The Development and Toxicological Evaluation of Novel Polyurethane Materials
Abstract
1. Introduction
2. Experimental Procedures
2.1. Materials
2.2. Preparation of Novel PU Samples
2.3. Structural Characterization
2.4. Mechanical Property Test
2.5. Thermal Stability Test
2.6. Exploration of PU Side-Chain Functionalization
2.6.1. Preparation of Carboxymethyl Chitosan Modified PU (CS-PU)
2.6.2. The Antibacterial Activity of CS-PU
2.7. Degradation Test
2.7.1. Mass Loss and Scanning Electron Microscopy (SEM) Measurement
2.7.2. Determination of Contact Angle (CA)
2.7.3. pH Measurement
2.8. Toxicity Experiment of Zebrafish
2.8.1. Zebrafish Husbandry and Embryo Treatment
2.8.2. Embryo Toxicity Assessment
3. Results and Discussion
3.1. Structural Characteristics of PCL Diol and PU
3.2. Mechanical Property Analysis
3.3. Thermogravimetric (TG) Analysis
3.4. PU Side-Chain Functionalization
3.5. Degradation Analysis
3.5.1. Mass Loss
3.5.2. The Analysis of Hydrophilicity and Hydrophobicity
3.5.3. pH Change
3.6. Zebrafish Embryo Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miescher, I.; Rieber, J.; Schweizer, T.A.; Orlietti, M.; Tarnutzer, A.; Andreoni, F.; Buergisser, G.M.; Giovanoli, P.; Calcagni, M.; Snedeker, J.G.; et al. In Vitro Assessment of Bacterial Adhesion and Biofilm Formation on Novel Bioactive, Biodegradable Electrospun Fiber Meshes Intended to Support Tendon Rupture Repair. ACS Appl. Mater. Interfaces 2024, 16, 6348–6355. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Haim-Zada, M.; Domb, A.J. Biodegradable inflatable balloons for tissue separation. Biomaterials 2016, 105, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Tago, M.; Ando, Y.; Asoh, T.A.; Kikuchi, A. Facile preparation of multi-stimuli-responsive degradable hydrogels for protein loading and release. J. Control. Release 2021, 331, 1–6. [Google Scholar] [CrossRef]
- Ker, D.F.E.; Wang, D.; Behn, A.W.; Wang, E.T.H.; Zhang, X.; Zhou, B.Y.; Mercado-Pagan, Á.E.; Kim, S.; Kleimeyer, J.; Gharaibeh, B.; et al. Functionally graded, bone- and tendon-like polyurethane for rotator cuff repair. Adv. Funct. Mater. 2018, 28, 1707107. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Xie, Y.; Wang, L.; Yang, L.; Yu, J.; Miyamoto, A.; Sun, F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen. Biomater. 2021, 8, rbaa046. [Google Scholar] [CrossRef]
- Oveissi, F.; Naficy, S.; Lee, A.; Winlaw, D.S.; Dehghani, F. Materials and manufacturing perspectives in engineering heart valves: A review. Mater. Today Bio. 2020, 5, 100038. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Lian, C.; Yang, H.; Zhang, M.; Wang, Y.; Dai, H. Bioactive citrate-based polyurethane tissue adhesive for fast sealing and promoted wound healing. Regen. Biomater. 2024, 11, rbad101. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Castro, N.; Bas, O.; Saifzadeh, S.; Butler, P.; Hutmacher, D.W. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications. Tissue Eng. Part B Rev. 2020, 26, 272–283. [Google Scholar] [CrossRef]
- Singh, S.; Paswan, K.K.; Kumar, A.; Gupta, W.; Sonker, M.; Khan, M.A.; Kumar, A.; Shreyash, N. Recent advancements in polyurethane-based tissue engineering. ACS Appl. Bio. Mater. 2023, 6, 327–348. [Google Scholar] [CrossRef]
- Xiu, Z.; Yang, M.; Wu, R.; Lei, C.; Ren, H.M.; Yu, B.; Gao, S.; Duan, S.; Wu, D.; Xu, F.J. Scalable anti-infection polyurethane catheters with long-acting and autoclavable properties. Chem. Eng. J. 2023, 451, 138495. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Lin, Z.; Chen, H.; Liu, B.; Yan, X.; Zhu, T.; Zhang, Q.; Zhao, J. Durable immunomodulatory hierarchical patch for rotator cuff repairing. Bioact. Mater. 2024, 37, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y.; Guo, Y.; He, D.; Xu, W.; Fang, W.; Zhang, C.; Zuo, Y.; Zhang, Z. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J. Nanobiotechnol. 2024, 22, 244. [Google Scholar] [CrossRef]
- Feng, Y.; Xiao, K.; Chen, J.; Lin, J.; He, Y.; He, X.; Cheng, F.; Li, Z.; Li, J.; Luo, F.; et al. Immune-microenvironment modulatory polyurethane-hyaluronic acid hybrid hydrogel scaffolds for diabetic wound treatment. Carbohydr. Polym. 2023, 320, 121238. [Google Scholar] [CrossRef]
- Taib, N.A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Rodrigues, I.C.; Clark, L.C.; Kuang, X.; Sanchez, R.; Lopes, É.S.; Gabriel, L.P.; Zhang, Y.S. Multimaterial coextrusion (bio) printing of composite polymer biomaterial ink and hydrogel bioink for tissue fabrication. Compos. Part B Eng. 2024, 275, 111337. [Google Scholar] [CrossRef]
- Fernández-Tena, A.; Pérez-Camargo, R.A.; Coulembier, O.; Sangroniz, L.; Aranburu, N.; Guerrica-Echevarria, G.; Mu, A.J. Effect of Molecular Weight on the Crystallization and Melt Memory of Poly (ε-caprolactone)(PCL). Macromolecules 2023, 56, 4602–4620. [Google Scholar] [CrossRef]
- Jiang, R.; Zheng, X.; Zhu, S.; Li, W.; Zhang, H.; Liu, Z.; Zhou, X. Recent advances in functional polyurethane chemistry: From structural design to applications. ChemistrySelect 2023, 8, e202204132. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, T.; Zhao, T.; Wang, K.; Xu, Z.; Cellulose-based, Y.Z. flexible polyurethane polyHIPEs with quasi-closed-cell structures and high stability for thermal insulation. Carbohydr. Polym. 2023, 302, 120385. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Deng, H.; Zhang, W.; Shi, H.; Wang, X.; Zhang, C. Scalable Production of Self-Toughening Plant Oil-Based Polyurethane Elastomers with Multistimuli-Responsive Functionalities. ACS Appl. Mater. Interfaces 2022, 14, 50090–50100. [Google Scholar] [CrossRef]
- Xu, L.C.; Booth, J.L.; Lanza; Ozdemir, T.; Huffer, A.; Chen, C.; Khursheed, A.; Sun, D.; Allcock, H.R.; Siedlecki, C.A. In Vitro and In Vivo Assessment of the Infection Resistance and Biocompatibility of Small-Molecule-Modified Polyurethane Biomaterials. ACS Appl. Mater. Interfaces 2024, 16, 8474–8483. [Google Scholar] [CrossRef]
- Sutthiwanjampa, C.; Hong, S.; Kim, W.J.; Kang, S.H.; Park, H. Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly (dimethylsiloxane)-Based Biomaterials for Medical Applications. Adv. Mater. Interfaces 2023, 10, 2202333. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Tian, M.; Feng, T.; Yuanwei, C.; Luo, X. Effect of surface morphology change of polystyrene microspheres through etching on protein corona and phagocytic uptake. J. Biomater. Sci. Polym. Ed. 2020, 31, 2381–2395. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, R.; Barzin, J.; Carbonell, R.G.; Jafarbeigloo, H.G.; Kordkatooli, Z. Dextran sulfate bulk and surface-modified microfiltration membrane for simultaneous blood plasma harvesting and low-density lipoprotein removal during plasmapheresis. J. Membr. Sci. 2024, 699, 122648. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.C. PEO-grafting on PU/PS IPNs for enhanced blood compatibility—Effect of pendant length and grafting density. Biomaterials 2002, 23, 2015–2025. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Liu, J.; Yu, H.; Zhang, X.; Yin, J.; Luan, S.; Shi, H. Water-Triggered Segment Orientation of Long-Lasting Anti-Biofouling Polyurethane Coatings on Biomedical Catheters via Solvent Exchange Strategy. Small 2023, 19, 2304379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Miao, D.; Su, M.; Tang, Y.; Zhou, M.; Yu, Y.; Guo, X.; Wu, D. Synergistic Drug-Loaded Shear-Thinning Star Polymer Hydrogel Facilitates Gastrointestinal Lesion Resection and Promotes Wound Healing. Adv. Sci. 2024, 11, 2309586. [Google Scholar] [CrossRef]
- Tajvar, S.; Hadjizadeh, A.; Samandari, S.S. Scaffold degradation in bone tissue engineering: An overview. Int. Biodeter. Biodegr. 2023, 180, 105599. [Google Scholar] [CrossRef]
- Santerre, J.P.; Woodhouse, K.; Laroche, G.; Labow, R.S. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 2005, 26, 7457–7470. [Google Scholar] [CrossRef]
- Fathi-Karkan, S.; Banimohamad-Shotorbani, B.; Saghati, S.; Rahbarghazi, R.; Davaran, S. A critical review of fibrous polyurethane based vascular tissue engineering scaffolds. J. Biol. Eng. 2022, 16, 6. [Google Scholar] [CrossRef]
- Wienen, D.; Gries, T.; Cooper, S.L.; Heath, D.E. An overview of polyurethane biomaterials and their use in drug delivery. J. Control. Release 2023, 363, 376–388. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Q.; Lei, H.; Xin, K.; Xu, A.; Wei, R.; Li, D.; Zhou, J.; Dong, W.; Jiang, M. Biodegradation of polyester polyurethane by Cladosporium sp. P7: Evaluating its degradation capacity and metabolic pathways. J. Hazard. Mater. 2023, 448, 130776. [Google Scholar] [CrossRef] [PubMed]
- Speidel, A.T.; Chivers, P.R.A.; Wood, C.S.; Roberts, D.A.; Correia, I.P.; Caravaca, A.S.; Chan, Y.K.V.; Hansel, C.S.; Heimgrtner, J.; Müller, E. Tailored Biocompatible Polyurethane-Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial. Adv. Healthc. Mater. 2022, 11, 2201378. [Google Scholar] [CrossRef] [PubMed]
- Wendels, S.; Avérous, L. Biobased polyurethanes for biomedical applications. Bioact. Mater. 2021, 6, 1083–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Casteels, T.; Frogne, T.; Ingvorsen, C.; Honoré, C.; Courtney, M.; Huber, K.V.M.; Schmitner, N.; Kimmel, R.A.; Romanov, R.A.; et al. Artemisinins target GABAA receptor signaling and impair α cell identity. Cell 2017, 168, 86–100. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Nissim, S.; Leshchiner, I.; Mancias, J.D.; Greenblatt, M.B.; Maertens, O.; Cassa, C.A.; Rosenfeld, J.A.; Cox, A.G.; Hedgepeth, J.; Wucherpfennig, J.I.; et al. Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nat. Genet. 2019, 51, 1308–1314. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, G.; Ma, H.; Pan, Y.; Liao, X. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. J. Biomater. Sci. Polym. Ed. 2024, 35, 519–534. [Google Scholar] [CrossRef]
- ASTM D638-03; Standard Test Method for Tensile Properties of Plastics. ASTM: Philadelphia, PA, USA, 2003.
- Zhang, M.; Zhang, G.; Lu, X.; Abuduwaili, A.; Di, T.; Liao, X.; Sun, D. Synthesis of novel high-performance adsorbent based on modifed polyurethane/ polysaccharides for wastewater treatment. J. Polym. Environ. 2024, 32, 2818–2834. [Google Scholar] [CrossRef]
- Hou, B.N.; Li, J.; Ni, K.; Han, C.Y.; Shen, H.L. Preparation of photo-crosslinking carboxymethyl chitosan hydrogel for sustained drug release. J. Mater. Eng. 2020, 11, 76–84. [Google Scholar]
- Zhang, T.; Xu, Z.; Wen, L.; Lei, D.; Li, S.; Wang, J.; Huang, J.; Wang, N.; Durkan, C.; Liao, X.; et al. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. J. Hazard. Mater. 2021, 412, 125198. [Google Scholar] [CrossRef]
- Tatai, L.; Moore, T.G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, P.A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007, 28, 5407–5417. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, A.; Yang, R.; Wu, H.; Shao, S.; Chen, J.; Ma, Y.; Li, Z.; Wang, Y.; He, X.; et al. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments. Adv. Mater. 2022, 34, 2201914. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Jia, J.; Liu, M.; Peng, S.; Zhao, Z.; Shuai, C. Degradation mechanisms and acceleration strategies of poly (lactic acid) scaffold for bone regeneration. Mater. Des. 2021, 210, 110066. [Google Scholar] [CrossRef]
- Kim, H.J.; Hillmyer, M.A.; Ellison, C.J. Enhanced Polyester Degradation through Transesterification with Salicylates. J. Am. Chem. Soc. 2021, 143, 15784–15790. [Google Scholar] [CrossRef]
Sample | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
PU(6:4) | 58.34 | 23.46 | 941 |
PU(5:5) | 39.16 | 17.27 | 739 |
PU(4:6) | 31.25 | 12.47 | 662 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Luo, X.; Jiang, M.; Wen, Y.; Wang, P.; Chen, P.; Sun, D. The Development and Toxicological Evaluation of Novel Polyurethane Materials. Toxics 2025, 13, 512. https://doi.org/10.3390/toxics13060512
Zhang M, Luo X, Jiang M, Wen Y, Wang P, Chen P, Sun D. The Development and Toxicological Evaluation of Novel Polyurethane Materials. Toxics. 2025; 13(6):512. https://doi.org/10.3390/toxics13060512
Chicago/Turabian StyleZhang, Maolan, Xuanran Luo, Maocai Jiang, Yu Wen, Peng Wang, Peixing Chen, and Da Sun. 2025. "The Development and Toxicological Evaluation of Novel Polyurethane Materials" Toxics 13, no. 6: 512. https://doi.org/10.3390/toxics13060512
APA StyleZhang, M., Luo, X., Jiang, M., Wen, Y., Wang, P., Chen, P., & Sun, D. (2025). The Development and Toxicological Evaluation of Novel Polyurethane Materials. Toxics, 13(6), 512. https://doi.org/10.3390/toxics13060512