First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications
Abstract
1. Introduction
2. Density Functional Theory (DFT) Computational Approach
3. Computational Analysis of Electronic and Optical Properties
3.1. Electronic Properties
3.2. Optical Properties
4. Photovoltaic Performance Analysis of β-AgGaO2 Devices with and Without Transport Layers
4.1. Photovoltaic Performance Without Transport Layers (ITO/β-AgGaO2/Au)
4.2. The Impact of the Hole Transport Layer (ITO/β-AgGaO2/HTL/Au)
4.3. The Impact of the Electron Transport Layer (ITO/ETL/β-AgGaO2/Au)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2015, 8, 838–848. [Google Scholar] [CrossRef]
- Zhao, X.; Song, K.; Huang, H.; Han, W.; Yang, Y. Ferroelectric materials for solar energy scavenging and photodetectors. Adv. Opt. Mater. 2022, 10, 2101741. [Google Scholar] [CrossRef]
- Suzuki, I.; Omata, T. Multinary wurtzite-type oxide semiconductors: Present status and perspectives. Semicond. Sci. Technol. 2016, 32, 013007. [Google Scholar] [CrossRef]
- Omata, T.; Nagatani, H.; Suzuki, I.; Kita, M.; Yanagi, H.; Ohashi, N. Wurtzite CuGaO2: A new direct and narrow band gap oxide semiconductor applicable as a solar cell absorber. J. Am. Chem. Soc. 2014, 136, 3378–3381. [Google Scholar] [CrossRef]
- Song, S.; Kim, D.; Jang, H.M.; Yeo, B.C.; Han, S.S.; Kim, C.S.; Scott, J.F. β-CuGaO2 as a strong candidate material for efficient ferroelectric photovoltaics. Chem. Mater. 2017, 29, 7596–7603. [Google Scholar] [CrossRef]
- Luo, G.; Bian, Y.; Wu, R.; Lai, G.; Xu, X.; Zhang, W.; Chen, X. First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ+ U approach. J. Semicond. 2020, 41, 102102. [Google Scholar] [CrossRef]
- Yao, M.C.; Wu, X.J.; Xu, L.L.; Meng, F.Z.; Yang, Q.; Meng, J.; Liu, X.J. β-CuGaO2: A ferroelectric semiconductor with narrow band gap as degradation catalyst for wastewater environmental remediation. Rare Met. 2022, 41, 972–981. [Google Scholar] [CrossRef]
- Wang, R.; Xu, L.; Liu, Q.; Shi, Q.; Liu, X. Search for simple β-AIMIIIO2-type intrinsic ferroelectric semiconductors with simultaneous robust built-in electric field and full-spectrum absorption for superior photocatalysts. J. Mater. Chem. A 2023, 11, 5233–5244. [Google Scholar] [CrossRef]
- Guo, X.; Xu, L.; Dai, J.; Wang, Y.; Shi, Q.; Liu, X. Dual Polarization Strategy for Boosting Electron–Hole Separation toward Overall Water Splitting within Ferroelectric β-AIBIIIO2 (BIII = P3+, As3+, Sb3+, and Bi3+ for Lone Pairs). Inorg. Chem. 2024, 63, 10031–10041. [Google Scholar] [CrossRef] [PubMed]
- Nagatani, H.; Suzuki, I.; Kita, M.; Tanaka, M.; Katsuya, Y.; Sakata, O.; Omata, T. Structure of β-AgGaO2; ternary I–III–VI2 oxide semiconductor with a wurtzite-derived structure. J. Solid State Chem. 2015, 222, 66–70. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, S.; Zhang, S.; Feng, W. Elastic, electronic, optical, and spectroscopic properties of β-AgMO2 (M = Al and Ga): First-principles calculations. Comput. Mater. Sci. 2014, 92, 92–101. [Google Scholar] [CrossRef]
- Suzuki, I.; Iguchi, Y.; Sato, C.; Yanagi, H.; Ohashi, N.; Omata, T. Comprehensive first-principles study of AgGaO2 and CuGaO2 polymorphs. J. Ceram. Soc. Jpn. 2019, 127, 339–347. [Google Scholar] [CrossRef]
- Dadsetani, M.; Nejatipour, R. Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches. J. Electron. Mater. 2018, 47, 1059–1070. [Google Scholar] [CrossRef]
- Biswas, P.P.; Pal, S.; Subramanian, V.; Murugavel, P. Large photovoltaic response in rare-earth doped BiFeO3 polycrystalline thin films near morphotropic phase boundary composition. Appl. Phys. Lett. 2019, 114, 173901. [Google Scholar] [CrossRef]
- Mariano, M.A.S.; Mendez-González, Y.; Silva, A.C.; Monte, A.F.G.; Lima, E.C.; Guo, R.; Bhalla, A.S.; de los Santos Guerra, J. Physical characterization of BiFeO3-based thin films with enhanced properties for photovoltaic applications. J. Am. Ceram. Soc. 2022, 105, 6965–6975. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, H.; Yang, C.; Su, H.; Liu, X. Modulating photovoltaic conversion efficiency of BiFeO3-based ferroelectric films by the introduction of electron transport layers. ACS Appl. Energy Mater. 2019, 2, 5540–5546. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, M.; Kumar, A.; Singh, K.; Sharma, S.; Singh, R.C.; Pawar, M.; Yahya, M.Z.A.; Anshul, A. Comparative analysis of ‘La’modified BiFeO3-based perovskite solar cell devices for high conversion efficiency. Ceram. Int. 2023, 49, 1317–1327. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3868. [Google Scholar] [CrossRef]
- Wang, V.; Xu, N.; Liu, J.C.; Tang, G.; Geng, W. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556. [Google Scholar] [CrossRef]
- Ganose, A.M.; Park, J.; Faghaninia, A.; Woods-Robinson, R.; Persson, K.A.; Jain, A. Efficient calculation of carrier scattering rates from first principles. Nat. Commun. 2021, 12, 2222. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Yeh, C.H.; Chen, Y.T.; Liao, S.C.; Huang, R.; Liu, H.J.; Hung, C.C.; Chen, S.H.; Wu, S.L.; Lai, C.H.; et al. Conduction control at ferroic domain walls via external stimuli. Nanoscale 2014, 6, 10524–10529. [Google Scholar] [CrossRef]
- Irvine, L.A.D.; Walker, A.B.; Wolf, M.J. Quantifying polaronic effects on the scattering and mobility of charge carriers in lead halide perovskites. Phys. Rev. B 2021, 103, L220305. [Google Scholar] [CrossRef]
- Fox, M. Optical Properties of Solids; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Shi, G.; Kioupakis, E. Electronic and optical properties of nanoporous silicon for solar-cell applications. ACS Photonics 2015, 2, 208–215. [Google Scholar] [CrossRef]
- Fruth, V.; Popa, M.; Calderon-Moreno, J.M.; Anghel, E.M.; Berger, D.; Gartner, M.; Anastasescu, M.; Osiceanu, P.; Zaharescu, M. Chemical solution deposition and characterization of BiFeO3 thin films. J. Eur. Ceram. Soc. 2007, 27, 4417–4420. [Google Scholar] [CrossRef]
- Moniz, S.J.A.; Quesada-Cabrera, R.; Blackman, C.S.; Tang, J.; Southern, P.; Weaver, P.M.; Carmalt, C.J. A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J. Mater. Chem. A 2014, 2, 2922–2927. [Google Scholar] [CrossRef]
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Film. 2000, 361, 527–532. [Google Scholar] [CrossRef]
- Karthick, S.; Velumani, S.; Bouclé, J. Experimental and SCAPS simulated formamidinium perovskite solar cells: A comparison of device performance. Sol. Energy 2020, 205, 349–357. [Google Scholar] [CrossRef]
- Srivastava, P.; Rai, S.; Lohia, P.; Dwivedi, D.K.; Qasem, H.; Umar, A.; Akbar, S.; Algadi, H.; Baskoutas, S. Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D. Phys. Scr. 2022, 97, 125004. [Google Scholar] [CrossRef]
- Khan, A.H.H.; Wang, C.-H. Tailoring transporters for all-inorganic tin-based perovskite solar cells with efficiency exceeding 22% using SCAPS-1D simulator. Inorg. Chem. Commun. 2025, 179, 114707. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Zekry, A.; Shaker, A.; Abouelatta-Ebrahim, M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 2020, 101, 109738. [Google Scholar] [CrossRef]
- Anwar, F.; Afrin, S.; Satter, S.S.; Mahbub, R.; Ullah, S.M. Simulation and performance study of nanowire CdS/CdTe solar cell. Int. J. Renew. Energy Res. 2017, 7, 885–893. [Google Scholar]
- Raoui, Y.; Ez-Zahraouy, H.; Ahmad, S.; Kazim, S.; Tahiri, N.; Omar, E.B. Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Sol. Energy 2019, 193, 948–955. [Google Scholar] [CrossRef]
- Chabri, I.; Oubelkacem, A.; Benhouria, Y. Numerical development of lead-free Cs2TiI6-based perovskite solar cell via SCAPS-1D. E3S Web Conf. 2022, 336, 00050. [Google Scholar] [CrossRef]
- Noorasid, N.S.; Arith, F.; Firhat, A.Y.; Mustafa, A.N.; Shah, A.S.M. SCAPS numerical analysis of solid-state dye-sensitized solar cell utilizing copper (I) iodide as hole transport layer. Environ. Energy Nat. Resour. 2022, 26, 1–10. [Google Scholar] [CrossRef]
- Gan, Y.; Bi, X.; Liu, Y.; Qin, B.; Li, Q.; Jiang, Q.; Mo, P. Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 2020, 13, 5907. [Google Scholar] [CrossRef]
- Sobayel, K.; Akhtaruzzaman, M.; Rahman, K.S.; Ferdaous, M.T.; Al-Mutairi, Z.A.; Alharbi, H.F.; Alharthi, N.H.; Karim, M.R.; Hasmady, S.; Amin, N. A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results Phys. 2019, 12, 1097–1103. [Google Scholar] [CrossRef]
- Touafek, N.; Mahamdi, R.; Dridi, C. Boosting the performance of planar inverted perovskite solar cells employing graphene oxide as HTL. Dig. J. Nanomater. Biostruct. 2021, 16, 705–712. [Google Scholar] [CrossRef]
- Alipour, H.; Ghadimi, A. Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt. Mater. 2021, 120, 111432. [Google Scholar] [CrossRef]
- Khatun, M.M.; Sunny, A.; Al Ahmed, S.R. Numerical investigation on performance improvement of WS2 thin-film solar cell with copper iodide as hole transport layer. Sol. Energy 2021, 224, 956–965. [Google Scholar] [CrossRef]
- Khattak, Y.H.; Baig, F.; Toura, H.; Beg, S.; Soucase, B.M. CZTSe kesterite as an alternative hole transport layer for MASnI3 perovskite solar cells. J. Electron. Mater. 2019, 48, 5723–5733. [Google Scholar] [CrossRef]
- Vanalakar, S.A.; Patil, P.S.; Kim, J.H. Recent advances in synthesis of Cu2FeSnS4 materials for solar cell applications: A review. Sol. Energy Mater. Sol. Cells 2018, 182, 204–219. [Google Scholar] [CrossRef]
C11 | C12 | C13 | C22 | C23 | C33 | C44 | C55 | C66 |
103.2 | 80.2 | 87.9 | 157.3 | 90.6 | 131.1 | 16.9 | 15.2 | 5.1 |
Material | ɛ0 | ɛ∞ | ω (THz) | ||||
---|---|---|---|---|---|---|---|
x | y | z | x | y | z | ||
AgGaO2 | 14.06 | 10.81 | 13.10 | 6.04 | 6.11 | 6.30 | 10.41 |
XX | YY | ZZ | XY | YZ | ZX | ||
---|---|---|---|---|---|---|---|
AgGaO2 | x | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −0.37 |
y | 0.00 | 0.00 | 0.00 | 0.00 | −0.75 | 0.00 | |
z | −0.52 | −0.86 | 1.29 | 0.00 | 0.00 | 0.00 |
Material | DXX | DYY | DZZ | ||
---|---|---|---|---|---|
AgGaO2 | VBM(eV) | DXX | 1.23 | 0.39 | 0.76 |
DYY | 0.39 | 2.59 | 0.17 | ||
DZZ | 0.76 | 0.17 | 0.1 | ||
CBM(eV) | DXX | 0.05 | 0.31 | 0.00 | |
DYY | 0.31 | 0.71 | 0.03 | ||
DZZ | 0.00 | 0.03 | 0.54 |
Material | ND = 1015 /cm−3 | ND = 1016 /cm−3 | ND = 1017 /cm−3 | ND = 1018 /cm−3 | ND = 1019 /cm−3 | ND = 1020 /cm−3 | |
---|---|---|---|---|---|---|---|
AgGaO2 | μe(n) | 107 | 105.2 | 100.3 | 90.7 | 82.0 | 44.4 |
μh(p) | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Material Property | ITO | ZnO | PCBM | C60 | WS2 | AgGaO2 |
---|---|---|---|---|---|---|
Thickness “t” (nm) | 500 | 50 | 50 | 50 | 100 | 300 |
Bandgap “Eg” (eV) | 3.5 | 3.3 | 2 | 1.7 | 1.8 | 2.1 |
Electron affinity (eV) | 4 | 4 | 3.9 | 3.9 | 3.95 | 4.3 |
Relative permittivity “Er” | 9 | 9 | 3.9 | 4.2 | 13.6 | 13.1 |
C.B”Nc” (cm−3) | 2.2 × 1018 | 3.7 × 1018 | 2.5 × 1021 | 8.0 × 1019 | 1 × 1018 | 2.4 × 1018 |
V.B”Nd” (cm−3) | 1.8 × 1019 | 1.8 × 1019 | 2.5 × 1021 | 8.0 × 1019 | 2.4 × 1019 | 1.5 × 1020 |
Electron thermal Velocity “Ve” (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity “Vh” (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility “μn” (cm2/V·s) | 20 | 100 | 0.2 | 8.0 × 10−2 | 100 | 100 |
Hole mobility “μh” (cm2/V·s) | 10 | 25 | 0.2 | 3.5 × 10−3 | 100 | 0.3 |
Donor density “ND” (cm−3) | 1 × 1021 | 1 × 1018 | 2.93 × 1017 | 1 × 1017 | 1 × 1018 | 1 × 1019 |
Acceptor density “NA” (cm−3) | 0 | 0 | 0 | 0 | 0 | 0 |
Defect density “Nt” (cm−3) | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 |
References | [35,36] | [37,38] | [36,39] | [40] | [35,41] |
Material Property | CuSCN | P3HT | PEDOT:PSS | CuI | CFTS |
---|---|---|---|---|---|
Thickness “t” (nm) | 50 | 50 | 50 | 100 | 100 |
Bandgap “Eg” (eV) | 3.6 | 1.7 | 1.6 | 3.1 | 1.3 |
Electron affinity (eV) | 1.7 | 3.5 | 3.4 | 2.1 | 3.3 |
Relative permittivity “Er” | 10 | 3 | 3.9 | 6.5 | 9 |
C.B”Nc” (cm−3) | 2.2 × 1019 | 2 × 1021 | 2.2 × 1018 | 2.8 × 1019 | 2.2 × 1018 |
V.B”Nd” (cm−3) | 1.8 × 1018 | 2 × 1021 | 1.8 × 1019 | 1 × 1019 | 1.8 × 1019 |
Electron thermal Velocity “Ve” (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity “Vh” (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Electron mobility “μn” (cm2/V·s) | 100 | 1.8 × 10−3 | 4.5 × 10−2 | 100 | 21.98 |
Hole mobility “μh”(cm2/V·s) | 25 | 1.86 × 10−2 | 4.5 × 10−2 | 43.9 | 21.98 |
Donor density “ND” (cm−3) | 0 | 0 | 0 | 0 | 0 |
Acceptor density “NA” (cm−3) | 1 × 1018 | 1 × 1018 | 1 × 1018 | 1 × 1018 | 1 × 1018 |
Defect density “Nt” (cm−3) | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 | 1 × 1015 |
References | [37] | [37] | [42,43] | [44] | [45] |
Interface | Defect Type | Capture Cross-Section: Electrons /Holes (cm 2) | Energetic Distribution | Reference for Defect Energy Level | Total Density (cm−2) |
---|---|---|---|---|---|
ETL/AgGaO2 | neutral | 1.0 × 10−17 | single | Above the highest EV | 1.0 × 1010 |
1.0 × 10−18 | |||||
AgGaO2/HTL | neutral | 1.0 × 10−18 | single | Above the highest EV | 1.0 × 1010 |
1.0 × 10−19 |
Electron Affinity(eV) | ETL/HTL-Free | TiO2 | WS2 | ZnO | C60 | PCBM | CuI | PSS | CuSCN | P3HT | CFTS |
---|---|---|---|---|---|---|---|---|---|---|---|
4.0 | 3.50 | 3.36 (3.38) | 0.87 (0.87) | 3.48 (3.48) | 1.16 (1.16) | 1.30 (1.30) | 6.30 (8.05) | 7.63 (9.08) | 7.09 (8.49) | 6.61 (6.98) | 8.90 (14.47) |
4.1 | 2.93 | 2.92 (2.92) | 0.72 (0.72)) | 2.92 (2.93) | 0.97 (0.97) | 1.13 (1.13) | 5.73 (7.50) | 6.79 (8.31) | 6.52 (7.93) | 5.95 (6.68) | 8.29 (13.07) |
4.2 | 2.36 | 2.36 (2.36) | 0.57 (0.57) | 2.36 (2.36) | 0.77 (0.77) | 0.93 (0.93) | 5.17 (6.95) | 5.96 (7.54) | 5.95 (7.38) | 5.27 (6.31) | 8.19 (11.51) |
4.3 | 1.80 | 1.80 (1.80) | 0.43 (0.43) | 1.80 (1.80) | 0.58 (0.58) | 0.72 (0.72) | 4.61 (6.41) | 5.13 (6.78) | 5.39 (7.91) | 4.60 (5.96) | 8.10 (9.97) |
4.4 | 1.26 | 1.26 (1.26) | 0.28 (0.00) | 1.26 (1.26) | 0.00 (0.37) | 0.50 (0.50) | 4.04 (5.86) | 4.35 (6.03) | 0.00 (0.00) | 3.93 (5.44) | 7.80 (8.45) |
4.5 | 0.73 | 0.73 (0.73) | 0.00 (0.00) | 0.73 (0.73) | 0.00 (0.00) | 0.00 (0.28) | 3.48 (5.32) | 4.01 (0.00) | 0.00 (0.00) | 3.27 (4.89) | 6.88 (6.97) |
4.6 | 0.27 | 0.27 (0.27) | 0.00 (0.00) | 0.15 (0.15) | 0.00 (0.00) | 0.00 (0.00) | 2.97 (0.00) | 3.84 (0.00) | 0.00 (0.00) | 2.65 (0.00) | 0.00 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.-J.; Zhang, X.-Y.; Zhu, X.-T.; Hu, Y.-L.; Xu, H.-K.; Xu, X.-F.; Che, Y.-D.; Chen, X.-Y.; Niu, L.-T.; Dai, B. First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications. Photonics 2025, 12, 803. https://doi.org/10.3390/photonics12080803
Hu W-J, Zhang X-Y, Zhu X-T, Hu Y-L, Xu H-K, Xu X-F, Che Y-D, Chen X-Y, Niu L-T, Dai B. First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications. Photonics. 2025; 12(8):803. https://doi.org/10.3390/photonics12080803
Chicago/Turabian StyleHu, Wen-Jie, Xin-Yu Zhang, Xiao-Tong Zhu, Yan-Li Hu, Hua-Kai Xu, Xiang-Fu Xu, You-Da Che, Xing-Yuan Chen, Li-Ting Niu, and Bing Dai. 2025. "First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications" Photonics 12, no. 8: 803. https://doi.org/10.3390/photonics12080803
APA StyleHu, W.-J., Zhang, X.-Y., Zhu, X.-T., Hu, Y.-L., Xu, H.-K., Xu, X.-F., Che, Y.-D., Chen, X.-Y., Niu, L.-T., & Dai, B. (2025). First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications. Photonics, 12(8), 803. https://doi.org/10.3390/photonics12080803