Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing
- i.
- ii.
- First-principles calculations of electronic and optical properties of graphene, borophene, and boron carbide 2D heterostructures [6];
- iii.
- Advanced optical and electronic transport characterization of novel vdW heterostructures (Ta2NiS5/CrOCl) [7];
- iv.
- Electronic and optoelectronic devices based on 2DM heterostructures, i.e., novel 2D field effect transistors with a tungsten diselenide (WSe2) channel and multilayer palladium diselenide (PdSe2) vdW contacts [8]; bipolar transistors based on a MoS2/WSe2/MoS2 heterostructure [9]; photo-transistors and self-powered photodetectors based on graphene/Si [10]; NiO/graphene/Si junctions [11]; photovoltaic devices [12]; and biosensors based on MoS2/WTe2 Schottky barriers [13].
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Shen, L.; Costa, M.D.; Persson, K.A.; Ong, S.P.; Huck, P.; Lu, Y.; Ma, X.; Chen, Y.; Tang, H.; et al. DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci. Data 2019, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Geim, K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Bosi, M.; Attolini, G.; Rossi, F.; Fornari, R.; Fabbri, F.; Seravalli, L. Influence of the Carrier Gas Flow in the CVD Synthesis of 2-Dimensional MoS2 Based on the Spin-Coating of Liquid Molybdenum Precursors. Nanomaterials 2024, 14, 1749. [Google Scholar] [CrossRef]
- Španková, M.; Chromik, Š.; Dobročka, E.; Slušná, L.P.; Talacko, M.; Gregor, M.; Pécz, B.; Koos, A.; Greco, G.; Panasci, S.E.; et al. Large-Area MoS2 Films Grown on Sapphire and GaN Substrates by Pulsed Laser Deposition. Nanomaterials 2023, 13, 2837. [Google Scholar] [CrossRef]
- Niu, L.; Conquest, O.J.; Verdi, C.; Stampfl, C. Electronic and Optical Properties of 2D Heterostructure Bilayers of Graphene, Borophene and 2D Boron Carbides from First Principles. Nanomaterials 2024, 14, 1659. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Chen, P.; Xu, X.; Zhang, Y.; Cai, W.; Peng, G.; Zhang, X.; Deng, C. Symmetry-Engineering-Induced In-Plane Polarization Enhancement in Ta2NiS5/CrOCl van der Waals Heterostructure. Nanomaterials 2023, 13, 3050. [Google Scholar] [CrossRef] [PubMed]
- Murastov, G.; Aslam, M.A.; Leitner, S.; Tkachuk, V.; Plutnarová, I.; Pavlica, E.; Rodriguez, R.D.; Sofer, Z.; Matković, A. Multi-Layer Palladium Diselenide as a Contact Material for Two-Dimensional Tungsten Diselenide Field-Effect Transistors. Nanomaterials 2024, 14, 481. [Google Scholar] [CrossRef]
- Yan, Z.; Xu, N.; Deng, S. AC Characteristics of van der Waals Bipolar Junction Transistors Using an MoS2/WSe2/MoS2 Heterostructure. Nanomaterials 2024, 14, 851. [Google Scholar] [CrossRef] [PubMed]
- Strobel, C.; Chavarin, C.A.; Knaut, M.; Albert, M.; Heinzig, A.; Gummadi, L.; Wenger, C.; Mikolajick, T. p-Type Schottky Contacts for Graphene Adjustable-Barrier Phototransistors. Nanomaterials 2024, 14, 1140. [Google Scholar] [CrossRef] [PubMed]
- Pandit, B.; Parida, B.; Jang, H.-S.; Heo, K. Self-Powered Broadband Photodetector Based on NiO/Si Heterojunction Incorporating Graphene Transparent Conducting Layer. Nanomaterials 2024, 14, 551. [Google Scholar] [CrossRef] [PubMed]
- Rajpar, H.; Bashir, M.B.A.; Salih, E.Y.; Ahmed, E.M. Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature. Nanomaterials 2024, 14, 920. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Ma, H.; Sun, T.; Cui, X.; Huo, P.; Man, B.; Yang, C. Asymmetric Schottky Barrier-Generated MoS2/WTe2 FET Biosensor Based on a Rectified Signal. Nanomaterials 2024, 14, 226. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannazzo, F.; Bondino, F.; Seravalli, L.; Agnello, S. Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing. Nanomaterials 2025, 15, 851. https://doi.org/10.3390/nano15110851
Giannazzo F, Bondino F, Seravalli L, Agnello S. Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing. Nanomaterials. 2025; 15(11):851. https://doi.org/10.3390/nano15110851
Chicago/Turabian StyleGiannazzo, Filippo, Federica Bondino, Luca Seravalli, and Simonpietro Agnello. 2025. "Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing" Nanomaterials 15, no. 11: 851. https://doi.org/10.3390/nano15110851
APA StyleGiannazzo, F., Bondino, F., Seravalli, L., & Agnello, S. (2025). Special Issue: 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics, and Sensing. Nanomaterials, 15(11), 851. https://doi.org/10.3390/nano15110851