527. [Google Scholar] [CrossRef]
- Fageria, N.K. Role of Soil Organic Matter in Maintaining Sustainability of Cropping Systems. Commun. Soil. Sci. Plant Anal. 2012, 43, 2063–2113. [Google Scholar] [CrossRef]
- Singh, B.P.; Choudhury, M.; Samanta, P.; Gaur, M.; Kumar, M. Ecological Risk Assessment of Heavy Metals in Adjoining Sediment of River Ecosystem. Sustainability 2021, 13, 10330. [Google Scholar] [CrossRef]
- Chowdhury, A.I.; Shill, L.C.; Raihan, M.M.; Rashid, R.; Bhuiyan, M.N.H.; Reza, S.; Alam, M.R. Human Health Risk Assessment of Heavy Metals in Vegetables of Bangladesh. Sci. Rep. 2024, 14, 15616. [Google Scholar] [CrossRef]
Parameters | Irrigation Sources | Student’s t-Test | Limit for Surface Disposal * | Limit for Inland Irrigation ** | ||
---|---|---|---|---|---|---|
Control (Borewell) | Paper Mill Effluent | t-Value | p-Value | |||
pH | 7.52 ± 0.03 | 8.62 ± 0.06 | 15.37 | <0.05 | 5.50–9.00 | 5.50–9.00 |
EC (dS/m) | 0.97 ± 0.02 | 6.55 ± 0.03 | 76.97 | <0.05 | NA | NA |
TDS (mg/L) | 103.03 ± 2.01 | 1115.29 ± 3.34 | 302.5 | <0.05 | 1900.00 | NA |
BOD (mg/L) | 3.17 ± 0.02 | 634.84 ± 3.97 | 744.69 | <0.05 | 100.00 | 30.00 |
COD (mg/L) | 7.14 ± 0.01 | 1254.45 ± 4.73 | 857.68 | <0.05 | 250.00 | 250.00 |
TKN (mg/L) | 6.19 ± 0.02 | 93.92 ± 3.19 | 122.73 | <0.05 | 100.00 | 100.00 |
P (mg/L) | 3.54 ± 0.03 | 64.56 ± 3.92 | 70.93 | <0.05 | NA | NA |
Na (mg/L) | 16.18 ± 1.13 | 122.63 ± 2.75 | 37.19 | <0.05 | NA | NA |
K (mg/L) | 8.18 ± 1.15 | 80.06 ± 1.68 | 33.88 | <0.05 | NA | NA |
Cd (mg/L) | 0.09 ± 0.02 | 0.42 ± 0.03 | 9.24 | <0.05 | 2.00 | 2.00 |
Cr (mg/L) | 0.15 ± 0.02 | 2.04 ± 0.06 | 28.47 | <0.05 | 2.00 | NA |
Cu (mg/L) | 0.02 ± 0.01 | 1.58 ± 0.17 | 42.36 | <0.05 | 3.00 | 3.00 |
Fe (mg/L) | 1.03 ± 0.02 | 3.26 ± 0.16 | 62.3 | <0.05 | 1.00 | 3.00 |
Mn (mg/L) | 0.83 ± 0.02 | 2.16 ± 0.02 | 104.45 | <0.05 | 1.00 | 2.00 |
Zn (mg/L) | 0.53 ± 0.03 | 3.65 ± 0.33 | 28.59 | <0.05 | 15.00 | 5.00 |
Parameters | Irrigated Soils | Student’s t-Test | Agricultural Soil Limits * | ||
---|---|---|---|---|---|
Control (Borewell) | Paper Mill Effluent | t-Value | p-Value | ||
pH | 7.32 ± 0.13 | 8.77 ± 0.05 | 10 | <0.05 | 6.0–8.5 |
EC (dS/m) | 1.93 ± 0.05 | 4.60 ± 0.21 | 12.01 | <0.05 | <4.0 |
OM (%) | 1.59 ± 0.05 | 3.80 ± 0.06 | 28.28 | <0.05 | NA |
TKN (mg/kg) | 107.48 ± 5.62 | 210.92 ± 0.93 | 17.5 | <0.05 | NA |
P (mg/kg) | 25.65 ± 3.02 | 90.21 ± 1.77 | 18.76 | <0.05 | NA |
Na (mg/kg) | 92.28 ± 2.07 | 191.99 ± 4.37 | 21.62 | <0.05 | <230 |
K (mg/kg) | 63.99 ± 2.97 | 142.40 ± 2.08 | 35.01 | <0.05 | NA |
Cd (mg/kg) | 0.21 ± 0.02 | 3.08 ± 0.03 | 119.6 | <0.05 | 1–3 |
Cr (mg/kg) | 0.33 ± 0.02 | 5.58 ± 0.03 | 303.26 | <0.05 | 50 (total) |
Cu (mg/kg) | 0.05 ± 0.01 | 7.05 ± 0.04 | 247.49 | <0.05 | 135 |
Fe (mg/kg) | 11.09 ± 0.02 | 41.94 ± 0.05 | 328.83 | <0.05 | Not Established |
Mn (mg/kg) | 1.72 ± 0.03 | 7.78 ± 0.06 | 254.56 | <0.05 | 1500–2000 |
Zn (mg/kg) | 1.19 ± 0.03 | 9.13 ± 0.03 | 262.63 | <0.05 | 300 |
Parameters | Irrigation Source | Student’s t-Test | ||
---|---|---|---|---|
Control (Borewell) | Paper Mill Effluent | t-Value | p-Value | |
Total chlorophyll content (mg/g fwt.) | 4.86 ± 0.05 | 5.57 ± 0.04 | 49.23 | <0.05 |
Plant height (cm) | 86.28 ± 4.17 | 94.22 ± 6.94 | 4.43 | <0.05 |
Leaf length (cm) | 17.52 ± 0.59 | 22.08 ± 0.78 | 20.91 | <0.05 |
Leaf width (cm) | 0.32 ± 0.03 | 0.38 ± 0.05 | 4.61 | <0.05 |
Leaf area (cm3) | 4.17 ± 0.50 | 6.37 ± 1.05 | 8.74 | <0.05 |
Irrigation Source | Heavy Metals | Wheat Tissues | |||
---|---|---|---|---|---|
Root | Stem | Leaves | Grain | ||
Control (borewell) | Cd (mg/kg) | 0.09 ± 0.01 aA | 0.08 ± 0.02 aA | 0.05 ± 0.02 bA | 0.04 ± 0.01 bA |
Cr (mg/kg) | 0.28 ± 0.01 aA | 0.25 ± 0.02 aA | 0.15 ± 0.03 bA | 0.12 ± 0.01 cA | |
Cu (mg/kg) | 1.72 ± 0.02 aA | 0.45 ± 0.04 bA | 0.25 ± 0.02 cA | 0.06 ± 0.02 dA | |
Fe (mg/kg) | 15.72 ± 0.12 aA | 11.61 ± 0.10 bA | 8.96 ± 0.04 cA | 6.63 ± 0.09 dA | |
Mn (mg/kg) | 12.33 ± 0.10 aA | 9.79 ± 9.79 aA | 5.85 ± 0.03 bA | 3.61 ± 0.17 cA | |
Zn (mg/kg) | 15.64 ± 0.04 aA | 11.58 ± 0.05 bA | 6.55 ± 0.02 cA | 2.43 ± 0.02 dA | |
Paper mill effluent | Cd (mg/kg) | 0.21 ± 0.02 aB | 0.13 ± 0.01 bB | 0.10 ± 0.01 cB | 0.05 ± 0.01 dB |
Cr (mg/kg) | 0.19 ± 0.02 aB | 0.15 ± 0.03 aB | 0.12 ± 0.02 aB | 0.07 ± 0.01 bB | |
Cu (mg/kg) | 8.52 ± 0.02 aB | 5.39 ± 0.03 bB | 3.24 ± 0.02 cB | 1.09 ± 0.02 dB | |
Fe (mg/kg) | 45.76 ± 0.29 aB | 35.41 ± 0.02 bB | 23.71 ± 0.34 cB | 9.74 ± 0.14 dB | |
Mn (mg/kg) | 35.34 ± 0.07 aB | 24.80 ± 0.14 bB | 13.25 ± 0.08 cB | 7.13 ± 0.02 dB | |
Zn (mg/kg) | 23.24 ± 0.07 aB | 18.25 ± 0.07 bB | 9.05 ± 0.04 cB | 4.17 ± 0.02 dB |
Heavy Metals | Irrigation Source | Bf Root | Bf Stem | Bf Leaves | Bf Grain |
---|---|---|---|---|---|
Cd | Control (borewell) | 0.41 ± 0.02 a | 0.37 ± 0.01 a | 0.22 ± 0.01 a | 0.17 ± 0.01 a |
Paper mill effluent | 0.07 ± 0.01 b | 0.04 ± 0.01 b | 0.03 ± 0.01 b | 0.02 ± 0.00 b | |
Cr | Control (borewell) | 0.87 ± 0.03 a | 0.76 ± 0.02 a | 0.47 ± 0.01 a | 0.36 ± 0.01 a |
Paper mill effluent | 0.03 ± 0.01 b | 0.03 ± 0.00 b | 0.02 ± 0.00 b | 0.01 ± 0.00 b | |
Cu | Control (borewell) | 32.31 ± 1.02 a | 8.38 ± 0.25 a | 4.63 ± 0.15 a | 1.19 ± 0.06 a |
Paper mill effluent | 1.21 ± 0.05 b | 0.77 ± 0.03 b | 0.46 ± 0.02 b | 0.16 ± 0.01 b | |
Fe | Control (borewell) | 1.42 ± 0.05 a | 1.05 ± 0.04 a | 0.81 ± 0.03 a | 0.60 ± 0.02 a |
Paper mill effluent | 1.09 ± 0.04 b | 0.84 ± 0.03 b | 0.57 ± 0.02 b | 0.23 ± 0.01 b | |
Mn | Control (borewell) | 7.17 ± 0.21 a | 5.69 ± 0.18 a | 3.40 ± 0.12 a | 2.10 ± 0.08 a |
Paper mill effluent | 4.54 ± 0.15 b | 3.19 ± 0.10 b | 1.70 ± 0.06 b | 0.92 ± 0.03 b | |
Zn | Control (borewell) | 13.18 ± 0.45 a | 9.76 ± 0.31 a | 5.52 ± 0.18 a | 2.05 ± 0.07 a |
Paper mill effluent | 2.54 ± 0.08 b | 2.00 ± 0.06 b | 0.99 ± 0.03 b | 0.46 ± 0.02 b |
Heavy Metals | Irrigation Source | Tf Stem | Tf Leaves | Tf Grain |
---|---|---|---|---|
Cd | Control (borewell) | 0.88 ± 0.04 a | 0.54 ± 0.02 a | 0.42 ± 0.02 a |
Paper mill effluent | 0.62 ± 0.03 b | 0.46 ± 0.02 b | 0.25 ± 0.01 b | |
Cr | Control (borewell) | 0.87 ± 0.03 a | 0.54 ± 0.02 b | 0.41 ± 0.01 a |
Paper mill effluent | 0.78 ± 0.03 b | 0.64 ± 0.02 a | 0.38 ± 0.01 b | |
Cu | Control (borewell) | 0.26 ± 0.01 b | 0.14 ± 0.01 b | 0.04 ± 0.00 b |
Paper mill effluent | 0.63 ± 0.03 a | 0.38 ± 0.02 a | 0.13 ± 0.01 a | |
Fe | Control (borewell) | 0.74 ± 0.03 a | 0.57 ± 0.02 a | 0.42 ± 0.02 a |
Paper mill effluent | 0.77 ± 0.03 a | 0.52 ± 0.02 b | 0.21 ± 0.01 b | |
Mn | Control (borewell) | 0.79 ± 0.03 a | 0.47 ± 0.02 a | 0.29 ± 0.01 a |
Paper mill effluent | 0.70 ± 0.03 b | 0.37 ± 0.01 b | 0.20 ± 0.01 b | |
Zn | Control (borewell) | 0.74 ± 0.03 b | 0.42 ± 0.02 a | 0.16 ± 0.01 b |
Paper mill effluent | 0.79 ± 0.03 a | 0.39 ± 0.02 b | 0.18 ± 0.01 a |
Irrigation Source | Exposure Group | Index | Heavy Metal | |||||
---|---|---|---|---|---|---|---|---|
Cd | Cr | Cu | Fe | Mn | Zn | |||
Borewell water | Adult | DIM | 0.00020 | 0.00050 | 0.00030 | 0.02840 | 0.01550 | 0.01040 |
HRI | 0.15700 | 0.10000 | 0.00700 | 0.04100 | 0.11100 | 0.03500 | ||
THQ | 0.00016 | 0.00010 | 0.00001 | 0.00004 | 0.00011 | 0.00004 | ||
∑THQ | 0.00046 | |||||||
Children | DIM | 0.00020 | 0.00070 | 0.00040 | 0.03820 | 0.02080 | 0.01400 | |
HRI | 0.21200 | 0.13500 | 0.00900 | 0.05500 | 0.14900 | 0.04700 | ||
THQ | 0.00021 | 0.00013 | 0.00001 | 0.00005 | 0.00015 | 0.00005 | ||
∑THQ | 0.00060 | |||||||
Paper mill effluent | Adult | DIM | 0.00020 | 0.00030 | 0.00470 | 0.04170 | 0.03050 | 0.01790 |
HRI | 0.22900 | 0.06300 | 0.11700 | 0.06000 | 0.21800 | 0.06000 | ||
THQ | 0.00023 | 0.00006 | 0.00012 | 0.00006 | 0.00022 | 0.00006 | ||
∑THQ | 0.00075 | |||||||
Children | DIM | 0.00030 | 0.00040 | 0.00630 | 0.05620 | 0.04110 | 0.02410 | |
HRI | 0.30800 | 0.08500 | 0.15800 | 0.08000 | 0.29400 | 0.08000 | ||
THQ | 0.00031 | 0.00008 | 0.00016 | 0.00008 | 0.00029 | 0.00008 | ||
∑THQ | 0.00100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbagory, M.; Zayed, A.; El-Khateeb, N.; El-Nahrawy, S.; Omara, A.E.-D.; Mohamed, I.; Elbyaly, M.Y.H.; El-Sharkawy, M.; Singh, J.; Dzaja, A.; et al. Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent. Toxics 2025, 13, 497. https://doi.org/10.3390/toxics13060497
Elbagory M, Zayed A, El-Khateeb N, El-Nahrawy S, Omara AE-D, Mohamed I, Elbyaly MYH, El-Sharkawy M, Singh J, Dzaja A, et al. Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent. Toxics. 2025; 13(6):497. https://doi.org/10.3390/toxics13060497
Chicago/Turabian StyleElbagory, Mohssen, Amal Zayed, Nagwa El-Khateeb, Sahar El-Nahrawy, Alaa El-Dein Omara, Ibrahim Mohamed, Marwa Yasien Helmy Elbyaly, Mahmoud El-Sharkawy, Jogendra Singh, Ana Dzaja, and et al. 2025. "Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent" Toxics 13, no. 6: 497. https://doi.org/10.3390/toxics13060497
APA StyleElbagory, M., Zayed, A., El-Khateeb, N., El-Nahrawy, S., Omara, A. E.-D., Mohamed, I., Elbyaly, M. Y. H., El-Sharkawy, M., Singh, J., Dzaja, A., Mioč, B., & Širić, I. (2025). Risk Assessment of Potentially Toxic Heavy Metals in Wheat (Triticum aestivum L.) Grown in Soils Irrigated with Paper Mill Effluent. Toxics, 13(6), 497. https://doi.org/10.3390/toxics13060497