Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications
Abstract
1. Introduction
2. High-Power and High-Speed RF Photodiodes
2.1. Photodiode Principle of Operation and PD Structure Design
2.2. Photodiode Equivalent Circuit Models
2.3. Photodiode Bandwidth Design
2.4. Photodiode Saturation Current, RF Power, and Signal-to-Noise Ratio
3. Photodiode Integrated Photonic Applications
3.1. MMWave Matching Network Design
3.2. Photodiode Integrated Photonic Emitters
4. Future Trends and Challenges for C-Band HPHS Ge-on-Si RF Photodiodes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023) White Paper. Cisco, White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 18 July 2023).
- Nagayama, T.; Akiba, S.; Tomura, T.; Hirokawa, J. Photonics-Based Millimeter-Wave Band Remote Beamforming of Array-Antenna Integrated with Photodiode Using Variable Optical Delay Line and Attenuator. J. Light. Technol. 2018, 36, 4416–4422. Available online: https://ieeexplore.ieee.org/document/8328830 (accessed on 18 July 2023). [CrossRef]
- Siew, S.Y.; Li, B.; Gao, F.; Zheng, H.Y.; Zhang, W.; Guo, P.; Xie, S.W.; Song, A.; Dong, B.; Luo, L.W.; et al. Review of Silicon Photonics Technology and Platform Development. J. Light. Technol. 2021, 39, 4374–4389. Available online: https://ieeexplore.ieee.org/document/9380443 (accessed on 18 July 2023). [CrossRef]
- Shen, L.; Jiao, Y.; Yao, W.; Cao, Z.; van Engelen, J.P.; Roelkens, G.; Smit, M.K.; van der Tol, J.J.G.M. High-Bandwidth Uni-Traveling Carrier Waveguide Photodetector on an InP-Membrane-on-Silicon Platform. Opt. Express 2016, 24, 8290–8301. [Google Scholar] [CrossRef]
- Beling, A.; Campbell, J.; Li, Q.; Sun, K.; Wang, Y.; Wang, Z.; Yu, Q.; Zang, J. Modified UTC Photodiodes on Silicon for Low-Power High-Speed Applications. In Proceedings of the Photonics West 2018, San Francisco, CA, USA, 12 March 2018. [Google Scholar]
- Zeng, C.; Fu, D.; Jin, Y.; Han, Y. Recent Progress in III–V Photodetectors Grown on Silicon. Photonics 2023, 10, 573. [Google Scholar] [CrossRef]
- Beling, A.; Campbell, J.C. Heterogeneously Integrated Photodiodes on Silicon. IEEE Electron. Device Lett. 2013, 34, 319–321. Available online: https://ieeexplore.ieee.org/document/7273814 (accessed on 18 July 2023). [CrossRef]
- Xue, Y.; Han, Y.; Tong, Y.; Yan, Z.; Wang, Y.; Zhang, Z.; Tsang, H.K.; Lau, K.M. High-Performance III–V Photodetectors on a Monolithic InP/SOI Platform. Optica 2021, 8, 1204–1209. [Google Scholar] [CrossRef]
- Sun, K.; Jung, D.; Shang, C.; Liu, A.; Morgan, J.; Zang, J.; Li, Q.; Klamkin, J.; Bowers, J.E.; Beling, A. Low Dark Current III–V on Silicon Photodiodes by Heteroepitaxy. Opt. Express 2018, 26, 13605–13613. [Google Scholar] [CrossRef]
- Beling, A.; Xie, X.; Campbell, J.C. High-Power, High-Linearity Photodiodes. Optica 2016, 3, 328–338. [Google Scholar] [CrossRef]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; de Groote, A.; de Koninck, Y.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N.; et al. III–V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent Progress in Heterogeneous III–V-on-Silicon Photonic Integration. Light Adv. Manuf. 2021, 2, 5. [Google Scholar] [CrossRef]
- Brouckaert, J.; Roelkens, G.; Van Thourhout, D.; Baets, R. Thin-Film III–V Photodetectors Integrated on Silicon-on-Insulator Photonic ICs. J. Light. Technol. 2007, 25, 1053–1060. [Google Scholar] [CrossRef]
- Gao, B.; Wang, H.; Liu, C.Y.; Meng, Q.Q.; Tian, Y.; Ang, K.S.; Si, J.H. Design and Analysis of InP-Based Waveguide Uni-Traveling Carrier Photodiode Integrated on Silicon-on-Insulator Through Al2O3 Bonding Layer. IEEE Photonics J. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Li, C.; Xue, C.; Liu, Z.; Cong, H.; Cheng, B.; Hu, Z.; Guo, X.; Liu, W. High-Responsivity Vertical-Illumination Si/Ge Uni-Traveling-Carrier Photodiodes Based on Silicon-on-Insulator Substrate. Sci. Rep. 2016, 6, 27743. [Google Scholar] [CrossRef]
- Zhou, Q.; Cross, A.S.; Yang, F.; Beling, A.; Campbell, J.C. Development of Narrowband Modified Uni-Traveling-Carrier Photodiodes with High Power Efficiency. In Proceedings of the Avionics, Fiber-Optics and Photonics Conference, San Diego, CA, USA, 1–3 October 2013; pp. 65–66. [Google Scholar]
- Zhou, Q.; Cross, A.; Fu, Y.; Beling, A.; Campbell, J.C. High-Power High-Linearity Flip-Chip Bonded Modified Uni-Traveling Carrier Photodiode. In Proceedings of the IEEE Photonics Conference (IPC) 2012, Burlingame, CA, USA, 23–27 September 2012. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Y.; Piels, M.; Pan, H.; Beling, A.; Bowers, J.E.; Campbell, J.C. High-Power High-Linearity Flip-Chip Bonded Modified Uni-Traveling Carrier Photodiode. Opt. Express 2011, 19, B385–B390. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Kishk, A. Design of High Speed InGaAs/InP One-Sided Junction Photodiodes with Low Junction Capacitance. Opt. Commun. 2019, 437, 321–329. [Google Scholar] [CrossRef]
- Li, Q.; Li, K.; Fu, Y.; Xie, X.; Yang, Z.; Beling, A.; Campbell, J.C. High-Power Flip-Chip Bonded Photodiode with 110 GHz Bandwidth. J. Light. Technol. 2016, 34, 2139–2144. [Google Scholar] [CrossRef]
- Wun, J.-M.; Lai, C.-H.; Chen, N.-W.; Bowers, J.E.; Shi, J.-W. Flip-Chip Bonding Packaged THz Photodiode with Broadband High-Power Performance. IEEE Photonics Technol. Lett. 2014, 26, 2462–2464. [Google Scholar] [CrossRef]
- Bowers, J.E.; Dai, D.; Zaoui, W.S.; Kang, Y.; Morse, M. Resonant Si/Ge Avalanche Photodiode with an Ultrahigh Gain-Bandwidth Product. In Proceedings of the 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM), Majorca, Spain, 11–13 January 2010. Paper WC2.2. [Google Scholar] [CrossRef]
- Bowers, J.E.; Dai, D.; Kang, Y.; Morse, M. High-Gain High-Sensitivity Resonant Ge/Si APD Photodetectors. In Proceedings of the Infrared Technology and Applications XXXVI, Bellingham, WA, USA, 3 May 2010. Paper 7660E-3H. [Google Scholar] [CrossRef]
- Zaoui, W.S.; Chen, H.-W.; Bowers, J.E.; Kang, Y.; Morse, M.; Paniccia, M.J.; Pauchard, A.; Campbell, J.C. Frequency Response and Bandwidth Enhancement in Ge/Si Avalanche Photodiodes with Over 840 GHz Gain-Bandwidth-Product. Opt. Express 2009, 17, 12641–12649. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, H.-D.; Morse, M.; Paniccia, M.J.; Zadka, M.; Litski, S.; Sarid, G.; Pauchard, A.; Kuo, Y.-H.; Chen, H.-W.; et al. Monolithic Germanium/Silicon Avalanche Photodiodes with 340 GHz Gain–Bandwidth Product. Nat. Photonics 2009, 3, 59–63. [Google Scholar] [CrossRef]
- Assefa, S.; Xia, F.; Bedell, S.W.; Zhang, Y.; Topuria, T.; Rice, P.M.; Vlasov, Y.A. CMOS-Integrated High-Speed MSM Germanium Waveguide Photodetector. Opt. Express 2010, 18, 4986–4999. [Google Scholar] [CrossRef]
- Assefa, S.; Xia, F.; Vlasov, Y.A. CMOS-Integrated Low-Noise Germanium Waveguide Avalanche Photodetector Operating at 40 Gbps. In Proceedings of the Optical Fiber Communication Conference (OFC/NFOEC), Los Angeles, CA, USA, 21–25 March 2010. Paper OWN3. [Google Scholar] [CrossRef]
- Lischke, S.; Peczek, A.; Morgan, J.S.; Sun, K.; Steckler, D.; Yamamoto, Y.; Korndörfer, F.; Mai, C.; Marschmeyer, S.; Fraschke, M.; et al. Ultra-Fast Germanium Photodiode with 3-dB Bandwidth of 265 GHz. Nat. Photonics 2021, 15, 925–931. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Atar, F.B.; Muthuganesan, H.; Corbett, B.; Wang, L. Integration of High-Performance InGaAs/GaN Photodetectors by Direct Bonding via Micro-Transfer Printing. ACS Appl. Mater. Interfaces 2024, 16, 10996–11002. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Q.; Guo, Y.; Wang, Z. Comparative Study on GaAs/Si Heterojunction Fabricated by Nitrogen and Oxygen Plasma Activated Bonding. Vacuum 2023, 208, 111735. [Google Scholar] [CrossRef]
- Manda, S.; Matsumoto, R.; Saito, S.; Maruyama, S.; Minari, H.; Takachi, T.; Fujii, N.; Yamamoto, Y.; Zaizen, Y.; Hirano, T.; et al. High-Definition Visible-SWIR InGaAs Image Sensor Using Cu-Cu Bonding of III–V to Silicon Wafer. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019. [Google Scholar] [CrossRef]
- Chen, X.; Yao, L.; Ji, R.; Rao, Y.; Wei, H.; Lin, G.; Li, C.; Ke, S.; Chen, S. Effect of the Bonding Layer and Multigrading Layers on the Performance of a Wafer-Bonded InGaAs/Si Single-Photon Detector. Appl. Opt. 2023, 62, 3125–3131. [Google Scholar] [CrossRef]
- Hu, X.; Wu, D.; Zhang, H.; Li, W.; Chen, D.; Wang, L.; Xiao, X.; Yu, S. High-Speed and High-Power Germanium Photodetector with a Lateral Silicon Nitride Waveguide. Photonics Res. 2021, 9, 749–755. [Google Scholar] [CrossRef]
- Jiang, J.; Wei, Y.; Yue, Y.; Chen, H.; Yang, F.; Cui, J. Lateral Incidence Ge-on-Si Photodetector with High Saturation Characteristics. Opt. Commun. 2025, 578, 131516. [Google Scholar] [CrossRef]
- Byrd, M.J.; Timurdogan, E.; Su, Z.; Poulton, C.V.; Fahrenkopf, N.M.; Leake, G.; Coolbaugh, D.D.; Watts, M.R. Mode-Evolution-Based Coupler for High Saturation Power Ge-on-Si Photodetectors. Opt. Lett. 2017, 42, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Yang, Y.; Li, B.; Tang, B.; Zhang, P.; Ou, X.; Sun, F.; Li, Z. High-Speed and High-Power Ge-on-Si Photodetector with Bilateral Mode-Evolution-Based Coupler. Photonics 2023, 10, 142. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, W.; Liu, Z.; Wang, L.; Yue, F.; Chen, Z.; Ma, C.; He, Z. High-Efficiency Ultra-Thin Normal-Incidence Ge-On-Si Photodetector Based on Optical Metasurface. Nano 2024, 19, 2450003. [Google Scholar] [CrossRef]
- Liu, H.; Pasanen, T.P.; Fung, T.H.; Isometsä, J.; Haarahiltunen, A.; Hesse, S.; Werner, L.; Vähänissi, V.; Savin, H. Near-Infrared Germanium PIN-Photodiodes with >1 A/W Responsivity. Light. Sci. Appl. 2025, 14, 9. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, X.; Miao, Y.; Su, J.; Kong, Z.; Li, H.; Wu, Y.; Zhou, Z.; Wang, B.; Ye, T.; et al. High-Performance Ge PIN Photodiodes on a 200 mm Insulator with a Resonant Cavity Structure and Monolayer Graphene Absorber for SWIR Detection. ACS Appl. Nano Mater. 2024, 7, 5889–5898. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Y.; Xiao, X.; Zhang, X. High Speed and High Power Polarization Insensitive Germanium Photodetector with Lumped Structure. Opt. Express 2016, 24, 10030–10038. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, G.; Fu, S.; Zuo, Y.; Yu, Y. Germanium Photodetector with Distributed Absorption Regions. Opt. Express 2020, 28, 19797–19806. [Google Scholar] [CrossRef]
- Luo, X.; Song, J.; Tu, X.; Fang, Q.; Jia, L.; Huang, Y.; Liow, T.-Y.; Yu, M.; Lo, G.-Q. Silicon-Based Traveling-Wave Photodetector Array (SI-TWPDA) with Parallel Optical Feeding. Opt. Express 2014, 22, 20020–20029. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-M.; Sinsky, J.H.; Dong, P.; de Valicourt, G.; Chen, Y.-K. High-Power Dual-Fed Traveling Wave Photodetector Circuits in Silicon Photonics. Opt. Express 2015, 23, 22857–22864. [Google Scholar] [CrossRef]
- Tzu, T.-C.; Sun, K.; Costanzo, R.; Ayoub, D.; Bowers, S.M.; Beling, A. Foundry-Enabled High-Power Photodetectors for Microwave Photonics. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Sun, K.; Beling, A. High-Speed Photodetectors for Microwave Photonics. Appl. Sci. 2019, 9, 623. [Google Scholar] [CrossRef]
- Sun, K.; Costanzo, R.; Tzu, T.-C.; Yu, Q.; Bowers, S.M.; Beling, A. Ge-on-Si Waveguide Photodiode Array for High-Power Applications. In Proceedings of the IEEE Photonics Conference (IPC), Reston, VA, USA, 30 September–4 October 2018. [Google Scholar] [CrossRef]
- Jiang, Z.; Yu, Y.; Wang, Y.; Zhou, D.; Deng, W.; Zhang, X. High-Power Si–Ge Photodiode Assisted by Doping Regulation. Opt. Express 2021, 29, 7389–7397. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, A.; Piels, M.; Nunoya, N.; Yin, T.; Bowers, J.E. High-Power Silicon-Germanium Photodiodes for Microwave Photonic Applications. IEEE Trans. Microw. Theory Tech. 2010, 58, 3336–3343. [Google Scholar] [CrossRef]
- Michel, J.; Liu, J.; Kimerling, L.C. High-Performance Ge-on-Si Photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Piels, M.; Bowers, J.E. 40 GHz Si/Ge Uni-Traveling Carrier Waveguide Photodiode. J. Light. Technol. 2014, 32, 3502–3508. [Google Scholar] [CrossRef]
- Dai, D.; Piels, M.; Bowers, J.E. Monolithic Germanium/Silicon Photodetectors with Decoupled Structures: Resonant APDs and UTC Photodiodes. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 43–56. [Google Scholar] [CrossRef]
- Piels, M.; Bowers, J.E. Si/Ge Uni-Traveling Carrier Photodetector. Opt. Express 2012, 20, 7488–7495. [Google Scholar] [CrossRef] [PubMed]
- Piels, M.; Ramaswamy, A.; Bowers, J.E. A Germanium on Silicon Uni-Traveling Carrier Photodiode. In Proceedings of the Photonics Conference (PHO), Arlington, VA, USA, 9–13 October 2011; pp. 1–2. [Google Scholar] [CrossRef]
- Wang, J.; Simoyama, T.; Oka, A.; Serrano-Núñez, M.A.; Yoshida, Y.; Doi, K.; Uetake, A.; Makino, S.; Ishii, A.; Akiyama, S. Waveguide-Coupled Germanium Lateral Uni-Traveling-Carrier Photodetector for Coherent Applications at 130 Gbaud and Beyond. In Proceedings of the SPIE Silicon Photonics XIX, San Francisco, CA, USA, 12 March 2024. [Google Scholar] [CrossRef]
- Li, C.; Xue, C.; Liu, Z.; Cong, H.; Guo, X.; Cheng, B. High-Responsivity and High-Saturation-Current Si/Ge Uni-Traveling Carrier Photodetector. In Proceedings of the SPIE Infrared Sensors, Devices, and Applications V, San Diego, CA, USA, 28 August 2015. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Q.; Norberg, E.; Jacob-Mitos, M.; Chen, Y.; Ramaswamy, A.; Fish, G.; Bowers, J.E.; Campbell, J.; Beling, A. Heterogeneously Integrated Waveguide-Coupled Photodiodes on SOI with 12 dBm Output Power at 40 GHz. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar] [CrossRef]
- Srinivasan, S.A.; Berciano, M.; De Heyn, P.; Lardenois, S.; Pantouvaki, M.; Van Campenhout, J. 27 GHz Silicon-Contacted Waveguide-Coupled Ge/Si Avalanche Photodiode. J. Light. Technol. 2020, 38, 3044–3050. [Google Scholar] [CrossRef]
- You, J.-B.; Kwon, H.; Kim, J.; Park, H.-H.; Yu, K. Photon-Assisted Tunneling for Sub-Bandgap Light Detection in Silicon PN-Doped Waveguides. Opt. Express 2017, 25, 4284–4291. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.S.; Lambrecht, J.; Guermandi, D.; Lardenois, S.; Berciano, M.; Absil, P.; Bauwelinck, J.; Yin, X.; Pantouvaki, M.; Van Campenhout, J. 56 Gb/s NRZ O-Band Hybrid BiCMOS-Silicon Photonics Receiver Using Ge/Si Avalanche Photodiode. J. Light. Technol. 2021, 39, 1409–1415. [Google Scholar] [CrossRef]
- Zeng, X.; Huang, Z.; Wang, B.; Liang, D.; Fiorentino, M.; Beausoleil, R.G. Silicon–Germanium Avalanche Photodiodes with Direct Control of Electric Field in Charge Multiplication Region. Optica 2019, 6, 772–779. [Google Scholar] [CrossRef]
- Assefa, S.; Xia, F.; Vlasov, Y.A. Reinventing Germanium Avalanche Photodetector for Nanophotonic On-Chip Optical Interconnects. Nature 2010, 464, 80–84. [Google Scholar] [CrossRef]
- Giboney, K.S.; Rodwell, M.J.W.; Bowers, J.E. Traveling-Wave Photodetector Design and Measurements. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 622–629. [Google Scholar] [CrossRef]
- Cui, J.; Li, T.; Yang, F.; Cui, W.; Chen, H. The Dual-Injection Ge-on-Si Photodetectors with High Saturation Power by Optimizing Light Field Distribution. Opt. Commun. 2021, 480, 126467. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, H.; Wei, Z.; Xia, P.; Zhang, Q.; Wang, X.; Huang, Q.; Wang, Y.; Yang, J. High-Power and High-Speed Ge/Si Traveling-Wave Photodetector Optimized by Genetic Algorithm. J. Light. Technol. 2023, 41, 240–248. [Google Scholar] [CrossRef]
- Wu, X.; Yu, H.; Fu, Z.; Zhang, Q.; Yang, Y.; Jiang, X. A Silicon Aperiodically Distributed Traveling-Wave Photodetector with Enhanced RF Output Power. J. Light. Technol. 2018, 36, 3152–3161. [Google Scholar] [CrossRef]
- Zuo, Y.; Yu, Y.; Zhou, D.; Zhang, X. Integrated High Power Germanium Photodetectors Assisted by Optical Field Manipulation. In Proceedings of the 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 7–11 July 2019. [Google Scholar] [CrossRef]
- Gao, Y.; Das, R.; Xie, Y.; Guo, F.; Mascher, P.; Knights, A.P. Si/Ge phototransistor with responsivity >1000 A/W on a silicon photonics platform. Opt. Express 2024, 32, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xiang, Y.; Sun, W.; Xie, J.; Guo, J.; Yu, Z.; Liu, L.; Shi, Y.; Dai, D. High-Power Ge/Si Waveguide Photodetector. ACS Photonics 2025, 11, 1761–1770. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Y.; Zou, M.; Yu, Y.; Zhang, X. Ultrahigh Power Germanium Photodetector Enabling Amplifier Free Wireless Communication. Laser Photonics Rev. 2025, 19, 2401469. [Google Scholar] [CrossRef]
- Senior, J.M. Optical Fiber Communications: Principles and Practice, 3rd ed.; Prentice Hall: Harlow, UK, 2009. [Google Scholar]
- Cheng, C.; Xue, J.; Yu, Z.; Wu, J.; Bao, S.; Wang, B. A High-Power Lateral p-i-n Silicon-Germanium Photodiode. In Proceedings of the 2024 PhotonIcs & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024. [Google Scholar] [CrossRef]
- Ahn, D.; Kimerling, L.C.; Michel, J. Efficient Evanescent Wave Coupling Conditions for Waveguide-Integrated Thin-Film Si/Ge Photodetectors on Silicon-on-Insulator/Germanium-on-Insulator Substrates. J. Appl. Phys. 2011, 110, 083110. [Google Scholar] [CrossRef]
- Liow, T.-Y.; Song, J.; Tu, X.; Lim, A.E.-J.; Fang, Q.; Duan, N.; Yu, M.; Lo, G.-Q. Silicon Optical Interconnect Device Technologies for 40 Gb/s and Beyond. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 8200312. [Google Scholar] [CrossRef]
- Steckler, D.; Lischke, S.; Peczek, A.; Kroh, A.; Zimmermann, L. Photonic BiCMOS Technology with 80 GHz Ge Photodetectors and 100 GHz Ge Electro-Absorption Modulators. In Proceedings of the IEEE 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–13 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kodama, S.; Shimizu, N.; Furuta, T. High-Speed Response of Uni-Traveling-Carrier Photodiodes. Jpn. J. Appl. Phys. 1997, 36, 6263–6268. [Google Scholar] [CrossRef]
- Williams, K.J.; Esman, R.D.; Dagenais, M. Nonlinearities in p-i-n Microwave Photodetectors. J. Light. Technol. 1996, 14, 84–96. [Google Scholar] [CrossRef]
- Zhou, G.; Runge, P. Nonlinearities of High-Speed P-I-N Photodiodes and MUTC Photodiodes. IEEE Trans. Microw. Theory Tech. 2017, 65, 2063–2072. [Google Scholar] [CrossRef]
- Zhou, Q.; Cross, A.S.; Beling, A.; Fu, Y.; Lu, Z.; Campbell, J.C. High-Power V-Band InGaAs/InP Photodiodes. IEEE Photonics Technol. Lett. 2013, 25, 907–909. [Google Scholar] [CrossRef]
- Devine, E.P.; Yamada, T.; Wang, S.-Y.; Islam, M.S. Simulation of Ge on Si Photodiode with Photon-Trapping Micro-Nano Holes with -3 dB Bandwidth of >60 GHz at NIR Wavelength. arXiv 2024. [Google Scholar] [CrossRef]
- Augel, L.; Schlipf, J.; Bullert, S.; Bürzele, S.; Schulze, J.; Fischer, I.A. Photonic-Plasmonic Mode Coupling in Nanopillar Ge-on-Si PIN Photodiodes. Sci. RepSci. Rep. 2021, 11, 5723. [Google Scholar] [CrossRef]
- Kim, Y.J.; An, S.; Liao, Y.; Huang, P.; Son, B.; Tan, C.S.; Chang, G.; Kim, M. Flexible TiN/Ge Photodetectors with Enhanced Responsivity via Localized Surface Plasmon Resonance and Strain Modulation. J. Mater. Chem. C 2023, 11, 4520–4525. [Google Scholar] [CrossRef]
- Bavil, M.; Liu, Z.; Wu, W.; Li, C.; Cheng, B. Photocurrent Enhancement in Si–Ge Photodetectors by Utilizing Surface Plasmons. Plasmonics 2017, 12, 1709–1715. [Google Scholar] [CrossRef]
- Schlykow, V.; Manganelli, C.L.; Römer, F.; Clausen, C.; Augel, L.; Schulze, J.; Katzer, J.; Schubert, M.A.; Witzigmann, B.; Schroeder, T.; et al. Ge(Sn) Nano-Island/Si Heterostructure Photodetectors with Plasmonic Antennas. Nanotechnology 2020, 31, 345203. [Google Scholar] [CrossRef]
- Colace, L.; Scacchi, A.; Assanto, G. Noise Characterization of Ge/Si Photodetectors. In Proceedings of the 8th IEEE International Conference Group IV Photonics (GFP), London, UK, 14–16 September 2011; pp. 290–292. [Google Scholar] [CrossRef]
- Dutta, H.S.; Das, N.R. Calculating the Noise Equivalent Bandwidth of a Ge-Based Schottky Photodetector at 1.55 μm Wavelength. Microw. Opt. Technol. Lett. 2010, 52, 839–843. [Google Scholar] [CrossRef]
- Ito, H.; Fushimi, H.; Muramoto, Y.; Furuta, T.; Ishibashi, T. High-Power Photonic Microwave Generation at K- and Ku-Bands Using a Uni-Traveling-Carrier Photodiode. In Proceedings of the 2001 IEEE MTT-S International Microwave Symposium Digest, Phoenix, AZ, USA, 20–24 May 2001; pp. 65–68. [Google Scholar] [CrossRef]
- Ito, H.; Nagatsuma, T.; Hirata, A.; Minotani, T.; Sasaki, A.; Hirota, Y.; Ishibashi, T. High-Power Photonic Millimetre Wave Generation at 100 GHz Using Matching-Circuit-Integrated Uni-Travelling-Carrier Photodiodes. IEE Proc. Optoelectron. 2003, 150, 138–142. [Google Scholar] [CrossRef]
- Konkol, M.R.; Ross, D.D.; Shi, S.; Harrity, C.E.; Wright, A.A.; Schuetz, C.A.; Prather, D.W. High-Power Photodiode-Integrated-Connected Array Antenna. J. Lightwave Technol. 2017, 35, 2010–2016. [Google Scholar] [CrossRef]
- Vega, S.; Ballesteros, C.; Caillaud, C.; Lanteri, D.; Mekhazni, K.; Santos, M.C.; Pradell, L.; Jofre, L. Compact Optically-Fed Antennas with Reconfigurable Frequency Operation in the Ka Band; SSRN: Amsterdam, The Netherland, 2023. [Google Scholar] [CrossRef]
- Singh, N.; Torfs, G.; Van Kerrebrouck, J.; Caillaud, C.; Demeester, P.; Yin, X. 60 GHz Resonant Photoreceiver with an Integrated SiGe HBT Amplifier for Low Cost Analog Radio-over-Fiber Links. J. Light. Technol. 2021, 39, 5307–5313. [Google Scholar] [CrossRef]
- Flammia, I.; Khani, B.; Arafat, S.; Stöhr, A. 60 GHz Grounded-Coplanar-Waveguide-to-Substrate-Integrated-Waveguide Transition for RoF Transmitters. Electron. Lett. 2014, 50, 34–35. [Google Scholar] [CrossRef]
- Khani, B.; Rymanov, V.; Steeg, M.; Buck, A.; Dülme, S.; Stöhr, A. Compact E-Band (71–86 GHz) Bias-Tee Module for External Biasing of Millimeter-Wave Photodiodes. In Proceedings of the International Topical Meeting Microwave Photonics (MWP), Paphos, Cyprus, 26–29 October 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Radi, B.; Dhillon, A.S.; Liboiron, O. Demonstration of Inter-Chip RF Data Transmission Using On-Chip Antennas in Silicon Photonics. IEEE Photonics Technol. Lett. 2020, 32, 659–662. [Google Scholar] [CrossRef]
- Caytan, O.; de Paula, I.L.; Bogaert, L.; Van Kerrebrouck, J.; Moerman, A.; Muneeb, M.; Torfs, G.; Bauwelinck, J.; Demeester, P.; Roelkens, G.; et al. Co-Design Strategies for AFSIW-Based Remote Antenna Units for RFoF. In Proceedings of the 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023. [Google Scholar] [CrossRef]
- Ballesteros, C.; Vega, S.; Santos, M.C.; Jofre-Roca, L. Short Asymmetrical Inductive Dipole Antenna for Direct Matching to High-Q Chips. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 149–153. [Google Scholar] [CrossRef]
- Taillieu, J.; Sauleau, R.; Alouini, M.; Ovejero, D.G. Modulated Metasurface Array for Photonic Beam Steering at W Band. In Proceedings of the 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023. [Google Scholar] [CrossRef]
- Taillieu, J.; Sauleau, R.; Alouini, M.; Gonzalez, D. Cavity-Backed Broadband Microstrip Antenna Array for Photonic Beam Steering at W Band. In Proceedings of the 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Pascual, Á.J.; Ali, M.; Del Barrio, G.C.; Ferrero, F.; Brochier, L.; Sauleau, R.; García, L.E.; González, D. A Photonically-Excited Leaky-Wave Antenna Array at E-Band for 1-D Beam Steering. Appl. Sci. 2020, 10, 3474. [Google Scholar] [CrossRef]
- Ali, M.; Jankowski, A.; Guzmán, R.C.; van Dijk, F.; García, L.E.; Carpintero, G. A Broadband Millimeter-Wave Photomixing Emitter Array Employing UTC-PD and Planar Antenna. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Ali, M.; Guzmán, R.C.; van Dijk, F.; García, L.E.; Carpintero, G. An Antenna-Integrated UTC-PD Based Photonic Emitter Array. In Proceedings of the International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019. [Google Scholar] [CrossRef]
- Renaud, C.C.; Natrella, M.; Graham, C.; Seddon, J.; van Dijk, F.; Seeds, A.J. Antenna-Integrated THz Uni-Traveling-Carrier Photodiodes. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Jankowski, A.; van Dijk, F.; Larrue, A.; Garcia, M.; Gomez, C.; Pommereau, F. Antenna-Integrated Photodiode Array with Single Optical Input. In Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Bochum, Germany, 24–26 November 2020. [Google Scholar] [CrossRef]
- Furuya, K.; Akiba, S.; Hirokawa, J.; Ando, M. 60 GHz-Band Compact Photonic Antenna Module with Integrated Photodiode. In Proceedings of the IEEE International Symposium on Antennas and Propagation (ISAP), Okinawa, Japan, 24–28 October 2016; pp. 1–2. [Google Scholar]
- Li, K.; Xie, X.; Li, Q.; Shen, Y.; Woodsen, M.E.; Yang, Z.; Beling, A.; Campbell, J.C. High-Power Photodiode Integrated with Coplanar Patch Antenna for 60-GHz Applications. IEEE Photonics Technol. Lett. 2015, 27, 650–653. [Google Scholar] [CrossRef]
- Burasa, P.; Djerafi, T.; Wu, K. A 28 GHz and 60 GHz Dual-Band On-Chip Antenna for 5G-Compatible IoT-Served Sensors in Standard CMOS Process. IEEE Trans. Antennas Propag. 2021, 69, 2940–2945. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Melanson, F.; Liboiron, O. Silicon Photonics for Inter/Intra-Chip Wireless Communication Using RF On-Chip Antennas. IEEE Photonics J. 2024, 16, 1–12. [Google Scholar] [CrossRef]
- Rudie, J.; Amoah, S.; Wang, X.; Kumar, R.; Abernathy, G.; Akwabli, S.; Grant, P.C.; Liu, J.; Li, B.; Du, W.; et al. Development of Monolithic Germanium–Tin on Si Avalanche Photodiodes for Infrared Detection. IEEE J. Sel. Top. Quantum Electron. 2024, 31, 1–9. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D. Guided-Mode Resonance Enhanced Ge-on-Si Self-Powered Surface Illuminated Photodetector for Ultrahigh-Speed Optical Communication Systems. IEEE Sens. J. 2024, 24, 40669–40677. [Google Scholar] [CrossRef]
- Jahromi, H.D.; Lotfiani, A. A Fast and Sensitive Schottky Photodiode with Surface Plasmon Enhanced Photocurrent and Extremely Low Dark Current for High-Frequency Applications in Near-Infrared. IEEE Sens. J. 2022, 22, 20430–20437. [Google Scholar] [CrossRef]
Photodiode | Res. (A/W) | HF Phc. (mA) | BW (GHz) | RF-P (dBm) | Dark Cur. (uA) | Appl. | DC Phc. (mA) | PD Type |
---|---|---|---|---|---|---|---|---|
Ev. Coupled PD [5] | 0.52 | 12 | 36 | 8.57 | 0.1 | HP | 16 | Ge/Si |
4-Element TWPD Array [11] | 0.76 | 13 | 35 | 9.26 | >3.5 | HP | 112 | Ge/Si |
MUTC PD [16,17,18] | 0.7 | 45 | 30 | 19 | HP | 134 | InGaAs/InP | |
MUTC PD [20] | 0.17 | 49 | 100 | 9.6 | 0.1 | HP | InGaAs/InP |
Photodiode | Res. (A/W) | HF Phc. (mA) | BW (GHz) | RF-P (dBm) | Dark Cur. (uA) | Appl. | DC Phc. (mA) | Inp. Opt-P (dBm) | PD SNR (dB) |
---|---|---|---|---|---|---|---|---|---|
Ev. Coupled PD [33] | 0.52 | 12 | 36 | 8.57 | 0.1 | HP | 16 | 13.8 | 52.96 |
Mode-Evolution PD [36] | 0.47 | 1.88 | 31.6 | −7.53 | 0.073 | HP | 9 | 6.02 | 46.6 |
Lateral Incident PD [34] | 1.09 | 8.8 | 9.39 | −2.5 | 0.0073 | HP | 9.79 | 13.01 | 56.64 |
2-Element PD [40] | 0.46 | 13 | 9 | 9.27 | 1.28 | HP | 28.8 | 10.7 | 60.81 |
2-Element Adiabatic Coupled PD [68] | 0.8 | 10.2 | 20 | 7.16 | 0.024 | HP | 19.5 | 10.93 | 55.84 |
8-Element PD [41] | 0.77 | 1 | 4.1 | −13.01 | 3.46 | HP | 37 | 7 | 52.42 |
TWPD 4-Element [42] | 0.82 | 20 | HP | 65 | 22.04 | 62 | |||
4-Element TWPD Array [43] | 0.76 | 13 | 35 | 9.26 | >3.5 | HP | 112 | 11.76 | 56.57 |
16-Element TWPD Array [69] | 1.12 | 100 | 5 | 16.1 | 0.29 | HP | 471.4 | 19.54 | 73.7 |
TWPD [63] | 1.07 | 27.2 | 0.0099 | HP | 13.28 | 10 | 53.52 | ||
8-Element PD [44] | 0.21 | 48 | 5 | 14.3 | 15 | HP | 66.69 | ||
4-Element PD [46] | 0.58 | 19 | 15 | 7 | 0.3 | HP | 57.76 | ||
Doping Regulated PD [47] | 1.06 | 5.3 | 20 | 1.5 | 0.0014 | HP | 36.4 | 7.78 | 54.52 |
PIN PD [48] | 40 | 4.38 | 14.17 | 125 | HP | 16.53 | 66.47 | ||
Si-Based UTC PD [50] | 0.5 | 2 | 30 | −11.7 | 20 | HP | 43.45 | ||
Ge-on-Si UTC PD [52,53] | 0.12 | 8 | 20 | 0 | 3.8 | HP | 37 | 20 | 56.21 |
Ge-on-Si UTC PD [15,55] | 0.18 | 16.2 | 3 | 4.6 | 0.058 | HP | 64.02 | ||
Ge-on-Si Lateral UTC PD [54] | 0.66 | 3 | 67 | −3.47 | 0.0042 | HP | 42.19 | ||
III–V UTC PD on Si [56] | 0.95 | 40 | 12 | 0.01 | HP | ||||
Av. PD [57] | 0.65 | 27 | low | 100 | LP D-Com. | ||||
Av. PD [58] | 14 | low | LP D-Com. | ||||||
Av. PD [60] | 18.9 | low | LP D-Com. |
Photodiode | OIP3 (dBm) | Meas. Freq. (GHz) | 1 dB comp. Phc. (mA) | Inp. Opt-P (dBm) | RF-P (dBm) |
---|---|---|---|---|---|
2-Element PD [40] | DC | 28.8 | 18 | ||
2-Element Adiabatically Coupled PD [68] | DC | 17.7 | 13.42 | ||
2-Element PD [41] | 10 | 16.1 | 10 | 1.2 | |
4-Element PD [41] | 10 | 11.4 | 9 | 2.3 | |
8-Element PD [41] | 10 | 10 | 10 | 11.1 | |
TWPD 1-Element [42] | DC | 16 | 16.02 | ||
TWPD 2-Element [42] | DC | 38 | 20 | ||
TWPD 4-Element [42] | DC | 65 | 22.04 | ||
4-Element TWPD Array [43] | 2 | 60 | 19.14 | 12.3 | |
20 | 20 | 16.53 | 7.5 | ||
40 | 15 | 14.47 | 3.9 | ||
8-Element TWPD Array [43] | 2 | >60 | 12.3 | ||
20 | 40 | 8.8 | |||
40 | 25 | 5.3 | |||
16-Element TWPD Array [69] | 32.3 | 5 | 200 | 22.67 | 16.1 |
Periodic 4-Element TWPD Array [64] | 1 | 20 | 13.98 | 5.3 | |
5 | 18 | 13.62 | 3 | ||
10 | 15 | 13.22 | 1.7 | ||
20 | 13 | 12.55 | 0.7 | ||
30 | 12.5 | 12.3 | 0.1 | ||
40 | 14 | 12.99 | −2.3 | ||
Aperiodic 4-Element TWPD Array [64] | 1 | 20 | 13.98 | 5.8 | |
5 | 18 | 13.62 | 3.2 | ||
10 | 17 | 13.42 | 2.7 | ||
20 | 16.7 | 13.32 | 2.5 | ||
30 | 16 | 13.28 | 2.5 | ||
40 | 15 | 13.22 | −0.1 | ||
Periodic 8-Element TWPD Array [64] | 1 | 35 | 17.08 | 10.1 | |
5 | 34 | 16.9 | 7.9 | ||
10 | 33 | 16.81 | 6.9 | ||
20 | 30 | 16.63 | 5.6 | ||
30 | 28 | 16.43 | 4.6 | ||
40 | 27 | 16.128 | 1.6 | ||
Aperiodic 8-Element TWPD Array [64] | 1 | 35 | 17.16 | 10.1 | |
5 | 34.5 | 17.08 | 8.8 | ||
10 | 33 | 16.99 | 8.4 | ||
20 | 31 | 16.9 | 7.6 | ||
30 | 28 | 16.81 | 6.3 | ||
40 | 28 | 16.81 | 2 | ||
1-element TWPD [64] | 1 | 5.8 | 9 | −3 | |
5 | 4.8 | 8.75 | −4 | ||
10 | 4.6 | 8.33 | −5 | ||
20 | 4.5 | 7.78 | −6.5 | ||
30 | 4.3 | 6.99 | −6.3 | ||
40 | 4 | 6.53 | −8 | ||
TWPD [63] | DC | 13.28 | 10 | ||
1-Element PD [44] | 22.5 @ 1 GHz | 5 | 13 | 3 | |
18 @ 6 GHz | 21 | 6.2 | −5 | ||
2-Element PD [44] | 5 | 22 | 8 | ||
18 | 14 | 0 | |||
4-Element PD [44] | 27.5 @ 1 GHz | 5 | 36 | 12.8 | |
20 @ 12 GHz | 12 | 27 | 7.5 | ||
8-Element PD [44] | 5 | 48.5 | 14.8 | ||
4-Element PD [46] | 1 | 65 | 13 | ||
15 | 25 | 7 |
Antenna | Ant. Type | (GHz) | BW (GHz) | Gain (dBi) | Rad. Eff. (dB) | Rad. Pat. Type | Beam Steering | Opt. Integ. | ) |
---|---|---|---|---|---|---|---|---|---|
Monopole [93] | Res. | 15 | 0.8 | −0.22 | −5.22 | Omni | Complex | Easy | |
Monopole [106] | Res. | 15.5 | 14 | 2 Gbps at 18 mm | Omni | Complex | Easy | ||
Cavity-Backed Patch [94] | Res. | 3.5 | 0.4 | 10.8 (Array) | Direc | Easy | Complex | ||
Cavity-Backed Patch [97] | Res. | 100 | 35 | 26 (Array) | −0.46 | Direc | Easy | Complex | |
SAID [95] | Res. | 28 | 5.6 | 10 | −0.81 | Direc | Easy | Easy | |
Bowtie [101] | Res. | 2500 | 2400 | 1 mW @ 100 GHz, 10 nW @ 2500 GHz | Direc with Lens | Complex | Easy | ||
Bowtie Array [102] | Res. | 50 | dBm | Direc with Lens | Complex | Easy | |||
Coplanar Patch [103] | Res. | 60 | 9.3 | 0 | Direc with Ref. | Easy | Easy | ||
Coplanar Patch [104] | Res. | 60 | 12.5 | 4.5 | Direc With Ref. | Easy | Easy | ||
Modulated MTS Array [96] | TW | 100 | 3.6 | 26 | Direc | Complex | Complex | ||
Leaky Wave Antenna [98] | TW | 81 | 11 | 17.75 | −1.25 | Direc | Easy with Freq. change | Complex | |
Tapered Slot Ant. [100] | TW | 100 | 70 | 15.5 | dBm @ 70 GHz | Endfire Direc | Complex | Complex | Large |
CA Ant. [88] | TW | 15 | 15 | dBm @ 17 GHz | Direc | Easy | Complex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haydhah, S.; Ferrero, F.; Zhang, X.; Kishk, A.A. Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications. Photonics 2025, 12, 820. https://doi.org/10.3390/photonics12080820
Haydhah S, Ferrero F, Zhang X, Kishk AA. Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications. Photonics. 2025; 12(8):820. https://doi.org/10.3390/photonics12080820
Chicago/Turabian StyleHaydhah, Saeed, Fabien Ferrero, Xiupu Zhang, and Ahmed A. Kishk. 2025. "Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications" Photonics 12, no. 8: 820. https://doi.org/10.3390/photonics12080820
APA StyleHaydhah, S., Ferrero, F., Zhang, X., & Kishk, A. A. (2025). Recent Advances in C-Band High-Power and High-Speed Radio Frequency Photodiodes: Review, Theory and Applications. Photonics, 12(8), 820. https://doi.org/10.3390/photonics12080820